632 research outputs found

    The Foreign Direct Investment Location Decision: A Contingency Model of the Foreign Direct Investment Location Decision-Making Process

    Get PDF
    Despite considerable prior research into foreign direct investment (FDI) location decisions, our understanding of the processes underlying such decisions is still limited. Findings from work based in the economics and behavioral theories of the multinational enterprise (MNE) both acknowledge that FDI is not a point-of-time decision but a gradual process that yields important changes over its duration. However, these competing traditions both fall short when attempting to portray the actual process by which FDI location decisions are made by managers in MNEs. This gap has been recently attributed to two interrelated limitations. Firstly, level of analysis concerns have artificially separated managerial decision-making processes from the organizational and environmental structures within which they are made. Secondly, because of the complexity inherent in the FDI location decision environment, the study of these decisions has not taken contextual factors into consideration. This study addresses three important questions in order to build our understanding of the FDI location decision-making processes: (1) What are the decision-making processes that lead to FDI location choice? (2) What is the impact of contextual variables on FDI location decision-making processes at different levels of analysis, and are there any patterns of variation in decision processes under different decision conditions? (3) What factors drive final FDI location choice, and can a useful framework or theory be developed that links FDI location decision-making processes and context to drivers of FDI location choice? In order to address level of analysis concerns, the study places the manager at the center of the FDI location decision in modeling and in research, a strategy recommended by an emerging stream of behavioral-focused international business research (Aharoni, 2010; Buckley et al., 2007; Devinney, 2011). By examining FDI location decisions from the perspective of the managers who implement them, it is possible to clarify the nature of processes that lead to FDI location choice, and identify the impact of different elements of decision maker, firm and environmental context on such processes. The conceptual framework builds on Aharoni’s (1966) pivotal research while incorporating findings from broader behavioral managerial decision models and international business research. The framework is based on the assumption that FDI location decision-making processes and final choice are contingent upon interactions between the environmental, firm and decision maker context under which the decision is made. The research was undertaken in three phases. Phase 1 included a literature review that covered research on the MNE, internationalization, and decision making. The findings of the review identified key aspects of FDI location decision context and led to the development of an initial contingency framework of strategic decision making. Phase 2 consisted of an exploratory case study of twenty four FDI location decisions. The initial contingency framework developed during the literature review was used during this stage to identify the relationship between decision-making processes and contextual variables at the case decisions. By drawing on results from the exploratory research, an initial conceptual model and a set of propositions were developed. In Phase 3, twenty case studies were theoretically sampled from a pool of MNEs of varying size and parent-country nationality within the knowledge-based industries. The data collection and analysis followed a process, event-driven approach to case study research involving the mapping of key sequences of events as well as within- and cross-case analysis. The results identify the key elements of the decision process that explain FDI location behavior and develop a framework that links them together and makes them sensible. The four key elements of the FDI location decision that comprise the framework include: (i) the process, (ii) the context, (iii) patterns, and (iv) location. Research findings show the FDI location decision process as comprising of five broad stages, the content of each driven by a dynamic and evolving interpretation of maximum subjective expected utility. Utility preferences are identified as the consequence of shifting and opaque goals, founded upon imperfect information, operating in an environment marked by uncertainty. Five variations in the overall orientation of utility at case decisions, classified in the study as ‘decision rules,’ proved to be more useful predictors of decision-making behavior than traditional notions of bounded rationality seeking rent extraction and profitability. Decision processes were found to vary in five prototypical patterns, according to clusters of contextual variables that together moderated the level of decision-maker autonomy, hierarchical centralization, rule formalization, commitment to strategy, and politicization of the decision. Patterns are described as FDI location decision-making models, and proposed as an initial step towards the development of a taxonomy of FDI location decision-making processes. Because of the dynamic and staged nature of the process, findings showed that factors that were important at one stage of the decision were not as important at the next. As such, the task of identifying universal drivers of FDI location was deemed an unfeasible one. In place of universal drivers, the initiating force of the investment, the purpose of investment and information sources and networks are identified as the key context-specific determinants of location in FDI decisions. Bounded by uncertainty, chance, the dynamics of the process and decision-maker effects, each of these aspects of the decision served to limit the possible consideration set for investment, and formed the value basis and measures from which to select the most attractive location choice. Despite the contextual differences in these drivers, however, the study revealed a strong pattern that showed that the importance of specific location considerations differed in much the same way across case decisions. During the first stage of case decisions primarily strategic aspects of locations were considered; during the second, considerations relating to the system; operational concerns in the third; implementation concerns in the fourth; and added value factors in the final choice. How each of these concerns was interpreted to reach final location choice differed according to the drivers mentioned previously, although the patterns were the same. This study develops a contingency framework for examining the FDI location decision-making processes of MNEs under different operating conditions. By identifying the four key components of the FDI location decision, their interrelationships and many sources of variance, this thesis shows that despite its complexity, the FDI location decision is amenable to useful conceptual structuring. From an academic standpoint, the framework answers Aharoni’s most recent call to action in ‘Behavioral Elements in Foreign Direct Investment’ (2010) by developing a replicable structure within which to think about incorporating managerial decision models and context into the theory of the MNE. These findings enhance understandings of decision making at MNEs, reconcile a number of inconsistencies between opposing perspectives of MNE theory, and thereby update extant theory so that it has greater relevance in today’s diverse international business environment. From a managerial standpoint, the thesis helps managers to recognize the opportunities and limitations posed by different aspects of decision context so that they are able to tailor their FDI location decision strategies to best suit their needs. Finally, from the perspective of policy markers, research findings provide great support for the use of investment attraction schemes through the use of targeted location marketing and investment incentives.

