2,660 research outputs found
Bacillus Coagulans GBI-30 (BC30) improves indices of Clostridium difficile-Induced colitis in mice
<p>Abstract</p> <p>Background</p> <p>Probiotics have beneficial effects in rodent models of <it>Clostridium difficile </it>(<it>C. diffiicle</it>)-induced colitis. The spore forming probiotic strain <it>Bacillus Coagulans </it>GBI-30, 6086 (BC30) has demonstrated anti-inflammatory and immune-modulating effects <it>in vitro</it>. Our goal was to determine if BC30 improved <it>C. difficile</it>-induced colitis in mice. Starting on study day 0, female C57BL/6 mice were dosed by oro-gastric gavage for 15 days with vehicle (saline) or BC30 (2 × 10<sup>9 </sup>CFU per day). Mice in the <it>C. difficile </it>groups received an antibiotic mixture (study days 5 to 8 in the drinking water), and clindamycin (10 mg/kg, i.p., on study day 10). The <it>C. difficile </it>strain VPI 10463 was given by gavage at 10<sup>4 </sup>CFU to induce colitis on day 11. On day 16, stools and colons were collected for further analyses.</p> <p>Results</p> <p>All mice treated with BC30 survived on study day 13, while two mice treated with vehicle did not survive. On day 12, a significant difference (p = 0.0002) in the percentage of mice with normal stools (66.7%) was found in the BC30/<it>C. difficile </it>group, as compared to the vehicle/<it>C. diffcile </it>group (13.0%). On study day 16, 23.8% of mice treated with BC30 had normal stools, while this value was 0% with vehicle treatment (p value = 0.0187). On this day, the stool consistency score for the BC30/<it>C. difficile </it>group (1.1 ± 0.2) was significantly lower (p < 0.05) than for the vehicle/<it>C. difficile </it>cohort (1.9 ± 0.2). BC30 modestly attenuated the colonic pathology (crypt damage, edema, leukocyte influx) that was present following <it>C. difficile infection</it>. Colonic MIP-2 chemokine contents (pg/2 cm colon) were: 10.2 ± 0.5 (vehicle/no <it>C. difficile</it>), 24.6 ± 9.5 (vehicle/<it>C. difficile</it>) and 16.3 ± 4.3 (BC30/<it>C. difficle</it>).</p> <p>Conclusion</p> <p>The probiotic BC30 improved some parameters of <it>C. difficile</it>-induced colitis in mice. BC30 prolonged the survival of <it>C. diffiicle </it>infected mice. Particularly, this probiotic improved the stool consistency of mice, in this infectious colitis model.</p
Zooming into local active galactic nuclei: The power of combining SDSS-IV MaNGA with higher resolution integral field unit observations
Ionised gas outflows driven by active galactic nuclei (AGN) are ubiquitous in
high luminosity AGN with outflow speeds apparently correlated with the total
bolometric luminosity of the AGN. This empirical relation and theoretical work
suggest that in the range L_bol ~ 10^43-45 erg/s there must exist a threshold
luminosity above which the AGN becomes powerful enough to launch winds that
will be able to escape the galaxy potential. In this paper, we present pilot
observations of two AGN in this transitional range that were taken with the
Gemini North Multi-Object Spectrograph Integral Field Unit (IFU). Both sources
have also previously been observed within the Sloan Digital Sky Survey-IV
(SDSS) Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey.
While the MaNGA IFU maps probe the gas fields on galaxy-wide scales and show
that some regions are dominated by AGN ionization, the new Gemini IFU data zoom
into the centre with four times better spatial resolution. In the object with
the lower L_bol we find evidence of a young or stalled biconical AGN-driven
outflow where none was obvious at the MaNGA resolution. In the object with the
higher L_bol we trace the large-scale biconical outflow into the nuclear region
and connect the outflow from small to large scales. These observations suggest
that AGN luminosity and galaxy potential are crucial in shaping wind launching
and propagation in low-luminosity AGN. The transition from small and young
outflows to galaxy-wide feedback can only be understood by combining
large-scale IFU data that trace the galaxy velocity field with higher
resolution, small scale IFU maps.Comment: 14 pages, accepted for publication in MNRA
The Sloan Digital Sky Survey Reverberation Mapping Project: Velocity Shifts of Quasar Emission Lines
Quasar emission lines are often shifted from the systemic velocity due to
various dynamical and radiative processes in the line-emitting region. The
level of these velocity shifts depends both on the line species and on quasar
properties. We study velocity shifts for the line peaks of various narrow and
broad quasar emission lines relative to systemic using a sample of 849 quasars
from the Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project. The
coadded (from 32 epochs) spectra of individual quasars have sufficient
signal-to-noise ratio (SNR) to measure stellar absorption lines to provide
reliable systemic velocity estimates, as well as weak narrow emission lines.
