267 research outputs found

    Flow probe of symmetry energy in relativistic heavy-ion reactions

    Get PDF
    Flow observables in heavy-ion reactions at incident energies up to about 1 GeV per nucleon have been shown to be very useful for investigating the reaction dynamics and for determining the parameters of reaction models based on transport theory. In particular, the elliptic flow in collisions of neutron-rich heavy-ion systems emerges as an observable sensitive to the strength of the symmetry energy at supra-saturation densities. The comparison of ratios or differences of neutron and proton flows or neutron and hydrogen flows with predictions of transport models favors an approximately linear density dependence, consistent with ab-initio nuclear-matter theories. Extensive parameter searches have shown that the model dependence is comparable to the uncertainties of existing experimental data. Comprehensive new flow data of high accuracy, partly also through providing stronger constraints on model parameters, can thus be expected to improve our knowledge of the equation of state of asymmetric nuclear matter.Comment: 20 pages, 24 figures, review to appear in EPJA special volume on nuclear symmetry energ

    Shadow of a Colossus: A z=2.45 Galaxy Protocluster Detected in 3D Ly-a Forest Tomographic Mapping of the COSMOS Field

    Full text link
    Using moderate-resolution optical spectra from 58 background Lyman-break galaxies and quasars at z2.33z\sim 2.3-3 within a 11.5×13.511.5'\times13.5' area of the COSMOS field (1200deg2\sim 1200\,\mathrm{deg}^2 projected area density or 2.4h1Mpc\sim 2.4\,h^{-1}\,\mathrm{Mpc} mean transverse separation), we reconstruct a 3D tomographic map of the foreground Lyα\alpha forest absorption at 2.2<z<2.52.2<z<2.5 with an effective smoothing scale of σ3d3.5h1Mpc\sigma_{3d}\approx3.5\,h^{-1}\,\mathrm{Mpc} comoving. Comparing with 61 coeval galaxies with spectroscopic redshifts in the same volume, we find that the galaxy positions are clearly biased towards regions with enhanced IGM absorption in the tomographic map. We find an extended IGM overdensity with deep absorption troughs at z=2.45z=2.45 associated with a recently-discovered galaxy protocluster at the same redshift. Based on simulations matched to our data, we estimate the enclosed dark matter mass within this IGM overdensity to be Mdm(z=2.45)=(9±4)×1013h1MM_{\rm dm} (z=2.45) = (9\pm4)\times 10^{13}\,h^{-1}\,\mathrm{M_\odot}, and argue based on this mass and absorption strength that it will form at least one z0z\sim0 galaxy cluster with M(z=0)=(3±2)×1014h1MM(z=0) = (3\pm 2) \times 10^{14}\,h^{-1}\mathrm{M_\odot}, although its elongated nature suggests that it will likely collapse into two separate clusters. We also point out a compact overdensity of six MOSDEF galaxies at z=2.30z=2.30 within a r1h1Mpcr\sim 1\,h^{-1}\,\mathrm{Mpc} radius and Δz0.006\Delta z\sim 0.006, which does not appear to have a large associated IGM overdensity. These results demonstrate the potential of Lyα\alpha forest tomography on larger volumes to study galaxy properties as a function of environment, as well as revealing the large-scale IGM overdensities associated with protoclusters and other features of large-scale structure.Comment: To be submitted to ApJ. Figure 3 can be viewed on Youtube: https://youtu.be/KeW1UJOPMY

    A Massive Cluster of Galaxies at z = 0.996

    Get PDF
    We report the identification of a cluster of galaxies around the high-redshift radio galaxy 3CR184 at z = 0.996. The identification is supported by an excess of galaxies observed in projection in I band images (both in ground-based and HST data), a peak in the redshift distribution comprising 11 galaxies (out of 56 with measured redshifts) in a ~2000 km/s velocity interval, and the observation on HST WFPC2 frames of a gravitational arc seen projected at 42kpc away from the central radio galaxy. We thus have strong evidence for the presence of a massive cluster at z~1.Comment: 13 pages, 2 figures (one in color), LaTex file. Accepted for publication in ApJ letter

    Evidence for Evolving Spheroidals in the Hubble Deep Fields North and South

    Full text link
    We investigate the dispersion in the internal colours of faint spheroidals in the HDFs North and South. We find that a remarkably large fraction ~30% of the morphologically classified spheroidals with I<24 mag show strong variations in internal colour, which we take as evidence for recent episodes of star-formation. In most cases these colour variations manifest themselves via the presence of blue cores, an effect of opposite sign to that expected from metallicity gradients. Examining similarly-selected ellipticals in five rich clusters with 0.37<z<0.83 we find a significant lower dispersion in their internal colours. This suggests that the colour inhomogeneities have a strong environmental dependence being weakest in dense environments where spheroidal formation was presumably accelerated at early times. We use the trends defined by the cluster sample to define an empirical model based on a high-redshift of formation and estimate that at z~1 about half the field spheroidals must be undergoing recent episodes of star-formation. Using spectral synthesis models, we construct the time dependence of the density of star-formation. Although the samples are currently small, we find evidence for an increase in ρSFR\rho_{SFR} between z=0 to z=1. We discuss the implications of this rise in the context of that observed in the similar rise in the abundance of galaxies with irregular morphology. Regardless of whether there is a connection our results provide strong evidence for the continued formation of field spheroidals over 0<z<1.Comment: 13 pages, 11 figures. To appear in MNRAS in response to referee's Report. Figures and paper also available at http://www.ast.cam.ac.uk/~fmenante/HDFs