    Magnetohydrodynamic modeling of the accretion shocks in classical T Tauri stars: the role of local absorption on the X-ray emission

    Full text link
    We investigate the properties of X-ray emission from accretion shocks in classical T Tauri stars (CTTSs), generated where the infalling material impacts the stellar surface. Both observations and models of the accretion process reveal several aspects that are still unclear: the observed X-ray luminosity in accretion shocks is below the predicted value, and the density versus temperature structure of the shocked plasma, with increasing densities at higher temperature, deduced from the observations, is at odds with that proposed in the current picture of accretion shocks. To address these open issues we investigate whether a correct treatment of the local absorption by the surrounding medium is crucial to explain the observations. To this end, we describe the impact of an accretion stream on a CTTS by considering a magnetohydrodynamic model. From the model results we synthesize the X-ray emission from the accretion shock by producing maps and spectra. We perform density and temperature diagnostics on the synthetic spectra, and we directly compare the results with the observations. Our model shows that the X-ray fluxes inferred from the emerging spectra are lower than expected because of the complex local absorption by the optically thick material of the chromosphere and of the unperturbed stream. Moreover, our model including the effects of local absorption explains in a natural way the apparently puzzling pattern of density versus temperature observed in the X-ray emission from accretion shocks.Comment: Accepted for publication in Astrophysical Journal Letters; 5 pages, 4 figure

    High-Velocity Features: a ubiquitous property of Type Ia SNe

    Full text link
    Evidence of high-velocity features such as those seen in the near-maximum spectra of some Type Ia Supernovae (eg SN 2000cx) has been searched for in the available SNIa spectra observed earlier than one week before B maximum. Recent observational efforts have doubled the number of SNeIa with very early spectra. Remarkably, all SNeIa with early data (7 in our RTN sample and 10 from other programmes) show signs of such features, to a greater or lesser degree, in CaII IR, and some also in SiII 6255A line. High-velocity features may be interpreted as abundance or density enhancements. Abundance enhancements would imply an outer region dominated by Si and Ca. Density enhancements may result from the sweeping up of circumstellar material by the highest velocity SN ejecta. In this scenario, the high incidence of HVFs suggests that a thick disc and/or a high-density companion wind surrounds the exploding white dwarf, as may be the case in Single Degenerate systems. Large-scale angular fluctuations in the radial density and abundance distribution may also be responsible: this could originate in the explosion, and would suggest a deflagration as the more likely explosion mechanism. CSM-interaction and surface fluctuations may coexist, possibly leaving different signatures on the spectrum. In some SNe the HVFs are narrowly confined in velocity, suggesting the ejection of blobs of burned material.Comment: 12 pages, 2 figures, ApJ Letters in pres

    Brown Dwarfs and the Cataclysmic Variable Period Minimum

    Get PDF
    Using improved, up-to-date stellar input physics tested against observations of low-mass stars and brown dwarfs we calculate the secular evolution of low-mass donor cataclysmic variables (CVs), including those which form with a brown dwarf donor. Our models confirm the mismatch between the calculated minimum period (Pmin ~ 70 min) and the observed short-period cut-off (~ 80 min) in the CV period histogram. We find that tidal and rotational corrections applied to the one-dimensional stellar structure equations have no significant effect on the period minimum. Theoretical period distributions synthesized from our model sequences always show an accumulation of systems at the minimum period, a feature absent from the observed distribution. We suggest that non-magnetic CVs become unobservable as they are effectively trapped in permanent quiescence before they reach Pmin, and that small-number statistics may hide the period spike for magnetic CVs.Comment: 10 pages; accepted for publication in MNRA

