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We present results fofrg, st, fo, st and their ratios in the presence of two flavors of light sea quarks
(Ny=2). We use Wilson light valence quarks and Wilson and static heavy valence quarks; the sea quarks are
simulated with staggered fermions. Additional quenched simulations with nonperturbatively improved clover
fermions allow us to improve our control of the continuum extrapolation. For our central values the masses of
the sea quarks are not extrapolated to the physical masses; that is, the central values are “partially
guenched.” A calculation using “fat-link clover” valence fermions is also discussed but is not included in our
final results. We find, for examplefg=190(7)(1i7)(13%)(15) MeV, fg /fe=1.161)(2)(2)(%q), fo,
=241(5)(“39) (T (1) MeV, andfg/fp_=0.792)( 5)(3)(*5), where in each case the first error is statis-
tical and the remaining three are systematic: the error within the partially quehgke approximation, the
error due to the missing strange sea quark and to partial quenching, and an estimate of the effects of chiral
logarithms at small quark mass. The last error, though quite significant in decay constant ratios, appears to be
smaller than has been recently suggested by Kronfeld and Ryan, and Yamada. We emphasize, however, that as
in other lattice computations to date, the latticel quark masses are not very light and chiral log effects may
not be fully under control.
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I. INTRODUCTION fo, fp_ and their ratios. We take into account the effects of

virtual quark loops from two light flavors of sea quarks; i.e.,
Accurate values for the leptonic decay constant8 ahd e have two “dynamical quarks.” Additional discussion and
B mesons are crucial for interpreting experimental measurepreliminary results for the dynamical calculation can be
ments ofB-B mixing and bounds on, or future measurementsfound in Refs[2,3]. Our earlier work, which focused on the
of, BB mixing. Knowledge of the decay constants duenched approximation and used dynamical configurations
(coupled with knowledge of the correspondiBgarameters ~ only for an estimate of the quenching errors, appear¢d|in
makes possible a determination of the Cabibbo-Kobayashiith further details in5].

Maskawa(CKM) elementsV,q and V, from these experi-  1his paper is organized as follows. Our lattice formalism
ments. is presented in Sec. Il. We discuss the Fermilab approach to
In the D-meson sector, CLEO-c will measure leptonic de-N€avy quarks on the lattic¢§], and explain how we adapt it

cay rates at the 3—4 % levil]. Assuming 3-generation uni- to Wilson and _nonperturbatwely |mpr9v<§i‘l] clover _qua_rks.
tarity, this translates into determinations fCHS and f, with We also explain our use of perturbative renormalization and

. . __the choice of scal¢" g*").
0,
roughly 2./0 accuracy. Coupled W'th. acpurate_theoretlcaf Section Il gives the lattice computational details. We dis-
computations of ratios such zﬁg/st, this will provide cru-

oo ) SR cuss the generation of configurations, the evaluation of quark
qlal information about thd sector. In addition, if computa- propagators for Wilson, clover, and static quarks, and various
tions of theD and Dy decay constants themselves can beggpects of the analysis, including fitting and extrapolation.
performed at the few percent level, the experiments will di-The most significant open issue here involves the effect of
rectly determineVs andVq with similar precision. chiral logarithms on the light quark mass extrapolations. In
At least in principle, lattice QCD offers a means to COM-important recent work, Kronfeld and Ryd8] and Yamada

pute quantities such afg or fg/fp_with control over all  [9] (building on work of the JLQCD CollaboratiofiL0])
sources of systematic error. Here, we present a computatidmve argued that standard linear or quadratic extrapolations
by the MILC Collaboration of the decay constarts, fBS, from typical lattice light quark masses miss the logarithms at
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low mass and drastically underestimate such quantities as D2 s

st/fB. Since the quark masses available to the present cal- H=Q| M+ yoA;— M. oML Q+(’)(1/mé), (D)
culation are of this typical size, it is imperative that we esti- 2 3

mate the chiral logarithm effects as best we can. We deVise\ﬁhereQ is the effective heavy quark field is the spatial

method to estimate, at least crudely, such effects. The . L= P

. . . . Covariant derivativeB is the chromomagnetic fiel®, are
method is based on the extrapolation of the ratio of the light- . . . .
. . the Pauli matrices, anthg is a generic heavy quark mass.
light to the heavy-light decay constant.

. ... _The masseM,, M,, andMg are particular functions of the
In Sec. IV we reexamine the quenched approximation L2 3 b

; . . .~ 'bare heavy quark massn, that depend on the quark action.
The dominant source of systematic error in our prewousHeremO isyg?ven by P g

guenched computatida] was the continuum extrapolation.

Two new features of the current analysis have significantly 1 1

reduced that error(i) new running with both Wilson and amy=5 — =5 (2
clover quarks andi) a new central value for the scaig for Q ¢

the heavy-light axial currerjtL1]. wherexg is the heavy quark hopping parameter ands its

We then turn to the dynamical quark data in Sec. V. Thegritical value? The “pole mass,”M,, controls the exponen-
improved control over discretization errors in the quenchedjal decay of the zero-momentum propagator in Euclidean
approximation gives us more confidence in the central valuéime, but is just an additive constant in bound state energies.
and errors deduced from the continuum extrapolation of ouThe nontrivial physics of a heavy quark in a heavy-light
dynamical quark data. Other sources of systematic error, inbound state is controlled at this order by the “kinetic mass,”
cluding the chiral extrapolation, higher order perturbationM,, which fixes the heavy-quark energy-momentum disper-
theory, and the effects of partial quenching are also discussegion relation, and the “magnetic masdV;, which governs
in detail. Finally we clarify the effects of “fat-link” fermions chromomagnetic effects, such as hyperfine splittings.
using some new test runs in the quenched case. These shedFor computations of heavy-light decay constants, one also
light on why the preliminary values for heavy-light decay needs to know how the lattice axial curregtyyysQ, renor-
constants with fat-link fermions on dynamical configurationsmalizes. At tree level but through order (i), EKM show
were anomalously loW12]. that the renormalization is given simply by the replacement,

Our conclusions and the outlook for reducing the mainQ—Q,, where the tree-level improved field is
systematic uncertainties are discussed in Sec. VI. We de- Lo
scribe work in progress that addresses the outstanding issues Qi(x)=2kge* 1 [1+ad; y-D]Q(X), 3
in the chiral and continuum extrapolations.

The computation presented in this paper is rather compliwith d; another function oam,. We have included the stan-
cated: we use several different actions, operators, renormalard y2«q factor needed to go from lattice-normalized to
izations, fitting techniques, and extrapolations. Part of th&ontinuum-normalized fields.
reason for this is that the simulations with dynamical quarks At tree level, one has
are extremely demanding computationally and therefore
have taken years to complete. During that time, as our un-
derstanding of the physics and analysis issues grew, our
methods evolved. The variety of methods used does have one AM.— amp(1+amy)(2+amy)
important virtue: it al!ows us to estimate many of the sys- 2 2+4amy+ (amy)?
tematic effects in a direct way.

aM;=In(1+amy),

e®MisinhaM,)

~ 1+sinhaM,) ’
Il. FORMALISM
In a groundbreaking papé6], El-Khadra, Kronfeld and aM,= amy(1+amp)(2-+amy)
Mackenzie(EKM) show that one can make sense of heavy 2(1+ampy) +cgpamy(2+amy) ’
Wilson-like* fermions on the lattice even wheamy=1,
where a and mg are the lattice spacing and heavy quark d. = amg @)
mass, respectively. Indeed, in the nonrelativistic limi, 7 2(1+amg)(2+amy)’
>Aqcp, they show that the effective Hamiltonian has the
form (after Foldy-Wouthuysen-Tani transformatjon wherecgyy is the coefficient of the clover term.

Lwilson-like” means that the fermion action includes the naive 2We assume throughout this paper that the spatial and temporal
discretization of the Dirac equation plus a Wilson term to removehopping parameters are chosen equal, that the Wilson parameter
doublers. There may be further additional correction terms to re=1, and that the spatial and temporal parts of the clover term, if
duce lattice artifacts. Standard Wilson fermions as well as “clover”present, have equal coefficients. This is not the complete generality
fermions[13] fall into this class. of Ref.[6], but is sufficient for our purposes.
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A large fraction of the one-loop corrections to E4) can The 1-loop mass-dependent perturbative matching for the
be included with tadpole renormalizatiph4]. We usex. to  heavy-light axial vector current has been calculated by Kura-
define the mean field valuay,, of the gauge link:u,  mashi[18]. Since we include tadpole renormalization for
=1/(8xc). Absorbingu, into « gives a tadpole-improved hoth the heavy and light quarks through E@) (with d,
hopping parametek, and bare massny: =0), we adjust the result to reflect our choicexgfto define
the mean link(Ref.[18] uses the Feynman-gauge l)nkhe
continuum contribution to the matching generates a loga-

K~
K=Ugk==—, k.=1/8

- 8k’ rithm of the heavy quark mass. I[18], this is taken as
logM;. Since we takeM, as the physical mass, we also
B 1 1 K. adjust the result of18] to replaceM; with M, in the loga-
amy=amy/Uy=—=— —==4——4. (5 rithm.
2k 2k; K Additional issues for perturbative matching are the defi-

) ] __nition of the coupling constant and the scale at which it is

in Eq. (4) by M;, M,, M3, andd,. They are found simply 3.40184 is defined in terms of the plaquett&4,19. It has

by replacingm,—m,. Similarly, the tadpole-improved ver- become standard to evaluate the coupling at the Lepage-
sion of Eq.(3) is Mackenzie scalg* [14], defined by

31(x)= V2K qUoe™ [ 1+ a7 BIQ(X) | dar@oga?

i log((g*)?)= : ©)
- 1—4—KC[1+ad1y-D]Q(X). (6) fd“ql(q)

For some applications, tfdy term here may be neglected. It wherel(q) is the complete integrand for the quantity of in-

is therefore convenient also to define terest. In other words, the 1-loop axial vector current renor-
malization  constant, Z,, is given by Z,=1
~ 3k +ay(q*)Crza/(47), where Cg is the quadratic Casimir
0/on_ Q v FZA F
Qrx) =1~ 4KCQ(X)' (") andz,=[d%ql(q). Here, we need, in three caseglight-
light, static-light, and heavy-lightwhich we denote by 29,

We take the physical mass of our lattice heavy-light me—Zi‘a‘q, andZ,'ﬁUR, respectively, where KUR emphasizes that

sons to be the meson kinetic mabkg,. AlthoughMq,-,  we are talking about the heavy-light renormalization constant
could be determined directly from the meson dispersion reeomputed by KuramasiilL8]. We adopt corresponding nota-
lation, that would require the computation of meson propation for z, andl.

gators with nonzero momenta, which in any case are rather Unfortunately, at the time the analysis described here was

noisy. Instead we definkl o, by [15] performed,q* for ZkYR had not been determind@0]. For
L ZJ% with k.-tadpole improvementg* =2.324A [21], which
Mgg2=Mgg1tMo—My, (8 we use here when fixing the scale throdgh For Z3"®9with