    Isotopic Dependence of the Nuclear Caloric Curve

    Get PDF
    The A/Z dependence of projectile fragmentation at relativistic energies has been studied with the ALADIN forward spectrometer at SIS. A stable beam of 124Sn and radioactive beams of 124La and 107Sn at 600 MeV per nucleon have been used in order to explore a wide range of isotopic compositions. Chemical freeze-out temperatures are found to be nearly invariant with respect to the A/Z of the produced spectator sources, consistent with predictions for expanded systems. Small Coulomb effects (\Delta T \approx 0.6 MeV) appear for residue production near the onset of multifragmentation.Comment: 11 pages, 3 figures, accepted for publ. in Phys. Rev. Let

    Tracing a phase transition with fluctuations of the largest fragment size: Statistical multifragmentation models and the ALADIN S254 data

    Full text link
    A phase transition signature associated with cumulants of the largest fragment size distribution has been identified in statistical multifragmentation models and examined in analysis of the ALADIN S254 data on fragmentation of neutron-poor and neutron-rich projectiles. Characteristics of the transition point indicated by this signature are weakly dependent on the A/Z ratio of the fragmenting spectator source. In particular, chemical freeze-out temperatures are estimated within the range 5.9 to 6.5 MeV. The experimental results are well reproduced by the SMM model.Comment: 7 pages, 3 figures, Proceedings of the International Workshop on Multifragmentation and Related Topics (IWM2009), Catania, Italy, November 2009

    The VIMOS Public Extragalactic Redshift Survey (VIPERS). Luminosity and stellar mass dependence of galaxy clustering at 0.5<z<1.1

    Full text link
    We investigate the dependence of galaxy clustering on luminosity and stellar mass in the redshift range 0.5<z<1.1, using the first ~55000 redshifts from the VIMOS Public Extragalactic Redshift Survey (VIPERS). We measured the redshift-space two-point correlation functions (2PCF), and the projected correlation function, in samples covering different ranges of B-band absolute magnitudes and stellar masses. We considered both threshold and binned galaxy samples, with median B-band absolute magnitudes -21.6<MB-5log(h)<-19.5 and median stellar masses 9.8<log(M*[Msun/h^2])<10.7. We assessed the real-space clustering in the data from the projected correlation function, which we model as a power law in the range 0.2<r_p[Mpc/h]<20. Finally, we estimated the galaxy bias as a function of luminosity, stellar mass, and redshift, assuming a flat LCDM model to derive the dark matter 2PCF. We provide the best-fit parameters of the power-law model assumed for the real-space 2PCF -- the correlation length and the slope -- as well as the linear bias parameter, as a function of the B-band absolute magnitude, stellar mass, and redshift. We confirm and provide the tightest constraints on the dependence of clustering on luminosity at 0.5<z<1.1. We prove the complexity of comparing the clustering dependence on stellar mass from samples that are originally flux-limited and discuss the possible origin of the observed discrepancies. Overall, our measurements provide stronger constraints on galaxy formation models, which are now required to match, in addition to local observations, the clustering evolution measured by VIPERS galaxies between z=0.5 and z=1.1 for a broad range of luminosities and stellar masses.Comment: 17 pages, 10 figures, 4 tables. Accepted for publication in A&

    The VIMOS Public Extragalactic Redshift Survey (VIPERS). Galaxy clustering and redshift-space distortions at z=0.8 in the first data release

    Get PDF
    We present in this paper the general real- and redshift-space clustering properties of galaxies as measured in the first data release of the VIPERS survey. VIPERS is a large redshift survey designed to probe the distant Universe and its large-scale structure at 0.5 < z < 1.2. We describe in this analysis the global properties of the sample and discuss the survey completeness and associated corrections. This sample allows us to measure the galaxy clustering with an unprecedented accuracy at these redshifts. From the redshift-space distortions observed in the galaxy clustering pattern we provide a first measurement of the growth rate of structure at z = 0.8: f\sigma_8 = 0.47 +/- 0.08. This is completely consistent with the predictions of standard cosmological models based on Einstein gravity, although this measurement alone does not discriminate between different gravity models.Comment: 19 pages, 19 figures, accepted for publication in A&

    Spectral Energy Distributions of Hard X-ray selected AGNs in the XMDS Survey

    Get PDF
    We present the spectral energy distributions (SEDs) of a hard X-ray selected sample. The sample contains 136 sources with F(2-10 keV)>10^-14 erg/cm^2/s and 132 are AGNs. The sources are detected in a 1 square degree area of the XMM-Newton-Medium Deep Survey where optical data from the VVDS, CFHTLS surveys, and infrared data from the SWIRE survey are available. Based on a SED fitting technique we derive photometric redshifts with sigma(1+z)=0.11 and 6% of outliers and identify AGN signatures in 83% of the objects. This fraction is higher than derived when a spectroscopic classification is available. The remaining 17+9-6% of AGNs shows star-forming galaxy SEDs (SF class). The sources with AGN signatures are divided in two classes, AGN1 (33+6-1%) and AGN2 (50+6-11). The AGN1 and AGN2 classes include sources whose SEDs are fitted by type 1 and type 2 AGN templates, respectively. On average, AGN1s show soft X-ray spectra, consistent with being unabsorbed, while AGN2s and SFs show hard X-ray spectra, consistent with being absorbed. The analysis of the average SEDs as a function of X-ray luminosity shows a reddening of the IR SEDs, consistent with a decreasing contribution from the host galaxy at higher luminosities. The AGNs in the SF classes are likely obscured in the mid-infrared, as suggested by their low L(3-20micron)/Lcorr(0.5-10 keV) ratios. We confirm the previously found correlation for AGNs between the radio luminosity and the X-ray and the mid-infrared luminosities. The X-ray-radio correlation can be used to identify heavily absorbed AGNs. However, the estimated radio fluxes for the missing AGN population responsible for the bulk of the background at E>10 keV are too faint to be detected even in the deepest current radio surveys.Comment: Accepted for publication in Ap
    corecore