302 research outputs found

    Large-scale electronic structure theory for simulating nanostructure process

    Full text link
    Fundamental theories and practical methods for large-scale electronic structure calculations are given, in which the computational cost is proportional to the system size. Accuracy controlling methods for microscopic freedoms are focused on two practical solver methods, Krylov-subspace method and generalized-Wannier-state method. A general theory called the 'multi-solver' scheme is also formulated, as a hybrid between different solver methods. Practical examples are carried out in several insulating and metallic systems with 10^3-10^5 atoms. All the theories provide general guiding principles of constructing an optimal calculation for simulating nanostructure processes, since a nanostructured system consists of several competitive regions, such as bulk and surface regions, and the simulation is designed to reproduce the competition with an optimal computational cost.Comment: 19 pages, 6 figures. To appear in J. Phys. Cond. Matt. A preprint PDF file in better graphics is available at http://fujimac.t.u-tokyo.ac.jp/lses/index_e.htm

    Application of stochastic programming to reduce uncertainties in quality-based supply planning of slaughterhouses

    Get PDF
    To match products of different quality with end market preferences under supply uncertainty, it is crucial to integrate product quality information in logistics decision making. We present a case of this integration in a meat processing company that faces uncertainty in delivered livestock quality. We develop a stochastic programming model that exploits historical product quality delivery data to produce slaughterhouse allocation plans with reduced levels of uncertainty in received livestock quality. The allocation plans generated by this model fulfil demand for multiple quality features at separate slaughterhouses under prescribed service levels while minimizing transportation costs. We test the model on real world problem instances generated from a data set provided by an industrial partner. Results show that historical farmer delivery data can be used to reduce uncertainty in quality of animals to be delivered to slaughterhouses

    Krylov Subspace Method for Molecular Dynamics Simulation based on Large-Scale Electronic Structure Theory

    Full text link
    For large scale electronic structure calculation, the Krylov subspace method is introduced to calculate the one-body density matrix instead of the eigenstates of given Hamiltonian. This method provides an efficient way to extract the essential character of the Hamiltonian within a limited number of basis set. Its validation is confirmed by the convergence property of the density matrix within the subspace. The following quantities are calculated; energy, force, density of states, and energy spectrum. Molecular dynamics simulation of Si(001) surface reconstruction is examined as an example, and the results reproduce the mechanism of asymmetric surface dimer.Comment: 7 pages, 3 figures; corrected typos; to be published in Journal of the Phys. Soc. of Japa

    A new critical curve for the Lane-Emden system

    Full text link
    We study stable positive radially symmetric solutions for the Lane-Emden system −Δu=vp-\Delta u=v^p in RN\R^N, −Δv=uq-\Delta v=u^q in RN\R^N, where p,q≄1p,q\geq 1. We obtain a new critical curve that optimally describes the existence of such solutions.Comment: 13 pages, 1 figur

    Virtual Liver Resection and Volumetric Analysis of the Future Liver Remnant using Open Source Image Processing Software

    Get PDF
    Ó The Author(s) 2010. This article is published with open access at Springerlink.com Background After extended liver resection, a remnant liver that is too small can lead to postresection liver failure. To reduce this risk, preoperative evaluation of the future liver remnant volume (FLRV) is critical. The open-source OsiriX Ò PAC software system can be downloaded for free and used by nonradiologists to calculate liver volume using a stand-alone Apple computer. The purpose of this study was to assess the accuracy of OsiriX Ò CT volumetry for predicting liver resection volume and FLVR in patients undergoing partial hepatectomy. Methods Preoperative contrast-enhanced liver CT scans of patients who underwent partial hepatectomy were Joost R. van der Vorst and Ronald M. van Dam contributed equally to the study and the manuscript. These authors share first authorship. J. R. van der Vorst R. M. van Dam (&

    Lattice Calculation of Heavy-Light Decay Constants with Two Flavors of Dynamical Quarks