_ . plaquette tadpole improvement, Hernandez and FHR]
whereMgqq,, is the pole mass of the meson determined orfound g* =2.184. Since the light-light and static-light val-
the lattice, andM, and M refer to the heavy quarlQ. The  ues ofg* were so close, it was argued[i] that either could
UKQCD Collaboration, in Fig. 8 of Ref.16], compares the be used in the heavy-light case, and in fact the light-light
kinetic meson mass determined by the dispersion relatiomalue q* =2.32A was chosen for the standard computation
with that given by Eq.(8) (but without tadpole improve- (central valug
meny. The agreement is good, and would in fact be still Recently, Bernard and DeGrand1] have repeated the

better if the tadpole improved version were used. Hernandez and Hill computation. They find a significantly
different value ofq* for the x.-tadpole-improvedzZz®™",
A. Wilson fermions Their result depends on the heavy-light mass, which enters

through the continuum part of the matching. However the
mass dependence is rather weak over the range of masses
used in the current numerical work, and it is therefore ad-

For Wilson fermions ¢sy=0), the magnetic madd ; is
not equal to the kinetic masll,, even at tree level. As

d_iscussed in Refd17] and [4], this produces an error at equate to use an average valyie~1.43A. Since Ref[11]
fixed @ of  O[(Cmag—1)Aqco/Maql, Wher?i Cmag  has not yet appeared, it may be helpful to summarize here
=M, /M. Hence there is little point in keeping tllg term  the reasons for the disagreement with R&g].

in Eq. (6), which is also ofO(Aqcp/Mgg)- [Indeed, keep- First of all, Ref.[22] sets to zero certain parts of the
ing such terms without including at least tt#g®) pertur-  |attice integrand whose contributions to the matching vanish
bative corrections to them is likely to increase the systematigy contour integration. This is a standard proced@gj for
error [3].] We thus sefd;=0 in the Wilson case and use evaluating integrals involving a static quark propagator.
Eq. (7). However, such integrals do not vanish when the integrand is

094501-3



C. BERNARDet al. PHYSICAL REVIEW D 66, 094501 (2002

first multiplied by log¢?), as in Eq.(9). Bernard and B. Nonperturbative clover fermions

DeGrand argue that it is incorrect to discard parts of the For our computations with clover fermions, we take the
integrand unless their contributions to both the numeratogjover coefficientcs,, calculated nonperturbatively by the
and denominator of Eq9) vanish. _ _ ALPHA Collaboration[7]. The 0th component of the renor-

Secondly, there are “constant” terms in the maichingmalized, improvedthrough O(a)] light-light axial vector
coming from the dimensionally regularized continuum inte-cyrrent(which is needed here to set the scale viih is then
grals. Hernandez and Hill treat these as constant over the
4-dimensional Brillouin zone. Similarly, the logify,) term AY"=Z\P\[Aky ko (1+baamg)[Ag+CaadgPs],
in Z3®9, which comes from both continuum and lattice in- v
tegrals, is set to zero if22] by the choicea=1/mg. In
contrast, Ref[11] keeps the full continuum integrands as Ao=017%Ys02; Ps=01v50z, (12)
well as the full lattice integrands. This does introduce a small
amount of arbitrariness: the dimensionally regulated con-
tinuum integrals must be replaced by finite, subtractedvhere Kq,1 Kq, are the hopping parameters of the light
?Hglrsnuebrlf;:?izlnl?sfegcgﬁle& I?lg\(/jvécg:ea:: If)?]me freedom in howyarks, andng=(my, o+ Mg, 0)/2 is their average bare mass.

. : g as the subtractiogye . .
andc, are the nonperturbative values given[ifj. The

is “reasonable,” the arbitrariness g is small. If we accept A fficientb. h b determined curbativelv b
the results of Ref[11], theng* for Z3*%is no longer very coetticientb, nas not been determined nonperturbatively by

S the ALPHA Collaboration, although the differentg —b

* qq _ m* ’ P

close tog fc|)<rURZA . Instead,. we .take the static-lig i has[25]. Bhattacharyaet al. [26] have determined, at 8
~1.43k for Z,~". Sinceamg is quite large on our lattices =6.0 and 6.2, but not a8=6.15, which is one of the cou-

(~1.2 tq .4)’ Iwe believe this is a reajonable chgic;e. Ofplings used here. Our, is therefore taken from perturbation
course, it is always necessary to consider a rangg*ofo theory [27], but with couplingay(q*), with g* chosen as

estimate perturbgtive grrorf, and the range we (Belg SeC.  the value & 1/a) that produces the nonperturbative reilt
IV) includes the light-lighg*, as well as the values in Ref. for the similar quantityb,. This gives by=1.47 at 3

[20]. =6.15 and 1.42 a8=6.0. In the systematic error analysis,

Summarizing the results of this s.ection, we may expresg . 4liow b, to vary over a range of valudgsee Sec. IV,
the Oth component of our renormalized heavy-light current For chiral extrapolations, our canonical procedisee

as Sec. 11l D) for both Wilson and clover quarks is to use the
kinetic quark masaM, [Eq. (4)] as the independent vari-
AKUR= ZKUR(q* )a_f)YO?’s(N??: (100  able. ThroughO(a), this is equivalent to the clover “im-
proved quark mass,"aﬁh:anb(lJr bn,amgy), with the
. Lo ) choice b,,= —0.5. A nonperturbative determination by the
with " =1.43k, with Q' given by Eq.(7), and with a cor- 5| pya Collaboration[25] gives insteach,~ — 0.709 atB
responding expression for the tadpole improved light quark_ g andb,,~—0.695 at8=6.15: while boosted perturba-
field, gf . For convenience, we also use EGO) for the tion theory with the result of Ref27] givesb,,= —0.662 at
light-light pseudoscalarg*pions”), even though the mass B=6.0 andb,,~—0.655 at3=6.15. In the clover case, we
dependence of Ref18] is negligible in that case. We take have tried both these setsinf, values instead of our canoni-
q* =2.32ha [21] for light-light renormalization. cal procedure, but found only negligible changes in the cen-
The errors in our heavy-light Wilson calculation are for- tral values, errors, and goodness of fits. For exampie,
mally O(aAqcp) and O(ag). Note that, in the Fermilab changes by less than 0.4% @t 6.0 and 0.1% a=6.15.
formalism, one should think of these errors as multiplied bywe do not, therefore, consider the standard improved quark
an arbitrary{but presumably0(1)] function ofaMq, since  mass further.
we are working to all orders inMg. Thus the dependence  Since Eq.(12) is valid only throughO(a), it is likely to
ona s in general complicated. An example of such compli-produce large scaling errors if applied to the renormalization
cated behavior is the difference between lattice chromomagsf the heavy-light axial vector current for heavy quarks with
netic effects, which go lik@Agcp/(aMs), and the desired  amg =1. Instead, the straightforward approach is to use the
behavioraAqcp/(aM,) [see Eq(4)]. Of course, in the truly  1-loop, O(a), perturbative matching for clover fermions as
asymptotic regime wheraMg<1, the leading errors are calculated by Ishikawa, Onogi and Yamg@8,29. We call
indeed linear irg, but this region is not currently accessible this approach “NP-10Y,” where 10Y refers to the authors,
in practical calculations. and NP indicates nonperturbative, becacgg has the value
In the static-light case, we have given in[7], and Eq.(12) is used in computing .
Since Ref[28] uses tadpole improvement defined through

AT =Z3"(a%)a vovsh, (1D
_ . R 3At B=6.0, Ref.[26] getsb,=1.293)(4), which is within our
whereh is the static quark fieldZ,; ™ is the one-loop renor-  range. Note however, that Refd,26] get quite different values of

malization constant for the static-light currdr@3,24] with c, at B=6.0, indicating that effects of)(a?) and higher play a
tadpole improvement, angl* =1.43A. significant role at this coupling.
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k¢ [29], just as we did above, we may summarize our appli- amg o+amy g
cation of their result as AYF=Z7\VAkqgrqy| 1+ bAM
X[Ag+caadgPs],

AT 297 20950+ 28 T O (13 _ -
Ao=07075Q; Ps=qvysQ. (19

whereQ, andQ} are given by Eqs(6) and(7) (and similarly e thatA)" does not approach a static limit famg o

for g, andqy), and where —o. Instead, it goes to—o becausec,<0 and doPs
~sinhMqgq1) ~aMg . (Mgq1 is the meson pole mags.
Even if c, were zeroAy" would still blow up because of the
termbaamg o. For this reason, small discretization errors for
moderateamg o may be magnified significantly if E15) is
used to extrapolate to thg

To define the NP-tad alternative, we first let

201+ ay(at)of?

23" =—ay(q*)(p{+p)/(2aMy), (14)

with p&, p, andp'? defined in[28]. We have used the R(Mgq)= <O|00P5|OQ'2> (16)
= b >~ = s < ~ + !
fact that the operators, yoysy-D Q, and —q;7- D y5y5Q, (M0 Mq0)(01Adl Q)

ha\{e equal matrix elements b_etween zero-momentum Stat‘%ﬁherqu is a generic heavy-light pseudoscalar meson. Due
as is the case for our evaluation of decay constants, to COMa a cancellation of SinMqu) (from o) and the explicit

bine the coefficientp$ andp. For a central value af*, Mg, in the denominator, one exped®&has a finite limit as
we take the result from the static-light calculation of Ref-am'Qo—mc. This is confirmed by our simulations. Then

[11], using the appropriate value of,,and taking the heavy

guark mass to be the mass of #€This givesq* =3.34A at ANP'— ZNP /7 1+ (b.t 2c.R)am
B=6.0 andg* = 2.85A at 8=6.15. Unlike[28], we include 0 A VArqroV1+ (bat 2caR)amg
the'd, factor for the light quark in the first term of E¢L3). X1+ (ba+2caR)amgoAq (17

This is just for convenience, sinad is negligible for our )

light quarks. We have neglected, for heavy and light gives results for (O|A}” |Qqg) that are identical to

quarks in the correction terrfproportional t0z!9") in Eq.  (0|AY"1Qq) through O(a). However, becausecgamg g

(13). We remark here that with our current data we use NP— 1/2 asko—0, Eq.(17) has a static limit, unlike E¢(12).

QY for fg, fBS but not forfy, fDS because the approxima- The mass dependence of Efj7) is in fact very similar to

tions in[28] are not applicable near tH2 mass. the Fermilab formalism at tadpole-improved tree level. In-
The errors in the NP-IOY calculation are formally deed, from Egsi6) and(S), the Fermilab version of Eq17)

O(a?Adcp) and O(ad). Again, one should think of these 'S

errors as multiplied by an arbitra@(1) function ofaMgq, ENAL
making thea-dependence complicated in general. For ex- Ao =Za VA KqrqL+amg ofug
ample, ifMq, is held fixed and is varied in the region where % \/quo/Uvo (18)

aMqg~1, lineara dependence%aAéCD/MQ) is possible.

