68 research outputs found

    Pyrrolizidine Alkaloids Negatively Affect A Generalist Herbivore Feeding On The Chemically Protected Legume Crotalaria Pallida

    Get PDF
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Plant secondary metabolites can have opposing effects on adapted specialist and non-adapted, generalist herbivores. In this study, we used Heliothis virescens (Fabricius) (Lepidoptera: Noctuidae) as a generalist, non-adapted model herbivore to test the possible effects of Crotalaria pallida (Fabaceae: Papilionoideae) defenses on herbivore performance. Neonate H. virescens larvae were able to consume C. pallida leaves and fruits and grow for a few instars, but none of them survived to pupation. We added isolated pyrrolizidine alkaloids (PAs) to an artificial diet at different concentrations, and PA concentration significantly affected the number of larvae that achieved pupation. Larval survival was not reduced at a PA concentration similar to the concentration on green seeds of C. pallida, but it was significantly reduced at PA concentration 5 and 100 times higher. These results suggest that PAs in isolation are not the defense responsible for the mortality in fresh C. pallida plants, indicating the importance of other possible defenses. The negative effect of PAs on fitness of the non-adapted, generalist herbivore is in agreement with few previous studies, but it is in clear contrast to a previous study on the effects of PAs on the adapted specialist herbivore Utetheisa ornatrix (L.) that were able to sequester PAs with no fitness costs.45252257NSF [DEB 0807418]FAPESP [11/17708-0]CNPq [306103/2013-3]Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Pyrrolizidine Alkaloids Negatively Affect A Generalist Herbivore Feeding On The Chemically Protected Legume Crotalaria Pallida

    Get PDF
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Plant secondary metabolites can have opposing effects on adapted specialist and non-adapted, generalist herbivores. In this study, we used Heliothis virescens (Fabricius) (Lepidoptera: Noctuidae) as a generalist, non-adapted model herbivore to test the possible effects of Crotalaria pallida (Fabaceae: Papilionoideae) defenses on herbivore performance. Neonate H. virescens larvae were able to consume C. pallida leaves and fruits and grow for a few instars, but none of them survived to pupation. We added isolated pyrrolizidine alkaloids (PAs) to an artificial diet at different concentrations, and PA concentration significantly affected the number of larvae that achieved pupation. Larval survival was not reduced at a PA concentration similar to the concentration on green seeds of C. pallida, but it was significantly reduced at PA concentration 5 and 100 times higher. These results suggest that PAs in isolation are not the defense responsible for the mortality in fresh C. pallida plants, indicating the importance of other possible defenses. The negative effect of PAs on fitness of the non-adapted, generalist herbivore is in agreement with few previous studies, but it is in clear contrast to a previous study on the effects of PAs on the adapted specialist herbivore Utetheisa ornatrix (L.) that were able to sequester PAs with no fitness costs.453252257NSF [DEB 0807418]FAPESP [11/17708-0]CNPq [306103/2013-3]Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Ants nesting on Cecropia purpurascens (Cecropiaceae) in central Amazonia: Influence of tree height, domatia volume and food bodies

    Get PDF
    Patterns of presence of ant colonies on Cecropia purpurascens CC Berg (Cecropiaceae) were investigated in central Amazonia. All individuals of C. purpurascens along a 14.3 km transect were searched for ants and their height, internode volume, and number of trichilia were recorded. Of the 50 C. purpurascens individuals studied, 32 (64%) were colonized by ants of four species: Azteca alfari Emery (Dolichoderinae) (N = 16), Camponotus balzani Emery (Formicinae) (N = 14), C. abdominalis (Fabricius) (Formicinae) (N = 1) and Crematogaster brasiliensis Mayr (Myrmicinae) (N = 1). Probability of C. purpurascens being colonized by ants increases with tree height, internode volume, and trichilium number. Of the three variables recorded, tree height was the most important in determining the presence of ants. Trees colonized by the two most common ant species (A. alfari and C. balzani) did not differ in height, internode volume, or number of trichilia. The patterns observed, the association between the identity of the ants and plant fitness, as well as the usefulness of this particular system for future studies are discussed.42371972

    Addicted? Reduced host resistance in populations with defensive symbionts.