The sample also covers a large dynamic range in quasar luminosity (~2 dex),
allowing us to explore potential luminosity dependence of the velocity shifts.
We derive average line peak velocity shifts as a function of quasar luminosity
for different lines, and quantify their intrinsic scatter. We further quantify
how well the peak velocity can be measured for various lines as a function of
continuum SNR, and demonstrate there is no systematic bias in the line peak
measurements when the spectral quality is degraded to as low as SNR~3 per SDSS
pixel. Based on the observed line shifts, we provide empirical guidelines on
redshift estimation from [OII]3728, [OIII]5008, [NeV]3426, MgII, CIII],
HeII1640, broad Hbeta, CIV, and SiIV, which are calibrated to provide unbiased
systemic redshifts in the mean, but with increasing intrinsic uncertainties of
46, 56, 119, 205, 233, 242, 400, 415, and 477 km/s, in addition to the
measurement uncertainties. These more realistic redshift uncertainties are
generally much larger than the formal uncertainties reported by the redshift
pipelines for spectroscopic quasar surveys, and demonstrate the infeasibility
of measuring quasar redshifts to better than ~200 km/s with only broad lines.Comment: matched to the published version; minor changes and conclusions
unchange
Observational Limits on Type 1 AGN Accretion Rate in COSMOS
We present black hole masses and accretion rates for 182 Type 1 AGN in
COSMOS. We estimate masses using the scaling relations for the broad Hb, MgII,
and CIV emission lines in the redshift ranges 0.16<z<0.88, 1<z<2.4, and
2.7<z<4.9. We estimate the accretion rate using an Eddington ratio L_I/L_Edd
estimated from optical and X-ray data. We find that very few Type 1 AGN accrete
below L_I/L_Edd ~ 0.01, despite simulations of synthetic spectra which show
that the survey is sensitive to such Type 1 AGN. At lower accretion rates the
BLR may become obscured, diluted or nonexistent. We find evidence that Type 1
AGN at higher accretion rates have higher optical luminosities, as more of
their emission comes from the cool (optical) accretion disk with respect to
shorter wavelengths. We measure a larger range in accretion rate than previous
works, suggesting that COSMOS is more efficient at finding low accretion rate
Type 1 AGN. However the measured range in accretion rate is still comparable to
the intrinsic scatter from the scaling relations, suggesting that Type 1 AGN
accrete at a narrow range of Eddington ratio, with L_I/L_Edd ~ 0.1.Comment: Accepted for pulication in ApJ. 7 pages, 5 figures, table 1 available
on reques
The Sloan Digital Sky Survey Reverberation Mapping Project: No Evidence for Evolution in the M-sigma Relation to z~1
We present host stellar velocity dispersion measurements for a sample of 88
broad-line quasars at 0.10.6) from the Sloan Digital Sky Survey
Reverberation Mapping (SDSS-RM) project. High signal-to-noise ratio coadded
spectra (average S/N~30 per 69 km/s pixel) from SDSS-RM allowed decomposition
of the host and quasar spectra, and measurement of the host stellar velocity
dispersions and black hole (BH) masses using the single-epoch (SE) virial
method. The large sample size and dynamic range in luminosity
(L5100=10^(43.2-44.7) erg/s) lead to the first clear detection of a correlation
between SE virial BH mass and host stellar velocity dispersion far beyond the
local universe. However, the observed correlation is significantly flatter than
the local relation, suggesting that there are selection biases in high-z
luminosity-threshold quasar samples for such studies. Our uniform sample and
analysis enable an investigation of the redshift evolution of the M-sigma
relation free of caveats by comparing different samples/analyses at disjoint
redshifts. We do not observe evolution of the M-sigma relation in our sample,
up to z~1, but there is an indication that the relation flattens towards higher
redshifts. Coupled with the increasing threshold luminosity with redshift in
our sample, this again suggests certain selection biases are at work, and
simple simulations demonstrate that a constant M-sigma relation is favored to
z~1. Our results highlight the scientific potential of deep coadded
spectroscopy from quasar monitoring programs, and offer a new path to probe the