~ Although NP-IOY is a well-defined approach to heavy- where z,=Z7!%; is the renormalization constant for the
light physics with nonperturbative clover fermions, it does axial vector current without the tadpole factor removed, and
not take advantage for heavy quarks of the nonperturbativhere we have dropped tie terms for simplicity. Hence
information in Eq.(12). An alternative, whlch.has peen used Eq. (17) is equivalent to Eq(18) but with a specialmass-
by the APE[30] and UKQCD[16] CoIIabprguor!S, is 10 ap-  gependent value for the tadpole factor: uy=(ba
ply Eq. (12) for moderateamg o, where it is still approxi- 1 2¢,R)~2. The similarity to tadpole improvemerithin
mately justified, and then extrapolate up to Bienass. That  the context of nonperturbative renormalizatigsthe reason
approach has two main systematic errors: First, one has ngy the name “NP-tad.” Note that, at tree level, wheog
guidance from heavy quark effective thedi#QET) about -7 —, =1 andc,=0, NP-tad is in fact identical to the
the order of the polynomial in ﬁdg with which to extrapo-  Fermilab approach.

late to theB mass, and secor@(a“) errors, while relatively In practice, we put thel, terms as well as the correspond-

small for the moderate masses studied, can grow rather larggig perturbative subtraction back into the axial vector cur-
when extrapolated over a wide mass range. We prefer instegdnt. Thus Eq(17) becomes

a different method, which we call “NP-tad” for reasons dis-

cussed below. The idea here is to replace 8@ by an AP ZWP\ 4k gk 1+ (bat2cAR)amg o
equivalent expression througf(a) but which has the ad-
vantage of having a reasonable limit for largeng . The X 1+ (bt ZcAR)amqyoAgl'S”b (19
modified Eq.(12) is then used directly at or near tBemass.

Equation(12) applied to a heavy-light current gives with
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TABLE |. Lattice parameters. The upper group corresponds to quenched lattices; the lower group, to
dynamical lattices withN;= 2 staggered quarks. The set G was generated by HEMB6|CSets marked by
* are new since Ref4]. Heavy and light Wilson quark propagators were generated on all sets except J and
5.7-large. On the latter set, which includes lattices of various sizes, only light quark propagators were
generated. Normadl'thin-link” ) clover propagators were computed on set J and CP1, a 199 lattice subset of
CP.(See Table Il for thin-link clover parametergat-link clover propagators were generated on set GPF
99 configuration subset of CPand RF(a 98 configuration subset of se}.R

Name B (amy) Size No. confs.

A 5.7 8% 48 200

B 5.7 16x 48 100

5.7-large 5.7 12x 48, 16x 48, 20X 48, 24x 48 403, 390, 200, 184

E 5.85 13x 48 100

C 6.0 16x 48 100

*CP 6.0 16x 48 305

*J 6.15 26x 64 100

D 6.3 248x 80 100

H 6.52 32x 100 60

L 5.445(0.029 16°x 48 100

N 5.5(0.1) 283% 64 100

o 5.5(0.05 243X 64 100

M 5.5(0.025 20°% 64 199

P 5.5(0.0125 20°X 64 199

*U 5.6 (0.08 243X 64 202

*T 5.6 (0.04 243X 64 201

*S 5.6 (0.02 243% 64 202

G 5.6(0.01) 16°x 32 200

R 5.6(0.01) 283% 64 200

d1-sub_ %y (sub - ~ > = extrapolation in Ref[16].% With only two lattice spacings in
Ao =ltav(@)ea )]AOJquoysadly' bQ the N?D-tad data ancg i[riG], howevgr, this compaFr)isongi]s far

—qgad;y-DyeysQ, (20  from definitive. We therefore use the NP-IOY approach

(whose errors are better understphad addition to both the
NP-tad method and standard Wilson fermions, in determin-
wherep$'? is the 10Y perturbative correction coming from ing the central value and errors.
thed; terms alone, which we extract by comparing the com-
plete perturbative result computed with and without the

terms[31]. In Eq. (20, al=d1(aﬁb,o) andEIl=d1(ar~nq,0) Ill. COMPUTATIONAL DETAILS

in the second and third terms, respectively, witf{am) A. Lattice generation and inversion
given in Eq.(4). As before,d,(amq o) is negligible and is Table | shows the lattice parameters used. Quenched lat-
included merely for convenience. tices are generated using a standard combination of

Equations(19) and (20) define the NP-tad approach. The pseudoheat batf82] and overrelaxedi33] updates. Succes-
errors of NP-tad are formally)(a?Adcp) and O(a®Mg).  sive configurations are separated by 200 iterations, where
Thus, the errors could in principle be largeMs, increases each iteration consists of 1 heat bath an(@4or set H,3
at fixeda. The hope is that the requirement that the decay=6.52) overrelaxed sweeps. The sets J and CP are new ad-
constants have a limit &4 ,— has forced theazMé (and  ditions to the quenched lattices previously analyzed in Ref.
highep terms to have small coefficients, but this is not[4]. Dynamical fermion lattices were separated by 10 trajec-
proven. We emphasize that the NP-tad approach is logicallyories(each of unit molecular dynamics titnef the R algo-
neither better nor worse than the method of Rgf6,3(Q for  rithm [34]. (Set G, from HEMCG{35], is separated by 10
B physics. NP-tad is an attempt to keep the nonperturbativerajectories of time 12 in MILC units)

O(a) information and yet include some higher effects in a

smooth way, but there is na priori guarantee that all or

most of such effects are includedl posteriorj one can com-  4An earlier version of Ref[16] showed considerably worse scal-
pare how well the methods scale with lattice spacing. Theng, but that appears to have been associated more with the use of
scaling of NP-tad results currently appears to be comparablecaler , from the potential than with the normalization and extrapo-
to that seen with standard nonperturbative normalization anthtion.
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Unimproved Wilson valence fermion propagators were AL L B B B
generated for all these sets except@n set 5.7-large only
light Wilson propagators were compute@ecause our cal-
culations were initially limited by slow 1/0O speeds and lack
of long-term storage, we performed the calculations of 1.0~
heavy-light meson propagators “on the fly"—i.e., without
storing quark propagators. The hopping parameter expansion
of the heavy quark propagator, as proposed by Henty and
Kenway [36], makes this possible. Further, the expansion
allows us to study a large number of heavy quark masses,
with almost no additional expense. For this reason, we con-
tinued using the approach of R¢B6] even after faster 1/0 K
and better storage became available. s : ---- 8L x 3000 -

In the hopping-parameter approach, the light quark propa- 0.0 —
gator, for a single spin-color source, is first computed with T T
standard methodsgred-black preconditioning; minimal re-
sidua). The heavy quark propagator for the same spin-color
source is then computed order by order in the heavy hopping
parameter. At each order, the contribution to the meson FIG. 1. Convergence of the hopping parameter expansion for
propagators, summed over space, is stored to disk. The fulleavy-light pseudoscalar meson correlators on set3=0.1456,
meson propagator for any heavy hopping parametgr,can  while x,=0.1507, the lightest of the three light quarks analyzed on
then be reconstructed after the fact by multiplying the storedhis set. The values of the smeared-smeared and smeared-local cor-
results by appropriate powers ef, and summing over itera- relators att=40 (half-way across the latti¢eare shown with the
tions as well as spin and color. Propagators in the static-lightolid and dashed lines, respectively.
limit, where the heavy quark mass is taken to infinity, can be
obtained as a by-product of this procedure. pressed sufficiently at asymptotic Euclidean time by their

Our quark sources are Coulomb-gauge Gaussians. We riigher energy. However, in the largest physical volumes, sets
the overrelaxed gauge fixer until the sum of the trace of alN, O, U, and T, the higher momentum states for the heaviest
spacelike linkgnormalized to 1 when all links are unit ma- mesons are quite close to the ground state, and we are re-
trices changes by less tharn710” " per pass. This takes, for quired to go to large timest {;,/a~22-27) for the smeared-
example, about 435 passes on set D, and a comparable nusimeared propagators in order to make single exponential fits
ber of passes on the other sets. with good confidence levels.

Our Wilson light quark propagators are computed for The static-light mesons have no such suppression, and the
three values ofkq, giving light quark massesnfy) in the  contribution of higher momentum states is limited only by
range 0.fg=m,=2.0mg, wherem is the strange quark their overlap with the sources. Using computed static-light
mass. We analyze heavy-light mesons with 8 to 10 heavwave functiong37], we find that the contamination in static-
quark masses per data set, with heavy-light pseudoscalar mgght decay constants from nonzero momentum states is
son masses Mqq) in the range 1.25Ge¥Mqgq small (=0.7%) for lattices with spatial size ef1.5 fm (sets
=4.0 GeV. The heavy quark propagators are computed witiA, C, CP, D, E, G, H. However, on all otheflarge) sets the
400 passes of the hopping parameter expansion. Figure dontamination is expected to be large. We therefore have
shows the convergence on set D of the hopping parametgerformed a dedicated static-light computation on those lat-
expansion for heavy-light meson correlators at the maximungices, with relative smearing functions taken fr¢B88] and
time separatiorthalf-way across the lattigeThe value ofkq  zero momentum intermediate states enforced by a complete
(0.1456) used in Fig. 1 gives a meson mass M, FFT sum over spatial slices. In addition, the dedicated static
~1.1 GeV when the light quark, is extrapolated tac q. light computation has been run on sets A anthBcause the
Since 1.1 GeV is slightly lighter than the lightest value usedplateaus from the hopping method proved to be p@md
in our analysis, we are confident that the expansion is undegets G and CRas a check of the hopping metho®n the
control. latter sets, the two methods give consistent results, but we

Because the heavy-light mesons must be constructed ahoose the dedicated method because the errors are smaller.
each of the 400 orders of the hopping parameter expansion, Tthus, only on sets C, D, and H is the hopping approach used
is too expensive to sum the central point of the smeared sinkier the final analysis of the static-light mesons.
over the entire spatial volume, even using fast Fourier trans- Standard (“thin-link” ) clover improved valence quark
forms (FFT’s). Instead, we simply sum over 16 points in the propagators have been generated using stabilized bi-
L3 spatial volume: the 8 points (0,0,0)../2,0,0), (0L./2,0),  conjugate gradient inversior89] (for light quarks and the

, (L/2,L/12,0), ... ,plus the 8 points obtained by adding hopping parameter expansiofffor heavy quarks on
(L/4,L/4,L/4) to each of the previous points. This fixes the quenched sets J and “CP1,” a 199-lattice subset of CP. In
lowest nonzero momentum which contributes to be (2,2,0this case we have 5 light and 5 heavy quark masses, in the
(and permutationsin units of 2zr/L. For the heavy-light same range as for the Wilson valence quarks. For the heavy
mesons studied here, these higher momentum states are sgprarks we sum, on the fly, the orders in the hopping expan-

=40)