    Get PDF
    Heritable symbionts that protect their hosts from pathogens have been described in a wide range of insect species. By reducing the incidence or severity of infection, these symbionts have the potential to reduce the strength of selection on genes in the insect genome that increase resistance. Therefore, the presence of such symbionts may slow down the evolution of resistance. Here we investigated this idea by exposing Drosophila melanogaster populations to infection with the pathogenic Drosophila C virus (DCV) in the presence or absence of Wolbachia, a heritable symbiont of arthropods that confers protection against viruses. After nine generations of selection, we found that resistance to DCV had increased in all populations. However, in the presence of Wolbachia the resistant allele of pastrel-a gene that has a major effect on resistance to DCV-was at a lower frequency than in the symbiont-free populations. This finding suggests that defensive symbionts have the potential to hamper the evolution of insect resistance genes, potentially leading to a state of evolutionary addiction where the genetically susceptible insect host mostly relies on its symbiont to fight pathogens.Wellcome Trust (Grant ID: WT094664MA)This is the final version of the article. It first appeared from The Royal Society via https://doi.org/10.1098/rspb.2016.077

    Varying Herbivore Population Structure Correlates with Lack of Local Adaptation in a Geographic Variable Plant-Herbivore Interaction

    Get PDF
    Local adaptation of parasites to their hosts due to coevolution is a central prediction of many theories in evolutionary biology. However, empirical studies looking for parasite local adaptation show great variation in outcomes, and the reasons for such variation are largely unknown. In a previous study, we showed adaptive differentiation in the arctiid moth Utetheisa ornatrix to its host plant, the pyrrolizidine alkaloid-bearing legume Crotalaria pallida, at the continental scale, but found no differentiation at the regional scale. In the present study, we sampled the same sites to investigate factors that may contribute to the lack of differentiation at the regional scale. We performed field observations that show that specialist and non-specialist polyphagous herbivore incidence varies among populations at both scales. With a series of common-garden experiments we show that some plant traits that may affect herbivory (pyrrolizidine alkaloids and extrafloral nectaries) vary at the regional scale, while other traits (trichomes and nitrogen content) just vary at the continental scale. These results, combined with our previous evidence for plant population differentiation based on larval performance on fresh fruits, suggest that U. ornatrix is subjected to divergent selection even at the regional scale. Finally, with a microsatellite study we investigated population structure of U. ornatrix. We found that population structure is not stable over time: we found population differentiation at the regional scale in the first year of sampling, but not in the second year. Unstable population structure of the herbivore is the most likely cause of the lack of regional adaptation

    Geographical analysis of diapause inducibility in European Drosophila melanogaster populations

    Get PDF
    Seasonal overwintering in insects represents an adaptation to stressful environments and in European Drosophila melanogaster females, low temperatures and short photoperiods can induce an ovarian diapause. Diapause may represent a recent (<15 Ky) adaptation to the colonisation of temperate Europe by D. melanogaster from tropical sub-Saharan Africa, because African D. melanogaster and the sibling species D. simulans, have been reported to fail to undergo diapause. Over the past few centuries, D. melanogaster have also invaded North America and Australia, and eastern populations on both continents show a predictable latitudinal cline in diapause induction. In Europe however, a new diapause-enhancing timeless allele, ls-tim, is observed at high levels in southern Italy (∼80%), where it appears to have arisen and has spread throughout the continent with a frequency of ∼20% in Scandinavia. Given the phenotype of ls-tim and its geographical distribution, we might predict that it would work against any latitudinal cline in diapause induction within Europe. Indeed we reveal that any latitudinal cline for diapause in Europe is very weak, as predicted by ls-tim frequencies. In contrast, we determine ls-tim frequencies in North America and observe that they would be expected to strengthen the latitudinal pattern of diapause. Our results reveal how a newly arisen mutation, can, via the stochastic nature of where it initially arose, blur an otherwise adaptive geographical pattern

