274 research outputs found

    Crystal structure of bis(1-phenylimidazolium) tetrachlorocuprate(II), (C9H9N2)2(CuCl4)

    Get PDF
    AbstractC18H18Cl4CuN4, monoclinic, C121 (No. 5), a = 14.109(3) Å, b = 10.263(2) Å, c = 15.290(3) Å, β = 102.61(3)°, V = 2160.6Å3, Z = 4, Rgt(F) = 0.040, wRall(F2) = 0.124, T = 293 K

    Spiking Neural Network With Distributed Plasticity Reproduces Cerebellar Learning in Eye Blink Conditioning Paradigms

    Get PDF
    In this study, we defined a realistic cerebellar model through the use of artificial spiking neural networks, testing it in computational simulations that reproduce associative motor tasks in multiple sessions of acquisition and extinction. Methods: By evolutionary algorithms, we tuned the cerebellar microcircuit to find out the near-optimal plasticity mechanism parameters that better reproduced human-like behavior in eye blink classical conditioning, one of the most extensively studied paradigms related to the cerebellum. We used two models: one with only the cortical plasticity and another including two additional plasticity sites at nuclear level. Results: First, both spiking cerebellar models were able to well reproduce the real human behaviors, in terms of both "timing" and "amplitude", expressing rapid acquisition, stable late acquisition, rapid extinction, and faster reacquisition of an associative motor task. Even though the model with only the cortical plasticity site showed good learning capabilities, the model with distributed plasticity produced faster and more stable acquisition of conditioned responses in the reacquisition phase. This behavior is explained by the effect of the nuclear plasticities, which have slow dynamics and can express memory consolidation and saving. Conclusions: We showed how the spiking dynamics of multiple interactive neural mechanisms implicitly drive multiple essential components of complex learning processes. Significance: This study presents a very advanced computational model, developed together by biomedical engineers, computer scientists, and neuroscientists. Since its realistic features, the proposed model can provide confirmations and suggestions about neurophysiological and pathological hypotheses and can be used in challenging clinical application

    GM1 promotes TrkA-mediated neuroblastoma cell differentiation by occupying a plasma membrane domain different from TrkA

    Get PDF
    Recently, we highlighted that the ganglioside GM1 promotes neuroblastoma cells differentiation by activating the TrkA receptor through the formation of a TrkA\u2013GM1 oligosaccharide complex at the cell surface. To study the TrkA\u2013GM1 interaction, we synthesized two radioactive GM1 derivatives presenting a photoactivable nitrophenylazide group at the end of lipid moiety, 1 or at position 6 of external galactose, 2; and a radioactive oligosaccharide portion of GM1 carrying the nitrophenylazide group at position 1 of glucose, 3. The three compounds were singly administered to cultured neuroblastoma Neuro2a cells under established conditions that allow cell surface interactions. After UV activation of photoactivable compounds, the proteins were analyzed by PAGE separation. The formation of cross-linked TrkA\u2013GM1 derivatives complexes was identified by both radioimaging and immunoblotting. Results indicated that the administration of compounds 2 and 3, carrying the photoactivable group on the oligosaccharide, led to the formation of a radioactive TrkA complex, while the administration of compound 1 did not. This underlines that the TrkA\u2013GM1 interaction directly involves the GM1 oligosaccharide, but not the ceramide. To better understand how GM1 relates to the TrkA, we isolated plasma membrane lipid rafts. As expected, GM1 was found in the rigid detergent-resistant fractions, while TrkA was found as a detergent soluble fraction component. These results suggest that TrkA and GM1 belong to separate membrane domains: probably TrkA interacts by \u2018flopping\u2019 down its extracellular portion onto the membrane, approaching its interplay site to the oligosaccharide portion of GM1. (Figure presented.)

    Catalase vs Peroxidase Activity of a Manganese(II) Compound: Identification of a Mn(III)-(μ-O)2-Mn(IV) Reaction Intermediate by Electrospray Ionization Mass Spectrometry and Electron Paramagnetic Resonance Spectroscopy