05—

correlator (t

0 100 200 300 400
hopping pass
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TABLE Il. Parameters used for nonperturbative, thin-link clover fermi@nsenched configurations

Set B No. confs. Csw Za Cp ba b, range
CP1 6.0 199 1.769 0.7924  —0.0828 1.472 1.256:1.586
J 6.15 100 1.644 0.8050 —0.0426 1.423 1.244:1.510

sion for a givernkg—i.e., this is a standard inversion, which thousands of fits, and it is impossible to examine each fit by
does not allow a choice of arbitrary, after the fact. How- hand. Our standard procedure is to chohgg=1, i.e., we
ever, our experience with the Wilson case leads us to believérop all eigenvalues less than 1. The eigenvectors kept typi-
that a large number of heavy quark masses is unnecessaally account for 90-95% of the total covariance. Indeed,
the behavior ofoq\/M_Qq with 1/M o is quite smooth. Fur- when one changes how the covariance matrix is computed
ther, we are now able to perform an FFT sum of the mesoffOr €xample, by increasing the number of configurations
propagators, so that zero momentum is enforced and corgliminated in the jackknifg the eigenvalues smaller than 1
tamination from excited states is reduced. The full Fermilagdenerally change drastically with our typical sample size of
formalism allows us to choose heavy quark masses near ttig 100 The approach eliminates unstable, “pathological” fits

b quark mass in this case; we therefore do not need to conEompletely. . -
pute static-light mesons here to stabilize an extrapolation. Ve have checked that the final results are not significantly

As explained in Sec. Il B, we take the ALPHA Collabo- &ffected when we keep several mamr several fewerei-
ration [7] values, where available, for the normalization and9envalues throughout. Furthermore, on our set with the

improvement constants of our clover fermions. The paramdreatest statisticset CP, 305 configurationsve are able to
eters used are shown in Table 1. compare with a wide variety of different cuts on the eigen-

value, as well as standard covariant fits where all eigenvalues
are kept. We find that central values almost always agree
within one statistical sigma, and usually differ by much less
We need to fit correlators in time, extrapolate/interpolatethan that. In data discussed belgand tabulated at http://
in light and heavy quark masses, and extrapolate in latticesww.physics.wustl.edufcb/Nf=2_tables we show for
spacing to the continuum. In all cases except the last, theomparison fits with different eigenvalue cuts for this set.
data are correlated, so covariant fits are preferable. As is well One disadvantage of the current approach, as well as to
known[40], however, it requires a large statistical sample tothe methods if40], is that there is no true quantitative mea-
determine accurately the small eigenvalues of the covarianasure of “goodness of fit.” When eigenvalues are removed,
matrix. With limited statistics, such eigenvalues will be the truncated chi—squarectgut, tends to bebut is not al-
poorly determined and can make the covariant fits unstable,vays) considerably smaller than the “true¢? from a com-
This is a particular problem in the current analysis becausgjete covariant fit. However, our experience has shown that
the large time dimension of our lattices and the fact that W&equiring x2,/d.0.f<1 with Ao, =1 produces fits that are
fit two channels simultaneously means that we often make qost always acceptable by a standard criterion (C.L.

fits with 25 or more degrees of freedom. >0.05, with C.L. the confidence leyelhen the data allow
The technique we use to deal with the problem of smally 1y covariant(uncu fit. This is not the case for nonco-

eigenvalues has many similarities to the methods proposed Wriant fits A=) Such fits may havqﬁut/d.o.f<1 and

[403 blét hgs some a;]dy afntatges in IO l;lr$an$ysf!s.tlt IS basted %/rbt extend to a fully covariant fit with extremely small C.L.
a standard approach in factor analysig]. We first compute For example, exponential fits to a correlator which include

Lhe t(;]orretlatlgn :jn%tm(.tht.e cov?n?]nce nl]fm'xl' buttr;]orrggllzed Iseveral points clearly outside the plateau region can still have
y the standard deviations to have 1's along the diagona Eu{d.o.f<1 when \ =0, but not, in our experience,

and find its eigenvalues and eigenvectors. We then recori: _
struct the correlation matrix from the eigenvectors, but omit-Whem\C”‘_ L : . -
' At every stage in the analysis, we compute statistical er-

g?fg_It_ngsreegglrgﬁspnﬁgﬁz?(%st%fé%ir:\slslgﬁ S llﬁzrs mnr:a?jlg-in to rors by the jackknife procedure. The covariance matrices are
' 9 guiar. also computed by jackknife. For the quenched sets, there is

an aqceptable _correlation matrix by_restoring_ the 1's al_on_ o0 evidence of a nonzero autocorrelation length. However, in
the diagonal. Finally, the corresponding covariance matrix I$he dynamical sets, the errors typically increase with the

constructed(by putting back the standard deviationn- number of configurations omitted in the jackknife unti4

verted, and used |n.the gtandard way for making the fits. configurations are omitted. To be conservative, we determine
The above technique interpolates smoothly between stan-

. : . : ur statistical errors and covariance matrices by omitting 8
dard covariant fits, where no eigenvalues are omitted, an . : . X
; ) . onfigurations at a timéfor both dynamical and quenched
noncovariant(uncorrelated fits, where all eigenvalues are

omitted. Furthermore, because the correlatas opposed to sets.
covariancg matrix is used, the eigenvalues are normalized,
with the average eigenvalue always equal to 1. This allows

us to make a uniform determination of which eigenvalues to We compute “smeared-local” and “smeared-smeared”
keep, which is very important since we are dealing withpseudoscalar meson propagators in each of three cases:

B. Covariant fits

C. Correlator fits and extraction of decay constants
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Mgy

FIG. 2. Light-light effective masses for set R=0.159. The fit FIG. 3. Same as Fig. 2, but for heavy-light effective masses on
ranges are 8 to 31 foBg, and 10 to 31 forGgs. The smeared- set J,ko=0.098, x4=0.1347. The fit ranges are 12 to 18 18,
smeared masses are shifted upward for clarity. The long horizontaind 8 to 16 forGgs.
lines show the fit value of the mass. The error in the fit value is
indicated at the left end of the fit lines by two short horizontal lines. Gg—lse ™ Gggo s M. (24)
heavy-light, static-light, and light-lightthe last with degen-

erate masses onlyThese correlators are defined by In other words, these are fits with three parametits{s,

and{ss. Central values usk.,= 1.0 throughout, except for
. . set CP, where\.,=0.1. Typical effective mass plots for the
Gsi(t)= 2, (0]A§(X,1)x1(0,0|0) (21)  light-light and heavy-light cases are shown in Figs. 2, 3, and
x 4, respectively. Here and below, we generally chobke
=2 and clover data for the plots because the quenched Wil-
Gss(t):z’ (0] xs(X,t)x5(0,0)|0), (220  son data have been discussed in more detail previ¢dBy
x We vary the fit rangdin t) in each channel over several
choices that appear to be in the asymptotic, “plateau,” region
WhereAS is the relevant renormalized current, namAﬁ}JR
[Eq.(10)], AS™ [Eq. (11)], A)P '°Y [Eq. (13)], A)" 9[Eq. 1.6 ——————————
(19)], or AY* [Eq. (12—for light-light quantities only. For - B 1
Ggg, the prime on the sum indicates that oy, points on - od .
a time-slice are included. As discussed above, for all the - 0 o G .
Wilson heavy-light and light-light data\;,=16. For the - () .
clover and the dedicated static computations, the complete 1.5 [00) —
sum is performed(with FFT), so one hasNg=V - o0 .
=n,nyn,. In Egs.(21) and(22), xs is the Gaussian pseudo-

s | 0o i
scalar source, given by E° 5 %00 &Q%@@%

14— —]

XX )= e Ve ZIoq(x+y) ysQ(X+2). (23)
yz

The widthr, varies from 2.33 lattice spacindset A to 8 - =9 -' R
spacinggset H and is chosen to be roughly 0.35 fm. For the - o L
Henty-Kenway hopping calculations, the sums in E2R) gl o o e e

run over every, z only, so that we may exploit an even-odd
decomposition. In Eq23) and below, we use the notation of t

the heavy-light caséquarksQ andq) generically: for light- FIG. 4. Same as Fig. 2, but for heavy-light effective masses for
light formulas, letQ—aq; for static-light formulas, 1€1Q  set M, xo=0.120, k,=0.160. Fit ranges are 13 to 31 f@rs, and
—h. 19 to 31 forGgs. The heavy quark is computed with the Henty-

For large Euclidean timg Gg; and Ggsare fit simulta-  Kenway hopping expansion. The late plateaGigs is due to con-
neously and covariantly to single exponential forms, with thetamination from nonzero momentum states because the sink is not
same mass in both channels summed over complete time slices.
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for the effective mass. Combining such choices for the lightmassesaMq,, Ed. (8); for the static-light case they are
light, heavy-light and static-light cases, we have approxisimply the pole masses. Time ranges, number of degrees of
mately 25 different versions of the analysis on each data setreedom, and¢2,, are included for all fits. For sets CP1 and J,
Our central values are taken from the version which has theéhe nonperturbative clover latticespndmé gets a further

best blend of small statistical errors and low, or at least acqualifier in the heavy-light case, which is either “NP-10Y”
ceptable, values of2,/d.o.f. Here “acceptable” is defined, or “NP-tad” for the two types of renormalization performed.
with few exceptions, ag?2,/d.0.f<1.3, with \g,=1. (In To enable the reader to see the effects of various renor-
about 85% of the central value choice(%ut/d.o.f.<l.) The malizations used, as well as to make possible reanalysis of
exceptions aré) a few fits to heavy-light mesons outside the the data by other groups, we have tabulated additional raw
ranges of mass that we include in our final determinations oflata. For all sets, we have separately computed correlators of
the decay constantsij) a few fits to heavy-light mesons on the bare lattice axial curremty:

the largest lattices, where the slow approach to the

asymptotic regime for smeared-smeared correlators com- bare -

puted with the Henty-Kenway approacbee Sec. Ill A left ®= 2 (OlAo(x. t)Xs(o 010) Ao=0a7075Q.

us with somewhat noisy data at largeand(iii ) the fit to the (27
static-light meson with heaviest light quark on set G, which

had rather noisy data. In these exceptional cases, we reld¥e fit G&}" simultaneously wittGss, as in Eq.(24), giving
our definition of acceptablgZ /d.o.f. to be less than 1.9, 1.7, Us the three quantitied, £&}®and{ss. We then definés "

and 1.6, respectively. by
Of course, with the approximately 900 channels we fit,
. . bare
one should expect that some fits over truly asymptotic ranges —bare_ smk Isi
will have poory?/d.o.f. simply because of statistical fluctua- == N"v_ oo (28)

tions. However since ouxCut generally underestimates the

full x*, we have tried to make choices which are more con-=barejs pasically the unrenormalized decay constant. For ex-
servative than a standard criterion, of say, confidence leveimple, in the case of our heavy-light Wilson data, for which