co-evolution of BHs and galaxies at earlier times.Comment: replaced with the accepted version (minor changes and updated
references); ApJ in press; changed title to highlight the main resul
Episodic Random Accretion and the Cosmological Evolution of Supermassive Black Hole Spins
The growth of supermassive black holes (BHs) located at the centers of their
host galaxies comes mainly from accretion of gas, but how to fuel them remains
an outstanding unsolved problem in quasar evolution. This issue can be
elucidated by quantifying the radiative efficiency parameter () as a
function of redshift, which also provides constraints on the average spin of
the BHs and its possible evolution with time. We derive a formalism to link
with the luminosity density, BH mass density, and duty cycle of quasars,
quantities we can estimate from existing quasar and galaxy survey data. We find
that has a strong cosmological evolution: at z~2, ,
and by it has decreased by an order of magnitude, to . We interpret this trend as evolution in BH spin, and we appeal to
episodic, random accretion as the mechanism for reducing the spin. The
observation that the fraction of radio-loud quasars decreases with increasing
redshift is inconsistent with the popular notion that BH spin is a critical
factor for generating strong radio jets. In agreement with previous studies, we
show that the derived history of BH accretion closely follows the cosmic
history of star formation, consistent with other evidence that BHs and their
host galaxies coevolve.Comment: 4 page, 2 color figures. Accepted by ApJ
Application of Al-Cu-W-Ta graded density impactors in dynamic ramp compression experiments
Graded density impactors (GDIs) are used to dynamically compress materials to extreme conditions. Two modifications to a previously developed Mg-Cu-W GDI are made in this work before using it in a dynamic compression experiment: Mg is replaced with Al and a Ta disk is glued to the back. The Mg phase is replaced by Al because FCC Al remains solid to higher pressure along its Hugoniot compared to Mg. The addition of the Ta disk creates a constant particle velocity regime and facilitates a definition of peak pressure states. Microstructure analysis, profilometry, and ultrasonic C-scans of the Al-Cu-W GDI all confirm excellent uniformity. We evaluated signal variation in the radial direction of a dynamically compressed Al-LiF bilayer target to evaluate the contribution of spatial nonuniformity to errors. Velocity traces from five photon Doppler velocimetry (PDV) probes located at different radial distances from the center of the target varied at most by 1.1% with a root mean square of 0.3% during the compression ramp, demonstrating low PDV measurement error over a relatively large experimental area. The experimental PDV data also agrees well with 1D simulations that use inputs from predictive characterization models developed for the material properties resulting from tape casting, laminating, and powder consolidation processes. Low measurement error during quasi-isentropic compression, leading to better precision, ensures a robust platform to reach extreme compression and low-temperature recovery states and facilitates discovery via synthesis, quenching, and preservation of new high-pressure phases
Application of Al-Cu-W-Ta graded density impactors in dynamic ramp compression experiments
Graded density impactors (GDIs) are used to dynamically compress materials to extreme conditions. Two modifications to a previously developed Mg-Cu-W GDI are made in this work before using it in a dynamic compression experiment: Mg is replaced with Al and a Ta disk is glued to the back. The Mg phase is replaced by Al because FCC Al remains solid to higher pressure along its Hugoniot compared to Mg. The addition of the Ta disk creates a constant particle velocity regime and facilitates a definition of peak pressure states. Microstructure analysis, profilometry, and ultrasonic C-scans of the Al-Cu-W GDI all confirm excellent uniformity. We evaluated signal variation in the radial direction of a dynamically compressed Al-LiF bilayer target to evaluate the contribution of spatial nonuniformity to errors. Velocity traces from five photon Doppler velocimetry (PDV) probes located at different radial distances from the center of the target varied at