1,075 research outputs found

    Forecast analysis of optical waveguide bus performance

    Get PDF
    Elements to be considered in the design of a data bus include: architecture; data rate; modulation, encoding, detection; power distribution requirements; protocol, work structure; bus reliability, maintainability; interterminal transmission medium; cost; and others specific to application. Fiber- optic data bus considerations for a 32 port transmissive star architecture, are discussed in a tutorial format. General optical-waveguide bus concepts, are reviewed. The electrical and optical performance of a 32 port transmissive star bus, and the effects of temperature on the performance of optical-waveguide buses are examined. A bibliography of pertinent references and the bus receiver test results are included

    Reanalysis of the FEROS observations of HIP 11952

    Full text link
    Aims. We reanalyze FEROS observations of the star HIP 11952 to reassess the existence of the proposed planetary system. Methods. The radial velocity of the spectra were measured by cross-correlating the observed spectrum with a synthetic template. We also analyzed a large dataset of FEROS and HARPS archival data of the calibrator HD 10700 spanning over more than five years. We compared the barycentric velocities computed by the FEROS and HARPS pipelines. Results. The barycentric correction of the FEROS-DRS pipeline was found to be inaccurate and to introduce an artificial one-year period with a semi-amplitude of 62 m/s. Thus the reanalysis of the FEROS data does not support the existence of planets around HIP 11952.Comment: 7 pages, 8 figures, 1 tabl

    A DNA assembly toolkit to unlock the CRISPR/Cas9 potential for metabolic engineering

    Get PDF
    CRISPR/Cas9-based technologies are revolutionising the way we engineer microbial cells. One of the key advantages of CRISPR in strain design is that it enables chromosomal integration of marker-free DNA, eliminating laborious and often inefficient marker recovery procedures. Despite the benefits, assembling CRISPR/Cas9 editing systems is still not a straightforward process, which may prevent its use and applications. In this work, we have identified some of the main limitations of current Cas9 toolkits and designed improvements with the goal of making CRISPR technologies easier to access and implement. These include 1) A system to quickly switch between marker-free and marker-based integration constructs using both a Cre-expressing and standard Escherichia coli strains, 2) the ability to redirect multigene integration cassettes into alternative genomic loci via Golden Gate-based exchange of homology arms, 3) a rapid, simple in-vivo method to assembly guide RNA sequences via recombineering between Cas9-helper plasmids and single oligonucleotides. We combine these methodologies with well-established technologies into a comprehensive toolkit for efficient metabolic engineering using CRISPR/Cas9. As a proof of concept, we developed the YaliCraft toolkit for Yarrowia lipolytica, which is composed of a basic set of 147 plasmids and 7 modules with different purposes. We used the toolkit to generate and characterize a library of 137 promoters and to build a de novo strain synthetizing 373.8 mg/L homogentisic acid

    Dynamics of gravity driven three-dimensional thin films on hydrophilic-hydrophobic patterned substrates

    Full text link
    We investigate numerically the dynamics of unstable gravity driven three-dimensional thin liquid films on hydrophilic-hydrophobic patterned substrates of longitudinal stripes and checkerboard arrangements. The thin film can be guided preferentially on hydrophilic longitudinal stripes, while fingers develop on adjacent hydrophobic stripes if their width is large enough. On checkerboard patterns, the film fingering occurs on hydrophobic domains, while lateral spreading is favoured on hydrophilic domains, providing a mechanism to tune the growth rate of the film. By means of kinematical arguments, we quantitatively predict the growth rate of the contact line on checkerboard arrangements, providing a first step towards potential techniques that control thin film growth in experimental setups.Comment: 30 pages, 12 figure

    Synergistic rewiring of carbon metabolism and redox metabolism in cytoplasm and mitochondria of aspergillus oryzae for increased l-Malate production

    Get PDF
    l-Malate is an important platform chemical that has extensive applications in the food, feed, and wine industries. Here, we synergistically engineered the carbon metabolism and redox metabolism in the cytosol and mitochondria of a previously engineered Aspergillus oryzae to further improve the l-malate titer and decrease the byproduct succinate concentration. First, the accumulation of the intermediate pyruvate was eliminated by overexpressing a pyruvate carboxylase from Rhizopus oryzae in the cytosol and mitochondria of A. oryzae, and consequently, the l-malate titer increased 7.5%. Then, malate synthesis via glyoxylate bypass in the mitochondria was enhanced, and citrate synthase in the oxidative TCA cycle was downregulated by RNAi, enhancing the l-malate titer by 10.7%. Next, the exchange of byproducts (succinate and fumarate) between the cytosol and mitochondria was regulated by the expression of a dicarboxylate carrier Sfc1p from Saccharomyces cerevisiae in the mitochondria, which increased l-malate titer 3.5% and decreased succinate concentration 36.8%. Finally, an NADH oxidase from Lactococcus lactis was overexpressed to decrease the NADH/NAD+ ratio, and the engineered A. oryzae strain produced 117.2 g/L l-malate and 3.8 g/L succinate, with an l-malate yield of 0.9 g/g corn starch and a productivity of 1.17 g/L/h. Our results showed that synergistic engineering of the carbon and redox metabolisms in the cytosol and mitochondria of A. oryzae effectively increased the l-malate titer, while simultaneously decreasing the concentration of the byproduct succinate. The strategies used in our work may be useful for the metabolic engineering of fungi to produce other industrially important chemicals