>0.05. the renormalized current is given by EG.0), we have
From the fits, the pseudoscalar decay constégtsfor
given quark masses are then obtained via KUR\/ 3KQ\/ 3Kq— pare
\/— qu : 3/2 4KC 1- - = .
2 Nsink gSL (29)
foqgVMqq= 282V vV los (25

The masses and quantiti€s®® are posted in the files
name qq bare.dat,” ‘hame Qq_bare.dat,” hame Statq_

where we use the definition of the decay constant that giveg o.dat ®

f_=130.7 MeV: . . .
For heavy-light mesons with the nonperturbative clover
(0]A®MQg,p=0)= ~if oqMoq. 26 ﬁgtelon, we have posted additional intermediate data. We de
with A the continuum axial vector current. Adimi—

Data for the masses and decay constants for each of the q7°75a7 bQ (30
sets listed in Table | are posted at http:// dy_ ~ ~ dima
www.physics.wustl.edu/cb/Nf=2_tables.  The files Ag=Aot[di(amg,o) +di(amy o) ]Ag (3D
“name qg.dat,” where ‘hamé is the set name(A, B,

E, ...) give dimensionless light-light masses and decay con- AgrS“b [1+ ay(g*)p$UA,

stants as a function of hopping parameter. Similarly 3 3 _

“name Qqg.dat” and ‘name Statq.dat” give dimensionless +[d1(amQ,0)+d1(amq,0)]A8'm4 (32
masses and values fa@¥?*fo,/Mq, for heavy-light and

static-light mesons, respectively. For set CP, additional files, ASP= 1+ (bs+2caR)amg o

with “lambda-cut=X" appended to the name, show the ef- g Sub

fect of various truncations of the correlation matrix. For X1+ (ba+2caR)amy oAt (33

heavy-light mesons the masses tabulated are the shifted
where “imp” stands for “improved,” and where Ed32) is a
rewriting of Eg. (20), using the fact that the operators
SWhen Eq.(25) is used for static-light mesons with the Henty-
Kenway hopping approach, an extra factonG is required on the
right-hand side. This arises from the fact that the highest momen- SAgain, for static-light correlators computed with the hopping ap-
tum state ¢r,, ) aliases the zero momentum state with our even-proach, we include an extra factor ¢2 on the right-hand side of
site-only source, and the higher momenta are not suppressed . (28). In this case the heavy-light masses tabulated arépitie)
Euclidean time for the static case. masses directly from the fits, not the shifted masses.
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3707’5;" 5@ and _E; 57075@ have equal zero- son and clover quarks, the confidence level of linear fits to

momentum matrix elements. For each current in Eg8)—  Mqq, foq, andfyq is better withM ; thanmg o, so we use
(33), we define a corresponding, as in Eq.(28). Results it from now on in all cases.

for 2dim4 =di =di-sub and ZiMP gre tabulated in the files An important question is which functional form one
“ name Qq_intermediate.dat,” wherename now is just  should fit to. Unfortunately, as in other lattice computations
CP1 or J. From Eqg13), (6), (30), and(31), these quantities to date, we have been forced to work at fairly large values of

are related to the decay constants in the NP-IOY case by light quark mass. In this region, our data for decay constants,
both foq, andfgq, are quite linear. There is little evidence

2 3KQ\/ 3Kq for chiral logarithms, which should introduce significant cur-
foqVMqq= ﬁ 1- Ar 1- A vature as one approaches the chiral limit, as emphasized re-
¢ ¢ cently by Kronfeld and Ryaf8] and Yamadd9]. This is
x[z'/?Ygdur z'ngEdimﬂ_ (34) presumably not a problem with chiral perturbation theory
(xPT), but simply an indication that higher order tertasy.,
Similarly, from Egs.(19), (32), and (33), we have in the terms quadratic in quark masare as important as the chiral

NP-tad case: log terms in the current mass regime. Further, chiral log fits
2 _ would introduce yet another parameter in the heavy-light
foqVMoq= EZRP\M-KQK(‘Elmp (350  case, theB-B* -7 couplingg.? It therefore seems clear to us

that fits offo4 to the NLO xPT form would require at least
7 four parametersz: the value in the chiral limit, a linear slope,
_ Ve NP the coefficientg, and a higher ordefquadraticp term in-
P Zp VArqrq\1+(bat2caR)amgg troduced to cancel most of the curvature of the logarithms in
our relatively high mass region. With only three light quark
X 1+ (ba+ ZCAR)amqYOEdl_S“b. (36)  masses on most sets, it is clear that such an approach is not
) feasible at present. In work in progrdd$], however, we are
In practice, when Egsi24) and (25) are used to compute consistently using five light quark masses and expect that we
foqVMqq Egs.(34) and (36) are obeyed only up to small will be able to include chiral logs and quadratic terms di-
corrections. This is because two separate fits are performegctly in the fits for central values.
to compute the two terms in E¢@4); whereas the quantities  For our “standard” chiral extrapolations, we thus consider
are added f'@ and then fit in E@4). For Eq.(36), the. only quadratic and linear fits irI\N/Iq,Z. For each physical
discrepancy is_due to the fact that the factors likeq,aniity we choose one of these fits for the central value,
V1+(ba+2caR)amg o and their errors are not included in 44 the other is taken, where appropriate, to give a standard

the fit here, but are factored in later. o chiral extrapolation error. Note thég [46] andf . [47] have
Finally, we also compute smeared-local light-light vector g miiar chiral log effects in full QCD:

meson propagators. These are fit covariantly to single expo-
nentials(two parameter figs Raw data for the vector channel

, : I 0 1 3(1+3¢%) , .,
appear in the files fame gg-vector.dat. fg="fg| 1+ To22 - 7 mZin(m2)+ - - -
D. Chiral extrapolations (37
Chiral extrapolations/interpolations are needed for the
light-light pseudoscalars, which are used to set the scale
(throughf,) and to findx, and the physical values af, 4 f.=f 1+ T[—Zmiln(miw I (39
and k, the hopping parameters of the up/down and strange 16m°f

quarks.(We generally determineg by adjusting the degen-
erate pseudoscalar mass\iﬁmzK—mzﬂ, the tree-level chiral
perturbation theory valuge.The light-light vectors provide
alternative determinations of the scadtaroughm,) and «

(throughm,) and require additional chiral extrapolations. . ; .
i g rom not including the curvature of Eq&37) and (38) will
The heavy-light and static-light masses and decay ConStanE:Sr;lncel. In Secs. Il E and V D, we explain how we test this

also need to be extrapolated/interpolated in light quark mass . : ; . :
to the up/down and strange quark masses. assumption and estimate the chiral logarithm effects in the

We have tried chiral extrapolations using either the baredynamlcal case.
light quark massm, or the light quark tadpole-improved

kinetic massv q.2 as the independent variabl&or both Wil-

Since we fix the lattice scale with, and always use the
same type of chiral fit for botfio, andfq, it is not unrea-
sonable to expect that much of the systematic effect coming

8CLEO [42] has recently measured tie* * width, which gives,
using lowest ordeyPT, aD-D*-7 couplingg?~0.35. However,

, _ _ _ ' NLO xPT and theD* — D 7 decay gives)®~0.07[43]; while NLO
As discussed in Sec. Il B, we also tried the stand&(@) im- xPT on theD* ™ width [Eq. (21) in [43]] givesg?~0.22. A recent
proved quark mass in the clover case, but the fits were not signifimttice computatiori44] givesg?~0.45. There is also some uncer-

cantly different from those witt 9.2 tainty in going from theD to the B system.
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R L L I I I I good, and we use the scale set witly in this way as an
alternative to that fronf .. The same fits also give an alter-
native value forxg, usingmg. The results are shown in
Table IV.

Sample chiral fits for heavy-light masses and decay con-
stants are shown in Figs. 9 and 10. Although the extrapolated
data for all the sets are too extensive to tabulate here, they
are available at http://www.physics.wustl.eetab/Nf
=2 tables, in the files fiame chiral mass.dat” and
“name chiral_fsqrtM.dat.” In the latter files we give
foqVMqq, rather thanfq,, becausefqqVMqq is what we
will need later to extrapolate/interpolate to the mass ofBhe
andD mesons. For the decay constants from sets CP1 and J,

P U U P U I “namé includes the qualification NP-IOY or NP-tad be-
002 000 002 004 008 008 0.10 causef o4 will of course depend on how the renormalization
aM,» is done.
! For almost all data sets, the linear chiral fits of the heavy-

FIG. 5. (am,)? vs aM,, for set CP1. The solid line is a qua- light masses are quite good, at least in the important range of
dratic fit; the dotted line, the alternative linear fit. The fits have meson masses between theand theB. Sets L and T are
x2,4d.0.£=0.06 and 36.5, respectively, with,,=1. The bursts exceptions, which is perhaps not surprising since their corr-
are the extrapolated points whern(_)2=0. elators are quite noisy to begin with, making it difficult to

find good plateaus. Indeed, for set T the data are noisy
enough that covariant chiral fits for heavy-light masses did

Figure 5 shows the chiral extrapolationmf. to find «, not converge, with any choice for,, excepti ==, i.e.,
with both linear and quadratic fits. Since the independenhoncovariant fits. However, since the linear fits to heavy-
variable, IT/quz, itself depends onx., such fits have to be light masses were fine on the vast majority of the sets, we
iterated two or three times to find a self-consistent value obelieve it is reasonable to use them exclusively. Linear fits to

x. where bothm?Z and M, , vanish. This has been done only the static-light masses are always acceptable.
for the quadratic fit in Fig. 5 to emphasize the difference with ~ The situation for the heavy-light decay constants is simi-
the linear fit. lar to that for the light-light decay constants. Again, there is
Table Ill shows the results fog, and x2,, values for all ~a small amount of curvature in these plots, and the direction
the data sets. Note that the linear fits are uniformly veryof curvature is the same as for the light-light caggompare
poor; while quadratic fits are quite good wherever there aréig. 10 with Figs. 6 and 7 Therefore, quadratic chiral fits of
enough light masses to compute,. Although usingam,  fqq are better than linear ones where the comparison can be
as the independent variable actually reducesyhgvalues made, but, as before, the quadratic fits/solves lead to signifi-
of the linear fits somewhat, they remain very poor. Thesecantly larger statistical errors. The main difference with the
features agree with what was found in Ref]. We therefore  light-light case is that the linear fits typically improve as the
use only quadratic fits/solves from here on fief vsaM,,. ~ Mass of the heavy quark increases, so that by the time the
Table IV gives the values of, resulting from these fits. physicalb quark mass is reached they are generally quite
The case ofqq Vs aN/Iq , is a more difficult one. Figures reason_able_. The qnly exceptions to this rule are the sets CP,
6 and 7, and Table V show the extrapolations. Although thd®" Which linear fits are poor over the whole heavy-quark
linear fits in both figures appear reasonable to the eye, that i}ass range, and T, which is noisy and again requires nonco-
Fig. 7 has a rather high value gf /d.o.f. as do many of the Variant fits. In the static-light case, linear fits are always
other linear fits in Table V. Where comparisons can be madeood. We thus choose linear fits everywhere for the central
the quadratic fits are better. On the other hand, the quadrati@/ues but use quadratic fits for the heavy-lights in estimat-
fits often have quite large statistical errors, especially in thénd the systematic error in the standard chiral extrapolation.
Wilson case where there are only three light quark masseé\s discussed above, we expect that extrapolating both light-
Furthermore, on the sets with the finest lattice spaci@ys light and heavy-light fits in the same way will cancel at least
CP, D, H, G, R, CP1,)Jthe linear fits are generally accept- Some of the systematic error associate with curvature and
able (set R is an exceptionFor these reasons, we use the chiral logarithms. Therefore, we change from linear to qua-
linear fits for the central values and take the quadratic fits télratic fits in both cases at once when we make our estimate
estimate the “standard chiral systematic error.” As men-Of the “standard” chiral error.
tioned above, the fits in future wofl5] will include chiral To summarize: For central values, we use quadratic chiral
logs as well as quadratic terms. fits inaMg , for mi and linear fits for heavy-light and static-
Figure 8 shows a typical linear extrapolation of the light- light masses and all the decay constants. We call this combi-
light vector mass to the physical point for up/down quarks.nation “chiral choice I.” Our standard chiral systematic er-
As seen in Table V, the linear fits are almost always quiterors are found by comparing the central values with the