    Get PDF
    We present results for fBf_B, fBsf_{B_s}, fDf_D, fDsf_{D_s} and their ratios in the presence of two flavors of light sea quarks (Nf=2N_f=2). We use Wilson light valence quarks and Wilson and static heavy valence quarks; the sea quarks are simulated with staggered fermions. Additional quenched simulations with nonperturbatively improved clover fermions allow us to improve our control of the continuum extrapolation. For our central values the masses of the sea quarks are not extrapolated to the physical uu, dd masses; that is, the central values are "partially quenched." A calculation using "fat-link clover" valence fermions is also discussed but is not included in our final results. We find, for example, fB=190(7)(−17+24)(−2+11)(−0+8)f_B = 190 (7) (^{+24}_{-17}) (^{+11}_{-2}) (^{+8}_{-0}) MeV, fBs/fB=1.16(1)(2)(2)(−0+4)f_{B_s}/f_B = 1.16 (1) (2) (2) (^{+4}_{-0}), fDs=241(5)(−26+27)(−4+9)(−0+5)f_{D_s} = 241 (5) (^{+27}_{-26}) (^{+9}_{-4}) (^{+5}_{-0}) MeV, and fB/fDs=0.79(2)(−4+5)(3)(−0+5)f_{B}/f_{D_s} = 0.79 (2) (^{+5}_{-4}) (3) (^{+5}_{-0}), where in each case the first error is statistical and the remaining three are systematic: the error within the partially quenched Nf=2N_f=2 approximation, the error due to the missing strange sea quark and to partial quenching, and an estimate of the effects of chiral logarithms at small quark mass. The last error, though quite significant in decay constant ratios, appears to be smaller than has been recently suggested by Kronfeld and Ryan, and Yamada. We emphasize, however, that as in other lattice computations to date, the lattice u,du,d quark masses are not very light and chiral log effects may not be fully under control.Comment: Revised version includes an attempt to estimate the effects of chiral logarithms at small quark mass; central values are unchanged but one more systematic error has been added. Sections III E and V D are completely new; some changes for clarity have also been made elsewhere. 82 pages; 32 figure

    Compulsive Internet Use Among Adolescents: Bidirectional Parent–Child Relationships

    Get PDF
    Although parents experience growing concerns about their children’s excessive internet use, little is known about the role parents can play to prevent their children from developing Compulsive Internet Use (CIU). The present study addresses associations between internet-specific parenting practices and CIU among adolescents, as well as the bidirectionality of these associations. Two studies were conducted: a cross-sectional study using a representative sample of 4,483 Dutch students and a longitudinal study using a self-selected sample of 510 Dutch adolescents. Results suggest that qualitatively good communication regarding internet use is a promising tool for parents to prevent their teenage children from developing CIU. Besides, parental reactions to excessive internet use and parental rules regarding the content of internet use may help prevent CIU. Strict rules about time of internet use, however, may promote compulsive tendencies. Finally, one opposite link was found whereby CIU predicted a decrease in frequency of parental communication regarding internet use

    A global method for coupling transport with chemistry in heterogeneous porous media

    Get PDF
    Modeling reactive transport in porous media, using a local chemical equilibrium assumption, leads to a system of advection-diffusion PDE's coupled with algebraic equations. When solving this coupled system, the algebraic equations have to be solved at each grid point for each chemical species and at each time step. This leads to a coupled non-linear system. In this paper a global solution approach that enables to keep the software codes for transport and chemistry distinct is proposed. The method applies the Newton-Krylov framework to the formulation for reactive transport used in operator splitting. The method is formulated in terms of total mobile and total fixed concentrations and uses the chemical solver as a black box, as it only requires that on be able to solve chemical equilibrium problems (and compute derivatives), without having to know the solution method. An additional advantage of the Newton-Krylov method is that the Jacobian is only needed as an operator in a Jacobian matrix times vector product. The proposed method is tested on the MoMaS reactive transport benchmark.Comment: Computational Geosciences (2009) http://www.springerlink.com/content/933p55085742m203/?p=db14bb8c399b49979ba8389a3cae1b0f&pi=1

    Prospective Volumetric Assessment of the Liver on a Personal Computer by Nonradiologists Prior to Partial Hepatectomy

    Get PDF
    Ó The Author(s) 2010. This article is published with open access at Springerlink.com Background A small remnant liver volume is an important risk factor for posthepatectomy liver failure. ImageJ and OsiriX Ò are both free, open-source image processing software packages. The aim of the present study was to compare ImageJ and OsiriX Ò in performing prospective computed tomography (CT) volumetric analysis of the liver on a personal computer (PC) in patients undergoing major liver resection. Methods Patients scheduled for a right hemihepatectomy were eligible for inclusion. Two surgeons and one surgical trainee measured volumes of total liver, tumor, and future resection specimen prospectively with ImageJ and OsiriX Ò. A radiologist also measured these volumes with CT scanner-linked Aquarius iNtuition Ò software. Resection volumes were compared with the actual weights of the live

    Finite element simulation of three-dimensional free-surface flow problems

    Get PDF
    An adaptive finite element algorithm is described for the stable solution of three-dimensional free-surface-flow problems based primarily on the use of node movement. The algorithm also includes a discrete remeshing procedure which enhances its accuracy and robustness. The spatial discretisation allows an isoparametric piecewise-quadratic approximation of the domain geometry for accurate resolution of the curved free surface. The technique is illustrated through an implementation for surface-tension-dominated viscous flows modelled in terms of the Stokes equations with suitable boundary conditions on the deforming free surface. Two three-dimensional test problems are used to demonstrate the performance of the method: a liquid bridge problem and the formation of a fluid droplet
    • 

    corecore