most by 1.1% with a root mean square of 0.3% during the compression ramp, demonstrating low PDV measurement error over a relatively large experimental area. The experimental PDV data also agrees well with 1D simulations that use inputs from predictive characterization models developed for the material properties resulting from tape casting, laminating, and powder consolidation processes. Low measurement error during quasi-isentropic compression, leading to better precision, ensures a robust platform to reach extreme compression and low-temperature recovery states and facilitates discovery via synthesis, quenching, and preservation of new high-pressure phases
Optical--to--X-ray emission in low-absorption AGN: Results from the Swift-BAT 9 month catalogue
(Abridged) We present simultaneous optical--to--X-ray spectral energy
distributions (SEDs) from Swift's X-ray and UV--optical telescopes (XRT and
UVOT) for a well-selected sample of 26 low-redshift (z<0.1) AGN from the
Swift/BAT 9-month catalogue, the largest well-studied, hard X-ray selected
survey of local AGN to date. Our subsample consists of AGN with low intrinsic
X-ray absorption (N_H<10^22 cm^-2) and minimal spectral complexity, to more
accurately recover the intrinsic accretion luminosity in these sources. We
perform a correction for host galaxy contamination in all available UVOT filter
images to recover the intrinsic AGN emission, and estimate intrinsic dust
extinction from the resultant nuclear SEDs. Black hole mass estimates are
determined from the host-galaxy 2MASS K-band bulge luminosity. Accretion rates
determined from our SEDs are on average low (Eddington ratios <~ 0.1) and hard
X-ray bolometric corrections cluster at ~10-20, in contrast with the higher
values seen for quasars. An average SED for the 22 low accretion rate
(Eddington ratio < 0.1) objects is presented, with and without correction for
intrinsic extinction. We do not find a correlation of optical--to--X-ray
spectral index with Eddington ratio, regardless of the optical reference
wavelength chosen for defining the spectral index. The low accretion rates and
bolometric corrections found for this representative low-redshift sample are of
particular importance for studies of AGN accretion history.Comment: 25 pages, 22 figures, 4 tables, accepted for publication in MNRA
Black Hole Mass Estimates Based on CIV are Consistent with Those Based on the Balmer Lines
Using a sample of high-redshift lensed quasars from the CASTLES project with
observed-frame ultraviolet or optical and near-infrared spectra, we have
searched for possible biases between supermassive black hole (BH) mass
estimates based on the CIV, Halpha and Hbeta broad emission lines. Our sample
is based upon that of Greene, Peng & Ludwig, expanded with new near-IR
spectroscopic observations, consistently analyzed high S/N optical spectra, and
consistent continuum luminosity estimates at 5100A. We find that BH mass
estimates based on the FWHM of CIV show a systematic offset with respect to
those obtained from the line dispersion, sigma_l, of the same emission line,
but not with those obtained from the FWHM of Halpha and Hbeta. The magnitude of
the offset depends on the treatment of the HeII and FeII emission blended with
CIV, but there is little scatter for any fixed measurement prescription. While
we otherwise find no systematic offsets between CIV and Balmer line mass
estimates, we do find that the residuals between them are strongly correlated
with the ratio of the UV and optical continuum luminosities. Removing this
dependency reduces the scatter between the UV- and optical-based BH mass
estimates by a factor of approximately 2, from roughly 0.35 to 0.18 dex. The
dispersion is smallest when comparing the CIV sigma_l mass estimate, after
removing the offset from the FWHM estimates, and either Balmer line mass
estimate. The correlation with the continuum slope is likely due to a
combination of reddening, host contamination and object-dependent SED shapes.
When we add additional heterogeneous measurements from the literature, the
results are unchanged.Comment: Accepted for publication in The Astrophysical Journal. 37 text pages
+ 8 tables + 23 figures. Updated with comments by the referee and with a
expanded discussion on literature data including new observation
- …