0.2

0.1

(am,)®

0.0
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TABLE lll. Extrapolations ofaszr S aﬂ'/lq,2 to find .. When the number of degrees of freedom is 0
(quadratic fit with 3« values, a solver is used instead of a fitter. For fits, the cutoff on correlation matrix
eigenvalues X9 is 1. For set 5.7-large, which consists of several lattice sizes, the central value is the
average over all sets, the error is a combined weighted error, ang thed d.o.f. shown are the ones from
the volume 28x 48. See Sec. V B for a description of the fat-link computations.

Name Ke X d.o.f. Ke X d.o.f.
quadratic fit linear fit

guenched Wilson

A 0.169433237) — 0 0.16860789) 29.3 1
B 0.169340100 — 0 0.16838852) 227.0 1
5.7-large 0.1697424) 0.3 2 0.16886@&B3) 703.3 3
E 0.161397124) — 0 0.16104689) 20.1 1
C 0.15722895) — 0 0.15677846) 62.5 1
CP 0.15727d74) — 0 0.15690625) 44.0 1
D 0.15182%55) — 0 0.15166835) 28.0 1

0.14936820) — 0 0.14924815) 18.9 1

N;=2 Wilson
L 0.16942261) — 0 0.16816050) 299.4 1
N 0.16951%56) — 0 0.16851825) 496.4 1
O 0.16719741) — 0 0.16648830) 306.8 1
M 0.16591959) — 0 0.16521133) 192.3 1
P 0.16525747) — 0 0.164864298) 144.5 1
U 0.16306%27) — 0 0.16257016) 426.6 1
T 0.16152822) — 0 0.16188727) 155.9 1
S 0.16140Q0) — 0 0.16080212) 447.2 1
G 0.16115872) — 0 0.16082145) 38.7 1
R 0.16116723) — 0 0.16079812) 328.9 1
guenched clover
CP1 0.13534@8) 0.1 2 0.1351688) 109.4 3
J 0.13586220) 0.0 2 0.13579¢L6) 45.8 3
fat-link clover (N=10, c=0.045)

CPF 0.12555@2) 0.2 2 — — —
RF 0.12566625) — 0 — — —

results of “chiral choice II”: quadratic fits fome and both less clear. Even ratios such fa@S/fB are affected indirectly
|Ight-|lght and heavy-light decay constants, and linear fits fOIby the scale choice, through the f|x|ng @ﬁ, the hoppmg
heavy-light masses and static-light masses and de_:cay COBarameter for the strange quartEixing «,, the bottom
stants. For_ the I|ght-l|ght_vector meson masses, which e”tediuark hopping parameter, has little effect on the ratio but
only in various systematic error estimat@sternative scale  joeg represent another scale effect on the individual decay
determination fromm,, alternativex determination from  .,nqantg It is easy to see that our scale choice should push
my), We always use linear fits. fg andfg_/fg in the opposite direction of thy,, extrapola-

tion. We can thus hope that such effects largely cancel, and
this is a justification for taking our central values and errors
The standard chiral systematic error just described doeom the standard linear and quadratic chiral fits described in
not directly take into account the sharp curvature in decaythe previous section.
constants at very small quark mass caused by terms of the However, to test the above assumption and estimate the
form —mZIn(m?) in Egs. (37) and (38). Putting aside the errors induced by not directly fitting with chiral log forms,
issue of scale choice, an extrapolation in the full theory thaiye need alternative methods of evaluation that do not in-
ignores the chiral log irfoq is expected to overestimaftg  volve chiral extrapolations of individual decay constants.
and underestimatég /g [8] (since —mZInnt is concave  One approach that takes advantage of the fact that the chiral
down with rapid variation at small masdHowever, because logs in fg and f . are similar in magnitude is to perform
we set the scale with, and use the same extrapolations for chiral extrapolations only on the ratf@ /f , (more precisely,
fqq @andfqq, the effect on the individual decay constants isfq,/fyq). Given the expected range for the paramgferthe

E. Chiral logarithm effects
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TABLE IV. Values of kg, the hopping parameter of the strange St N BN LN LR BLELELL
quark, from fits to the light-light pseudoscalars and vectors. In the L J
former case, we adjust the pseudoscalar mas@mﬁ— mz,,; in the [ ]
latter, we adjust the vector mass to,. The values ofy? and 0.08 [— -]
degrees of freedom can be found by referring to the corresponding i i
fits in Tables Il and V. Data from set 5.7-large are combined as in [ ]
Table 1ll. See Sec. V B for a description of the fat-link computa- 0.07— —
tions. g [ ]
L) - .
(] L J
Name ks (pseudoscalays ks (vectors 0.06 |— —
quadratic fit linear fit [ ]
quenched Wilson 0.05 — 1
A 0.164331432 0.1631783407) [ ]
B 0.163629355) 0.163709215) - k
5.7-large 0.16391600) 0.16345679) Y'Y} SRS BN AP BRI TS
E 0158203170) 0157729351) -0.02 0.00 0.02 0.04 0.08 0.08
C 0.15456797) 0.154780229 aMg .
CcP 0.15485[9) 0.154638152) o
D 0.15039%66) 0.150316102) ~FIG. 6. The light-light pseudoscalar decay constdgt, vs
0.14841%42) 0.14832287) aM,, for setJ. The solid line is a linear fit; the dotted line, the
alternative quadratic fit. The fits have,/d.o.f=1.1 and 0.005,
N;=2 Wilson respectively, with\ ;=1 (1 eigenvector of 5 kept The bursts are
L 0.164114201) 0.164064184) the extrapolated points wheid,, , takes its physical valué.e., x
N 0.164436213 0.164027202 = Ky,q4). The burst on the dotted line has been displaced slightly for
o) 0.162938121) 0.162691120) clarity.
M 0.161778205 0.161830206)
P 0.161518141) 0.161374106) string tensionrg, or ry, because their physical values are
U 0.15969081) 0.159378103 only known phenomenologically, with uncertain errors. In-
T 0.158610121) 0.157248148 stead, we look at three more-or-less physical quantities asso-
S 0.1586388) 0.15842350) ciated with thes quark: the vector meson masg,, and the
G 0.15879%94) 0.158350146) mass and decay constant of a wouldstspseudoscalamg
R 0.15873665) 0.15846%85) andf. To be precise, thes meson is made of two valence
quarks with the physical strange quark mass, but in a stan-
guenched clover oS
cP1 0.1338811) 0.13351863) da_rd sea quarkAba;ckgroundhelther the physkta#S case
3 0.13466845) 0.13440056) (with my=my=mP" and m™9, or, corresponding more
closely to our simulations, th&l;=2 case(with m,=mg
fat-link clover (N=10, c=0.045)
CPF 0.12320@16) 0.123481137) 0.42 T
RF 0.12344062) 0.123236162 [
ratio has a chiral log term of opposite sign from thatfgf 0.10 —

alone and either comparable or greatly reduced magnitude i
[see Eqgs(37) and(38) and the footnote shortly befajeln 5
practice, since the slope 6f is greater tharfqy, fqq/foq g 0.08 -
is more linear tharfo,/fqq, and we work with the former. 5
Figure 11 shows a chiral extrapolation fof;/f o4 for set

R, with kg chosen so thal o is near theB mass. There is
clear curvature, so a linear fit is not appropriate, and we fit 0.08 —
(solve quadratically. To the extent that a residual chiral log -
remains in the ratio, the quadratic fit should somewhat over- [
estimatef . /fg and hence alség /fg. -

s ool o v o v v

However, to take real advantage of the presumed reduc- 2005 0.00 0.05 0.10 0.16
tion of chiral logs inf . /fg and known sign of the error in aM
LT q.2
fBS/fB, we must eliminate the dependence of the scale and
kg on a chiral extrapolation. This means that common scale FIG. 7. Same as Fig. 6, but for set R. The linearsilid line)

choices such a$,, m, or my cannot be used. Further, we has y2,/d.0.f=8.7, Ao,=1 (1 eigenvector of 3 kejt while the
are reluctant to employ static potential quantities such as thguadratic fit(dotted ling has no degrees of freedom.
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TABLE V. Extrapolations ofaf,, andm, vs aﬂ/lq'2 to find the scalea !, usingf,=0.1307 GeV and
m,=0.768 GeV. When the number of degrees of freedom(tpu@dratic fit with 3« values, a solver is used
instead of a fitter. For fits, the cutoff on correlation matrix eigenvaligg)(is 1. Data from set 5.7-large are
combined as in Table Ill. See Sec. V B for a description of the fat-link computations.