    Get PDF
    Herein, we report reactivity studies of the mononuclear water-soluble complex [Mn(II)(HPClNOL)(η1-NO3)(η2-NO3)] 1, where HPClNOL ) 1-(bis-pyridin-2-ylmethyl-amino)-3-chloropropan-2-ol, toward peroxides (H2O2 and tertbutylhydroperoxide). Both the catalase (in aqueous solution) and peroxidase (in CH3CN) activities of 1 were evaluated using a range of techniques including electronic absorption spectroscopy, volumetry (kinetic studies), pH monitoring during H2O2 disproportionation, electron paramagnetic resonance (EPR), electrospray ionization mass spectrometry in the positive ion mode [ESI(+)-MS], and gas chromatography (GC). Electrochemical studies showed that 1 can be oxidized to Mn(III) and Mn(IV). The catalase-like activity of 1 was evaluated with and without pH control. The results show that the pH decreases when the reaction is performed in unbuffered media. Furthermore, the activity of 1 is greater in buffered than in unbuffered media, demonstrating that pH influences the activity of 1 toward H2O2. For the reaction of 1 with H2O2, EPR and ESI(+)-MS have led to the identification of the intermediate [Mn(III)Mn(IV)(μ- O)2(PClNOL)2]+. The peroxidase activity of 1 was also evaluated by monitoring cyclohexane oxidation, using H2O2 or tert-butylhydroperoxide as the terminal oxidants. Low yields (<7%) were obtained for H2O2, probably because it competes with 1 for the catalase-like activity. In contrast, using tert-butylhydroperoxide, up to 29% of cyclohexane conversion was obtained. A mechanistic model for the catalase activity of 1 that incorporates the observed lag phase in O2 production, the pH variation, and the formation of a Mn(III)-(μ-O)2-Mn(IV) intermediate is proposed

    Extended Glasgow Outcome Scale to Evaluate the Functional Impairment of Patients With Subcortical Band Heterotopia: A Multicentric Cross-sectional Study

    Get PDF
    Background: Subcortical band heterotopia (SBH) is a rare malformation of the cortical development characterized by a heterotopic band of gray matter between cortex and ventricles. The clinical presentation typically includes intellectual disability and epilepsy. Purpose: To evaluate if the Extended Glasgow Outcome Scale-pediatric version (EGOS-ped) is a feasible tool for evaluating the functional disability of patients with (SBH). Method: Cross-sectional multicenter study of a cohort of 49 patients with SBH (female n = 30, 61%), recruited from 23 Italian centers. Results: Thirty-nine of 49 (80%) cases showed high functional disability at EGOS-ped assessment. In the poor result subgroup (EGOS-ped &gt;3) motor deficit, language impairment, and lower intelligence quotient were more frequent (P &lt; 0.001, P = 0.02, and P = 0.01, respectively); the age at epilepsy onset was remarkably lower (P &lt; 0.001); and the prevalence of epileptic encephalopathy (West syndrome or Lennox-Gastaut-like encephalopathy) was higher (P = 0.04). The thickness and the extension of the heterotopic band were associated with EGOS-ped score (P &lt; 0.01 and P = 0.02). Pachygyria was found exclusively among patients with poor outcome (P &lt; 0.01). Conclusions: The EGOS-ped proved to be a reliable tool for stratifying the functional disability of patients with SBH. According to this score, patients could be dichotomized: group 1 (80%) is characterized by a poor overall functionality with early epilepsy onset, thick heterotopic band, and pachygyria, whereas group 2 (20%) is characterized by a good overall functionality with later epilepsy onset and thinner heterotopic band

    Event- and Time-Driven Techniques Using Parallel CPU-GPU Co-processing for Spiking Neural Networks

    Get PDF
    The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fninf. 2017.00007/full#supplementary-materialModeling and simulating the neural structures which make up our central neural system is instrumental for deciphering the computational neural cues beneath. Higher levels of biological plausibility usually impose higher levels of complexity in mathematical modeling, from neural to behavioral levels. This paper focuses on overcoming the simulation problems (accuracy and performance) derived from using higher levels of mathematical complexity at a neural level. This study proposes different techniques for simulating neural models that hold incremental levels of mathematical complexity: leaky integrate-and-fire (LIF), adaptive exponential integrate-and-fire (AdEx), and Hodgkin-Huxley (HH) neural models (ranged from low to high neural complexity). The studied techniques are classified into two main families depending on how the neural-model dynamic evaluation is computed: the event-driven or the time-driven families. Whilst event-driven techniques pre-compile and store the neural dynamics within look-up tables, time-driven techniques compute the neural dynamics iteratively during the simulation time. We propose two modifications for the event-driven family: a look-up table recombination to better cope with the incremental neural complexity together with a better handling of the synchronous input activity. Regarding the time-driven family, we propose a modification in computing the neural dynamics: the bi-fixed-step integration method. This method automatically adjusts the simulation step size to better cope with the stiffness of the neural model dynamics running in CPU platforms. One version of this method is also implemented for hybrid CPU-GPU platforms. Finally, we analyze how the performance and accuracy of these modifications evolve with increasing levels of neural complexity. We also demonstrate how the proposed modifications which constitute the main contribution of this study systematically outperform the traditional event- and time-driven techniques under increasing levels of neural complexity.This study was supported by the European Union NR (658479-Spike Control), the Spanish National Grant NEUROPACT (TIN2013-47069-P) and by the Spanish National Grant PhD scholarship (AP2012-0906). We gratefully acknowledge the support of NVIDIA Corporation with the donation of two Titan GPUs for current EDLUT development

    Association of intronic variants of the KCNAB1 gene with lateral temporal epilepsy.