    Identificación rápida de Lutzomyia longipalpis a partir de cinco descriptores del aparato genital masculino

    Get PDF
    El flebótomo Lutzomyia longipalpis es, hasta el momento, el vector comprobado de la leishmaniosis visceral canina. Capturas realizadas en Corrientes (Argentina) permitieron identificar a Lutzomyia neivai, vector de la leishmaniosis cutánea, así como a Lutzomyia migonei y Lutzomyia cortelezzii-sallesi, ambos considerados vectores secundarios de la leishmaniosis cutánea. Para el control epidemiológico resulta primordial la identificación del vector. Luego de la captura de los insectos, el paso más complicado es el reconocimiento de las distintas especies de Lutzomyia, para lo cual es necesario lograr el aclaramiento de sus estructuras y observarlo al microscopio prestando atención a los descriptores característicos y particulares de la especie. Existen aproximadamente 30 descriptores para identificar Lutzomyia longipalpis por la observación microscópica de su aparato genital masculino. El objetivo de este trabajo fue seleccionar cinco descriptores de fácil identificación, que en orden de importancia resultaron ser: setae diferenciadas del parámero, relación entre longitud del parámero y lóbulo lateral, forma y apariencia del coxito o basistilo, características y ubicación del mechón de setae del coxito y morfología de la bomba eyaculadora. La sencilla visualización de estos descriptores permite una rápida identificación taxonómica de la especie

    Evidence of inverted-gravity driven variation in predictive sensorimotor function.

    Get PDF
    We move our eyes to place the fovea into the part of a viewed scene currently of interest. Recent evidence suggests that each human has signature patterns of eye movements like handwriting which depend on their sensitivity, allocation of attention and experience. Use of implicit knowledge of how earth's gravity influences object motion has been shown to aid dynamic perception. We used a projected ball tracking task with a plain background offering no context cues to probe the effect of acquired experience about physical laws of gravitation on performance differences of 44 participants under a simulated gravity and an atypical (upward) antigravity condition. Performance measured by the unsigned difference between instantaneous eye and stimulus positions (RMSE) was consistently worse in the antigravity condition. In the vertical RMSE, participants took about 200ms longer to improve to the best performance for antigravity compared to gravity trials. The antigravity condition produced a divergence of individual performance which was correlated with levels of questionnaire based quantified traits of schizotypy but not control traits. Grouping participants by high or low traits revealed a negative relationship between schizotypy traits level and both initiation and maintenance of tracking, a result consistent with trait related impoverished sensory prediction. The findings confirm for the first time that where cues enabling exact estimation of acceleration are unavailable, knowledge of gravity contributes to dynamic prediction improving motion processing. With acceleration expectations violated, we demonstrate that antigravity tracking could act as a multivariate diagnostic window into predictive brain function

    Planetary companions around the metal-poor star HIP 11952

    Full text link
    Aims. We carried out a radial-velocity survey to search for planets around metal-poor stars. In this paper we report the discovery of two planets around HIP 11952, a metal-poor star with [Fe/H]= -1.9 that belongs to our target sample. Methods. Radial velocity variations of HIP 11952 were monitored systematically with FEROS at the 2.2 m telescope located at the ESO La Silla observatory from August 2009 until January 2011. We used a cross-correlation technique to measure the stellar radial velocities (RV). Results. We detected a long-period RV variation of 290 d and a short-period one of 6.95 d. The spectroscopic analysis of the stellar activity reveals a stellar rotation period of 4.8 d. The Hipparcos photometry data shows intra-day variabilities, which give evidence for stellar pulsations. Based on our analysis, the observed RV variations are most likely caused by the presence of unseen planetary companions. Assuming a primary mass of 0.83 M\odot, we computed minimum planetary masses of 0.78 MJup for the inner and 2.93 MJup for the outer planet. The semi-major axes are a1 = 0.07 AU and a2 = 0.81 AU, respectively. Conclusions. HIP 11952 is one of very few stars with [Fe/H]< -1.0 which have planetary companions. This discovery is important to understand planet formation around metal-poor starsComment: Published in A&
    corecore