Name a’l(Gev) x4, dof al(Gev) xZ, dof al(Gev) xZ, dof
fqq, linear fit fqq, quadratic fit m,, linear fit
guenched Wilson
A 1.391(66) 5.3 1 1.586122 — 0 1.41332 1.5 1
B 1.31148) 6.1 1 1.45%66) — 0 1.48825) 0.0 1
5.7-large 1.33a4) 3.3 3 1.38817) 0.3 2 1.4508) 9.9 3
E 1.78343) 3.4 1 1.85163) 0 1.84873) 0.1 1
C 2.12454) 1.8 1 2.26696) — 0 2.414102 0.5 1
CP 2.21149) 1.2 1 2.339124) — 0 2.33351) 0.2 1
D 3.15191) 2.8 1 3.33111)) — 0 3.389108 0.2 1
4388121) 05 1 4.490146 — 0 4.4849150 0.0 1
N¢=2 Wilson
L 1.37530) 15.7 1 1.58643) — 0 1.54523) 0.0 1
N 1.43235) 2.0 1 1.52453) — 0 1.52425) 0.3 1
O 1.56825) 2.3 1 1.65455) — 0 1.68520) 0.9 1
M 1.60847) 1.0 1 1.68056) — 0 1.78937) 0.3 1
P 1.71339) 2.0 1 1.77850) — 0 1.85322) 23 1
U 1.80Q25) 3.2 1 1.86834) — 0 1.88825) 0.3 1
T 1.80037) 243 1 1.93%0 — 0 1.839200 0.7 1
S 2.03829) 7.6 1 2.19231) — 0 2.15719 0.5 1
G 2.24338) 4.3 1 2.37763) — 0 2.24252) 0.0 1
R 2.19426) 8.7 1 2.30639) — 0 2.26931) 3.6 1
quenched clover
CP1 1.99429) 8.0 3 2.09865) 3.9 2 1.90826) 0.2 3
J 2.44745) 3.3 3 2.54%90) 0.0 2 2.38839) 1.4 3
fat-link clover (N=10, c=0.045)
CPF 1.84718) 14.4 3 1.92898) 0.5 2 2.11461) 6.1 3
RF 1.87327) 1.4 1 1.93969) — 0 1.92@47) 0.3 1
~h ) _ ol I IMSUL I ILRAILE I
=mP"9. Here the superscript “phys” stands for the physical [ ]
mass, and we neglect isospin violations as usual. 5 -
The quantityfss can be related tdy and f . in 1-loop - .
(NLO) partially quenched chiral perturbation theory 0’3__ ]
(PQYPT), in a manner independent of the analypé 5 _
(“Gasser-Leutwyler’) constants. Using the formulas in Refs. - .
[48] and[49] for N;=2 andN;=3, respectively, we find E°' 05— B
e, [1m2In(m2ym?) — m2+ tm?]~0.93 ) [ ]
fﬁ 16’772f2 21 S g 2'ss ' 2 | ]
(39) 0.4 -— —-
fgi)fw 2 2 2 2 [ ]
= S5 [3m2In(m?/A%) — 3mZIn(mZ/A%) P PR I PP BT
fi 167t —0.05 000 005 010 0.5 020
—mZIn(m2JA?)]~0.95 (40) aMgz

where, in the numerical evaluation, we have udedf .
=130.7 MeV andmZ=$m?—3m?2. (The latter relation is

FIG. 8. Linear extrapolation of the light-light vector meson
mass to the physical poinp(meson, indicated by the buysiThe
data are from set S. The fit hag,/d.0.f=0.5 with Ao, =1.

094501-15



C. BERNARDet al. PHYSICAL REVIEW D 66, 094501 (2002

2.00 T 0.8 ———T T T T T T
| I I I I ] I I I
195 — i |
[ ] 0| —
i ] o F |
§ . S| 1
= 190 ] &
5 - Ul o -
© [ i < L i
[ ] 06— —
1.85 — - 1
weoloe o b0 by by e PO [P N N B
-005 000 005 010 015 020 20.05 0.00 0.05 0.10 0.16
aMg2 aM,»

FIG. 9. Linear chiral extrapolation of the heavy-light pseudo-  F|G, 11. Quadratic chiral extrapolation 6t/ foq from set R,
scalar meson mass, to the physical point-(x,,q, indicated by the  wjth «,=0.125. The bursts show the extrapolationdcand «,, 4.
bursy. The data are from set Usq=0.113. The fit hax,/d.0.f.  with these values determined by method 6 in Table VI.
=0.7 with Ao, = 1.

analytic terms indirectly through the quark mass ratios. In
theoretically convenient here because it makes(EQ. ex-  particular, we use thdl;=2 result:
plicitly independent of the chiral scalk.)

For mgg, we consider a few choices. Two tree level rela- mgsmi 4m/m;

tions have already been mentioned: =

mi (1+m/mg)?

m2=2mz—m?2 (42)
x| 1+ [—m2In(m24m?2)+mZ.—m?2]
2:2 - sg iz ss ™
m2=3$m2—3m?. (42 6mr’f
~0.17, (43

With Refs.[48,49, we can also derive 1-loop relations for

Mg, Similar to Egs.(39) and (40), although they do involve -
ss SITl 45439 (40 "a Y Ao IVOVE = here we have takemg/m=24.4[50].

We then perform a series of analyses. For each, we choose
2 of the quantitieg s, mgs, andm,,, and a method of evalu-
ation for the “physical” quantities ¢ [either Eq.(39) or Eq.
(40)] and/ormg [either Eq.(41), Eq. (42) or Eq. (43)]. We
then fit the ratio of the 2 chosen quantities as a function of
light quark mass z(l\‘/lq,z) in order to determinecs. Gener-
ally, only an interpolation or mild extrapolation is required.
Figures 12 and 13 show two examples of such fits, for
mgs/fss and mgs/m,,, respectively. The former uses Egs.
(41) and (39); while the latter, Eq(43). Note that a slight
extrapolation is required to findg in Fig. 12. In Fig. 13«4
is determined by an interpolation, which is more similar to
the standard analysis. The difference between the two situa-
tions gives some indication of the errors of the procedure. In
N I I U I I PO Table VI we show the results fotg for 12 different versions
“2002 000 002 004 008 008 0.10 of such fits, performed on two different dynamical sets of
aM configurationgthe ones with the lightest sea quark magses
.2 Givenk,, the next step is to determine the scalel. We
FIG. 10. Linear(solid) and quadratiddotted chiral extrapola- consider one of the two quantities in the ratio used to deter-
tions of f o4 to the physical point £ =k, 4 indicated by the bursts ~ MiNe s, extrapolate or interpolate as needed to reach
The data are from set CPko=0.09, with NP-IOY renormaliza- = ks, and set the result to the “physical” value of that quan-
tion. The linear fit hag(?,/d.0.f=1.0; the quadratic, 0.3. The pa- lity. The results from either of the two quantities in the ratio
rameter\ = 1 in both cases. The burst on the dotted line has beeshould be consistent; they are. Figure 14 shows a quadratic
displaced slightly for clarity. extrapolation off ; to «s; a~!is fixed from the result via

0.13 T

I | | | | |
012
o i
« o011
[+ L

0.10—
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it L B AL B BLRLL L BRI ral extrapolations from rather high masses, so their generally
C ] good agreement with the standdrgdscale cannot be used to
el _' rule out the results in Table V. Indeed, it has been known for
: ] some time that heavy quark physi@harmonium or upsilo-
C ] nium) typically gives scales-10 to 20 % larger than light
44— -] quark physics(For a recent example, see Table | in Ref.
.,_,3" C ] [51].) It now appears that at least some of this discrepancy is
42 . due to the extrapolation in the light quark mass.
A ] On the other hand, the result fer ! is unreasonably
= [ ] large (=30% bigger than the central valu@ three cases in
40= ] Table VI. (In all other cases the scale is at most 17% greater
C ] than the central valugThe three cases also have long ex-
38— -] trapolations to findkg (i.e., a value ofxg very close to
- ] k.—compare Table I)l and very large statistical errors in
38:' R T T T both ks anda~*. These cases are marked with asterisks and

0.04 0.08 0.08 0.10 0.12 0.14 are omitted from any averages of decay constant effects.
aM_, _ Given ks, k4, anda !, t_he r_atioqu/qu can now be
e interpolated/extrapolated as in Fig. 114égand«, 4. Using

FIG. 12. Quadratic extrapolation fiq/fqq to Mg/ fss 0N set the physicaff . and the relevant choice fdét, this produces

R, with mg, from Eq.(41) andf s from Eq.(39). The abscissa of the fos OF fouq. Which are then interpolated in heavy quark
burst gives the value of the quark maa8), ,, at«s. This particu- ~ Mass in the same way as in our standard analysis, described

lar determination is called “method 1(see text and Table VI in the next section. The differences of the final decay con-
stants from the central values are displayed in Table VI for

Eq. (39). Although an extrapolation is again required in this each of the methods. These differences will be used in Sec.

particular case, it is only over a short distance in quark mass/ D to estimate the effects of chiral logs in the dynamical
Once the scale is determined, the standard extrapolatiotase. We also explain there why we think it would be inap-

of mgq produces the light quark hopping parametgyrq. It propriate at this stage toorrect the central values by the

is, of course, very close tg, in all cases. chiral log effects. Instead we use the changes shown in Table
Results for various scale determinations are shown il only to estimate the systematic error.

Table VI. In most cases, the values@f?! are significantly

larger than those from the standard lingéar quadrati¢ ex- F. Interpolations in heavy quark mass

trapolation off . (see Table V. This is not unexpected be- .

cause extrapolation from relatively large mass without the We proceed to compute physical d?cay constants such as

chiral log term in Eq/(38) should overestimatef ... Further, fg andes for each lattice set. Our starting point is the values

other lattice spacing determinations from light quark physic®f foqVMqq (for g=u,d or g=s) as functions of the heavy

(e.g.,m,, my) also typically involve linear or quadratic chi- quark mass produced by the chiral fits of the previous two

sections.
0.90 T [T T T T T T T T[T The static limit is also included where we have it. Accord-
[ ] ing to the heavy quark effective theorfHQET) [52],
[ ] foqVM@gq should depend on the heavy meson mass as a
0.85— ] polynomial in 1Mqq, up to logarithms. We therefore first
- 1 divide out the one-loop logarithmic dependence of the decay
S o [ ] constants in the heavy quark lim$3], producing what we
0.80 — — ) )
>E°' . ] call fo4VMgq:
\ . - —_—
Eg: 0.75 - - foqVMoq= fogMoa : (44)
[ ] 1+ ay(g®)In(aMqg)/ 7
°~7°:— — where we have ignored the difference between the heavy
- . quark and heavy meson masses, and wihgretakes the
[ I I I I ] values discussed in Secs. Il A and Il B.
Y Y T ——— ; ; ; )
0.04 0.06 0.08 0.10 o012 0.14 The data are now expressed in physical units, always us

ing f,. to set the scale for the central values. The quantity

foqVMqq is then plotted vs Mq,, whereMq, is the ki-
FIG. 13. Quadratic interpolation @fyq/mie to mgs/m,, on set netic meson mashl o> defined in Eq(8). We fit to a poly-

R, with m, from Eq. (43). The abscissa of the burst gives the value "omial in 1M qq, interpolate tomg, mg, mp or mp,, and

of the quark massaM,, at xs. This particular determination is then replace the logarithm in E¢44), evaluated at the ap-
called “method 8" (see text and Table VI propriate meson mass. These are always interpolations, not

aM, 2

vec
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TABLE VI. Values of k, anda™? (in GeV) for various methods of the analysis that do not reqoag)
chiral extrapolation. For each method, the upper entry is from set R; the lower, from set P. These should be
compared with our central values, which come from linear chiral extrapolatidgofand quadratic inter-
polation of mZ): ks=0.1587%5), a *=2.19(3) GeV(set R, and x,=0.16152(14),a *=1.71(4) GeV
(set B. We also show the changém MeV) from central values that each method produces in decay
constants, as well as the average and standard devation of the mean of those changes. These quantities are
used in Sec. V D to estimate the systematic effects of chiral logarithms. Lines for ehictiiffers by more
than 20% from the central valugndicated by “*”) are considered unreliable and are eliminated from the

averages.
Method Description Ks a! fg fe, fo fo,
1 Kg: Mgglfeg; @ fog 0.15909(7) 2.38(4) +11 +17 +2 +6
Mss: Eq. (41); fes: EQ. (39  0.16137(15) 1.68(4) -3 -7 +7 -12
2 Ks: Mgg/fos; @ fog 0.15926(7) 2.48(4) +13 +28 +0 +13
mes: Eq. (41); f: Eq.(40)  0.16166(14)  1.76(4) -2 +3 +6 —4