    Do Native Parasitic Plants Cause More Damage to Exotic Invasive Hosts Than Native Non-Invasive Hosts? An Implication for Biocontrol

    Get PDF
    Field studies have shown that native, parasitic plants grow vigorously on invasive plants and can cause more damage to invasive plants than native plants. However, no empirical test has been conducted and the mechanism is still unknown. We conducted a completely randomized greenhouse experiment using 3 congeneric pairs of exotic, invasive and native, non-invasive herbaceous plant species to quantify the damage caused by parasitic plants to hosts and its correlation with the hosts' growth rate and resource use efficiency. The biomass of the parasitic plants on exotic, invasive hosts was significantly higher than on congeneric native, non-invasive hosts. Parasites caused more damage to exotic, invasive hosts than to congeneric, native, non-invasive hosts. The damage caused by parasites to hosts was significantly positively correlated with the biomass of parasitic plants. The damage of parasites to hosts was significantly positively correlated with the relative growth rate and the resource use efficiency of its host plants. It may be the mechanism by which parasitic plants grow more vigorously on invasive hosts and cause more damage to exotic, invasive hosts than to native, non-invasive hosts. These results suggest a potential biological control effect of native, parasitic plants on invasive species by reducing the dominance of invasive species in the invaded community

    Chrysolina herbacea Modulates Terpenoid Biosynthesis of Mentha aquatica L.

    Get PDF
    Interactions between herbivorous insects and plants storing terpenoids are poorly understood. This study describes the ability of Chrysolina herbacea to use volatiles emitted by undamaged Mentha aquatica plants as attractants and the plant's response to herbivory, which involves the production of deterrent molecules. Emitted plant volatiles were analyzed by GC-MS. The insect's response to plant volatiles was tested by Y-tube olfactometer bioassays. Total RNA was extracted from control plants, mechanically damaged leaves, and leaves damaged by herbivores. The terpenoid quantitative gene expressions (qPCR) were then assayed. Upon herbivory, M. aquatica synthesizes and emits (+)-menthofuran, which acts as a deterrent to C. herbacea. Herbivory was found to up-regulate the expression of genes involved in terpenoid biosynthesis. The increased emission of (+)-menthofuran was correlated with the upregulation of (+)-menthofuran synthase

    Isolation of a natural DNA virus of <i>Drosophila melanogaster</i>, and characterisation of host resistance and immune responses

    Get PDF
    <div><p><i>Drosophila melanogaster</i> has played a key role in our understanding of invertebrate immunity. However, both functional and evolutionary studies of host-virus interaction in <i>Drosophila</i> have been limited by a dearth of native virus isolates. In particular, despite a long history of virus research, DNA viruses of <i>D</i>. <i>melanogaster</i> have only recently been described, and none have been available for experimental study. Here we report the isolation and comprehensive characterisation of Kallithea virus, a large double-stranded DNA virus, and the first DNA virus to have been reported from wild populations of <i>D</i>. <i>melanogaster</i>. We find that Kallithea virus infection is costly for adult flies, reaching high titres in both sexes and disproportionately reducing survival in males, and movement and late fecundity in females. Using the <i>Drosophila</i> Genetic Reference Panel, we quantify host genetic variance for virus-induced mortality and viral titre and identify candidate host genes that may underlie this variation, including <i>Cdc42-interacting protein 4</i>. Using full transcriptome sequencing of infected males and females, we examine the transcriptional response of flies to Kallithea virus infection and describe differential regulation of virus-responsive genes. This work establishes Kallithea virus as a new tractable model to study the natural interaction between <i>D</i>. <i>melanogaster</i> and DNA viruses, and we hope it will serve as a basis for future studies of immune responses to DNA viruses in insects.</p></div
    • …
    corecore