    Get PDF
    The KCNAB1 gene is a candidate susceptibility factor for lateral temporal epilepsy (LTE) because of its functional interaction with LGI1, the gene responsible for the autosomal dominant form of LTE. We investigated association between polymorphic variants across the KCNAB1 gene and LTE. The allele and genotype frequencies of 14 KCNAB1 intronic SNPs were determined in 142 Italian LTE patients and 104 healthy controls and statistically evaluated. Single SNP analysis revealed one SNP (rs992353) located near the 3'end of KCNAB1 slightly associated with LTE after multiple testing correction (odds ratio=2.25; 95% confidence interval 1.26-4.04; P=0.0058). Haplotype analysis revealed two haplotypes with frequencies higher in cases than in controls, and these differences were statistically significant after permutation tests (Psim=0.047 and 0.034). One of these haplotypes was shown to confer a high risk for the syndrome (odds ratio=12.24; 95% confidence interval 1.32-113.05) by logistic regression analysis. These results support KCNAB1 as a susceptibility gene for LTE, in agreement with previous studies showing that this gene may alter susceptibility to focal epilepsy

    Adaptive Robotic Control Driven by a Versatile Spiking Cerebellar Network

    Get PDF
    The cerebellum is involved in a large number of different neural processes, especially in associative learning and in fine motor control. To develop a comprehensive theory of sensorimotor learning and control, it is crucial to determine the neural basis of coding and plasticity embedded into the cerebellar neural circuit and how they are translated into behavioral outcomes in learning paradigms. Learning has to be inferred from the interaction of an embodied system with its real environment, and the same cerebellar principles derived from cell physiology have to be able to drive a variety of tasks of different nature, calling for complex timing and movement patterns. We have coupled a realistic cerebellar spiking neural network (SNN) with a real robot and challenged it in multiple diverse sensorimotor tasks. Encoding and decoding strategies based on neuronal firing rates were applied. Adaptive motor control protocols with acquisition and extinction phases have been designed and tested, including an associative Pavlovian task (Eye blinking classical conditioning), a vestibulo-ocular task and a perturbed arm reaching task operating in closed-loop. The SNN processed in real-time mossy fiber inputs as arbitrary contextual signals, irrespective of whether they conveyed a tone, a vestibular stimulus or the position of a limb. A bidirectional long-term plasticity rule implemented at parallel fibers-Purkinje cell synapses modulated the output activity in the deep cerebellar nuclei. In all tasks, the neurorobot learned to adjust timing and gain of the motor responses by tuning its output discharge. It succeeded in reproducing how human biological systems acquire, extinguish and express knowledge of a noisy and changing world. By varying stimuli and perturbations patterns, real-time control robustness and generalizability were validated. The implicit spiking dynamics of the cerebellar model fulfill timing, prediction and learning functions.European Union (Human Brain Project) REALNET FP7-ICT270434 CEREBNET FP7-ITN238686 HBP-60410

    Ovaries of Tubificinae (Clitellata, Naididae) resemble ovary cords found in Hirudinea (Clitellata)

    Get PDF
    The ultrastructure of the ovaries and oogenesis was studied in three species of three genera of Tubificinae. The paired ovaries are small, conically shaped structures, connected to the intersegmental septum between segments X and XI by their narrow end. The ovaries are composed of syncytial cysts of germ cells interconnected by stable cytoplasmic bridges (ring canals) and surrounded by follicular cells. The architecture of the germ-line cysts is exactly the same as in all clitellate annelids studied to date, i.e. each cell in a cyst has only one ring canal connecting it to the central, anuclear cytoplasmic mass, the cytophore. The ovaries found in all of the species studied seem to be meroistic, i.e. the ultimate fate of germ cells within a cyst is different, and the majority of cells withdraw from meiosis and become nurse cells; the rest continue meiosis, gather macromolecules, cell organelles and storage material, and become oocytes. The ovaries are polarized; their narrow end contains mitotically dividing oogonia and germ cells entering the meiosis prophase; whereas within the middle and basal parts, nurse cells, a prominent cytophore and growing oocytes occur. During late previtellogenesis/early vitellogenesis, the oocytes detach from the cytophore and float in the coelom; they are usually enveloped by the peritoneal epithelium and associated with blood vessels. Generally, the organization of ovaries in all of the Tubificinae species studied resembles the polarized ovary cords found within the ovisacs of some Euhirudinea. The organization of ovaries and the course of oogenesis between the genera studied and other clitellate annelids are compared. Finally, it is suggested that germ-line cysts formation and the meroistic mode of oogenesis may be a primary character for all Clitellata
    corecore