    The early spectral evolution of SN 2004dt

    Full text link
    Aims. We study the optical spectroscopic properties of Type Ia Supernova (SN Ia) 2004dt, focusing our attention on the early epochs. Methods. Observation triggered soon after the SN 2004dt discovery allowed us to obtain a spectrophotometric coverage from day -10 to almost one year (~353 days) after the B band maximum. Observations carried out on an almost daily basis allowed us a good sampling of the fast spectroscopic evolution of SN 2004dt in the early stages. To obtain this result, low-resolution, long-slit spectroscopy was obtained using a number of facilities. Results. This supernova, which in some absorption lines of its early spectra showed the highest degree of polarization ever measured in any SN Ia, has a complex velocity structure in the outer layers of its ejecta. Unburnt oxygen is present, moving at velocities as high as ~16,700 km/s, with some intermediate-mass elements (Mg, Si, Ca) moving equally fast. Modeling of the spectra based on standard density profiles of the ejecta fails to reproduce the observed features, whereas enhancing the density of outer layers significantly improves the fit. Our analysis indicates the presence of clumps of high-velocity, intermediate-mass elements in the outermost layers, which is also suggested by the spectropolarimetric data.Comment: 13 pages, 15 figures, accepted for pubblication in Astronomy and Astrophysic

    Black hole solutions in Euler-Heisenberg theory

    Get PDF
    We construct static and spherically symmetric black hole solutions in the Einstein-Euler-Heisenberg (EEH) system which is considered as an effective action of a superstring theory. We considered electrically charged, magnetically charged and dyon solutions. We can solve analytically for the magnetically charged case. We find that they have some remarkable properties about causality and black hole thermodynamics depending on the coupling constant of the EH theory aa and bb, though they have central singularity as in the Schwarzschild black hole.Comment: 8 pages, 13 figures, figures corrected and some comments adde

    An orifice shape-based reduced order model of patient-specific mitral valve regurgitation

    Get PDF
    Mitral valve regurgitation (MR) is one of the most prevalent valvular heart diseases. Its quantitative assessment is challenging but crucial for treatment decisions. Using computational fluid dynamics (CFD), we developed a reduced order model (ROM) describing the relationship between MR flow rates, transvalvular pressure differences, and the size and shape of the regurgitant valve orifice. Due to its low computational cost, this ROM could easily be implemented into clinical workflows to support the assessment of MR. We reconstructed mitral valves of 43 patients from 3D transesophageal echocardiographic images and estimated the 3D anatomic regurgitant orifice areas using a shrink-wrap algorithm. The orifice shapes were quantified with three dimensionless shape parameters. Steady-state CFD simulations in the reconstructed mitral valves were performed to analyse the relationship between the regurgitant orifice geometry and the regurgitant hemodynamics. Based on the results, three ROMs with increasing complexity were defined, all of which revealed very good agreement with CFD results with a mean bias below 3% for the MR flow rate. Classifying orifices into two shape groups and assigning group-specific flow coefficients in the ROM reduced the limit of agreement predicting regurgitant volumes from 9.0 ml to 5.7 ml at a mean regurgitant volume of 57 ml

    Cooperative coupling of ultracold atoms and surface plasmons

    Full text link
    Cooperative coupling between optical emitters and light fields is one of the outstanding goals in quantum technology. It is both fundamentally interesting for the extraordinary radiation properties of the participating emitters and has many potential applications in photonics. While this goal has been achieved using high-finesse optical cavities, cavity-free approaches that are broadband and easy to build have attracted much attention recently. Here we demonstrate cooperative coupling of ultracold atoms with surface plasmons propagating on a plane gold surface. While the atoms are moving towards the surface they are excited by an external laser pulse. Excited surface plasmons are detected via leakage radiation into the substrate of the gold layer. A maximum Purcell factor of ηP=4.9\eta_\mathrm{P}=4.9 is reached at an optimum distance of z=250 nmz=250~\mathrm{nm} from the surface. The coupling leads to the observation of a Fano-like resonance in the spectrum.Comment: 9 pages, 4 figure

    Fano resonances in plasmonic core-shell particles and the Purcell effect

    Full text link
    Despite a long history, light scattering by particles with size comparable with the light wavelength still unveils surprising optical phenomena, and many of them are related to the Fano effect. Originally described in the context of atomic physics, the Fano resonance in light scattering arises from the interference between a narrow subradiant mode and a spectrally broad radiation line. Here, we present an overview of Fano resonances in coated spherical scatterers within the framework of the Lorenz-Mie theory. We briefly introduce the concept of conventional and unconventional Fano resonances in light scattering. These resonances are associated with the interference between electromagnetic modes excited in the particle with different or the same multipole moment, respectively. In addition, we investigate the modification of the spontaneous-emission rate of an optical emitter at the presence of a plasmonic nanoshell. This modification of decay rate due to electromagnetic environment is referred to as the Purcell effect. We analytically show that the Purcell factor related to a dipole emitter oriented orthogonal or tangential to the spherical surface can exhibit Fano or Lorentzian line shapes in the near field, respectively.Comment: 28 pages, 10 figures; invited book chapter to appear in "Fano Resonances in Optics and Microwaves: Physics and Application", Springer Series in Optical Sciences (2018), edited by E. O. Kamenetskii, A. Sadreev, and A. Miroshnichenk
    • …
    corecore