3 kgt Mgl fos; @ fog 0.15847(8) 222(3) +8 +5 +4 -3
mes: EQ. (43); foo: Eq.(33)  0.16024(22)  1.55(4) -7 —-21 +7 -21
4 kgt Mgglfssr @ fog 0.15937(7) 247(4) +13 +24 +1 +10
Mes: Eq. (42) ; fos: Eq.(39)  0.16185(14)  1.75(4) -2 -1 +6 -7
5 kst Mgglfssr @ feg 0.15953(7) 257(4) +15 +34 -1 +17
Mss: Eq. (42) ; fos: EQ.(40)  0.16211(13) 1.83(5) -0 +9 +5 +0

6 Ks: Mgg/M,; & m, 0.15922(6) 2.46(4) +13 +21 +1 +7
mss: EQ. (41) ; fs: EQ. (39 0.16232(7) 1.96(2) +3 +11  +4 -2
7 Ks: Mgg/my; a my 0.15922(6) 2.46(4) +13 +27 +1 +13
mss: EQ. (41) ; fes: Eq. (40 0.16232(7) 1.96(2) +3 +16 +4 +4

8 Ks: Mgs/My; & my 0.15871(6) 233(3) +10 +10 +3 -0
mes: EQ. (43 ; fes: Eq. (39  0.16170(7) 189(2) +1 +3 +5 -9
9 Ks: Mgg/My; & my 0.15946(6) 253(4) +14 +27 -1 +11
mes: EQ. (42) ; fss: Eq.(39)  0.16262(7) 2.003) +3 +15 +3  +2
10 Ksi Mgs/My; & my 0.15946(6) 2.53(4) +14 +32 -1 +17
Mmes: EQ. (43) ; fs: Eq.(40)  0.16262(7) 2.003) +3 +20 +3 +8
*11 Kt fss/My; a fos 0.16034(107) 2.83(47) +18 +48 -5 +27
* fss: EQ. (39 0.16479(71) 2.36(16) +9 +47 -2 +35
12 Ks: Tss/my,; a fgs 0.15881(80) 2.35(21) +11 +17 +3 +6
* fss: Eq. (40) 0.16420(67)  2.25(14) +7 +42 -0 +31
average +6 +14 +3 +3

standard deviation of mean 2 3 1 2

extrapolations, because we have either the static-light poirg* and chiral fit choices, fitiii ): a cubic fit to all the mesons

(all Wilson set$ or heavy-light masses above tBethe clo-
ver sets CP1 and J, using the Fermilab formalism

in the range 1.25 to 4 GeV plus the static-light meson. The

correlation matrix for fit(iii ) typically has almost twice the
For the quenched Wilson data, we do two versions of theaumber of eigenvectors as fifg and (ii), and we keep 2 of

polynomial fit: (i) a quadratic fit to heavy-light mesons in the them. This corresponds to.,=0.2 to 1.0.

approximate mass range 2 to 4 GeV plus the static-light We make basically the same fits for the Wilson data on the
meson(“heavier-heavies) and(ii) a quadratic fit to mesons dynamical lattices. The main difference is that we cut off fits
in the approximate mass range 1.25 to 2 GeV plus the statigi) and (iii) at approximately 3, rather than 4, GeV. These
light meson(“lighter-heavies”). These fits keep just one ei- lattices are almost all quite large, and, as explained in Sec.
genvector of the correlation matrix, which corresponds talll A, we have trouble pulling out the lightest state for very
Aei=0.9 to 1.1. To estimate the effect of leaving out higherheavy masses on large lattices with our approach to the hop-
powers in 1M q in the fits, we also perform, for the central ping expansion. To make up for some of the points lost by
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FIG. 14. Quadratic extrapolation on set Rfgf, to «, which in FIG. 16. Same as Fig. 15, but for set(WiIson valence quarks
turn was found by extrapolation ahg./f.s using Egs.(42) and  on dynamical lattices The solid line has(cu/d 0.f=0.2; the dotted
(39). This is method 4 in Table VI. line, 0.3. The tail-off of fQ VMgq in the range 0.2 GeW

<1Mq4<0.3 GeV'! is attributed to the difficulty in isolating

the reduced upper cutoff on fit), we also reduce the lower asymptotic states for large masses and volumes—see text.

cutoff slightly, to 1.8 GeV.

For the quenched clover sets, we make corresponding fits. In central values, we use fit) for fg andfg_and fit ii)
However, the mass ranges are somewhat different becaug§ f_ and f, . The alternative fits go into the systematic
we have only five heavy quark values, do not have a stat|c . N .
point, and, most importantly, use standard algorithms with Frror estimates, as in ReM]. However, for the central val-
FFT, facilitating the extraction of the lowest states even for ues of ratios involving bottB and D mesonsi.e., f /fD '
very heavy masses. In this case,(fit(heavier-heaviess a  fs_ /fp_ andfg/fp), both numerators and denominators are
quadratic fit over the approximate meson mass range 2.3 totaken from fit (ii). As explained in Sec. 1V, this tends to
GeV; while fit(ii) (lighter-heaviesis over the mass range 1.7 reduce the estimate of the magnetic mass error.
to 3 GeV. Figures 15, 16, and 17 give examples of the behavior of

féq\/MQq for the quenched Wilson, Wilson on dynamical

0.6 I T T T T I T T T T I

- — fit to(X) .
i 7 0.6 —
~ L fit tO@ 4 |
> 058P — I
/>'\ B 9 =
< : 5 osf-
~ 04— — = [
g I ] 5 [
= | 1 ~ o4l
R 4 o F
29 03~ > g :
: : Sos|-
0.2— -
0.5 . . ozl
1/Mg, (GeV) : L
FIG. 15. (VM gq Vs 1M qq for set CRquenched Wilson The I/MQq (GeV) -
scale is set by .. The solid line is fit(1) (“heavier-heavies) and
includes points marked with a cross. The dotted line is(3jt FIG. 17. Same as Fig. 15, but for setquenched clover with

(“lighter-heavies” and includes points marked with a plus. The fits NP-tad renormalization. The solid line hag,/d.o.f=0.55; the
havexgut/d.o.f.=0.4 and 0.9, respectively, with,,=1 (1 eigen- dotted line has no degrees of freedom. The solid line is slightly
vector kept. concave down, unlike the case in Figs. 15 and 16.
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TABLE VII. Central values of decay constants, in MeV, for each the statistical error of any quantity will be taken from the
data set. Statistical errors include the effect of changing the timgesult of this procedure. Typically the procedure increases the
ranges over which correlators are fit, as described in the text. Fagatistical errors by~ \/z we believe it mitigates any biases

sets Aand B, the values reported are those for which the light-lighn. o 4,ced from our choice, for the central values, of the fits
results k., s, anda~1) and their errors are taken from the aver- . . ' '
with lowest statistical errors ang,/d.o.f.

ages over set 5.7-large.
In Table VII, we collect the central values &f , fBS, fo,
fo fo, andeS for the various sets. Similarly, Table VIII gives cen-
tral values of ratios‘Bs/fB, fDS/fD, fB/fDS, st/st, and

Name fg fg

S

quenched Wilson

A 193.68.6) 234.95.8) 216.67.9 256.96.5 fg/fp.

B 196.811.1) 236.18.2 220.110.9 261.87.4

E 190.97.7) 219.47.89 214.718.6) 246.18.1)

C 172.38.0 206.26.8) 198.87.7) 232.86.9 IV. QUENCHED APPROXIMATION RESULTS

(D:P 11771'(07'8) 210864 206.169 238.15.7) Final results and errors in the quenched approximation are

975 199.86.5 206.87.9 232.56.3 . .
H 180.612.) 206.710.8 206.610.9 232.99.0 d_ete.rrmned .much as in RerI.AT]. However, thgre are some
significant differences, especially for the continuum extrapo-

N¢=2 Wilson lation and the estimate of the associated errors. We discuss

L 188.69.7) 220.310.3 214.17.4 249.56.7) our methods in detail where they differ frop]; where the

N 205.113.6 239.010.4 222.910.6 261.57.6) methods are the same, we include only a very brief descrip-

] 206.812.6) 239.910.89 230.86.3 262.45.0) tion for completeness.

M 190.612.5 226.910.2 215.911.5 250.28.4) We begin with the continuum extrapolation of various

P 193.16.9 225.66.4 212967 249.85.9  quantities. We focus ofg, fg, fg /fg, andfp , which are

u 196.99.4 235079 224.87.2 26127.6)  probably the most important, phenomenologically. Figures

T 193.315.8 219.3125 209.18.3 236.36.7)  18-21 show the data for these quantities as a function of

S 202.66.8) 234.856) 223952 256.84.7)  |attice spacing. The behavior of the other decay constants

G 198.56.20 234.06.7) 220.05.0 254.15.2 and ratios is similar.

R 206.27.9 239.28.) 223454 254.85.1) It is not a priori obvious how to extrapolate decay con-
quenched clover stants and ratios to the continuum. As discussed in Sec. Il A,

CP1_NP-IOY 184.05.7) 212.84.4) _ _ our Wilson valence results have errors as well as errors of

CP1_NP-tad 176(5.2 203.43.9 196.33.7 220.02.8 the formaAqcpXh(aMg). Hereh(aMg) is a calculable

J_NP-IOY 176.66.3 204.45.9) — _ (in perturbation theoryfunction that is expected to k8(1)

J_NP-tad 174@®.00 201.95.7) 203.54.8) 228.34.1) everywhereq.SinceaMQzl for our entire range ad values,

the assumption of a dominantly linear dependenceads
only one possibility. A practical alternative is the assumption
at, for a smaller than some value, the errors are small

lattices, and quenched clover cases, respectively. Essentiaﬁ ) - i i
d P y Fgﬂough that the difference with continuum values is

all fits on all sets are acceptable. In Fig. 16, one can see t ligibl h I ith function i
tail-off of féq\/M_Qq for large heavy quark masses negligible—so that extrapolation with a constant function is

; arranted.
(0.2 Ge\f1<1/MQq<0.3 GeV'l). As mentioned above, W . . -
we attribute this to contamination by higher momentum We confront these assumptions with the data in Figs. 18—

states, which, for large masses and volumes, are very close ?ril For the W|Isqn valence data, "{e show linear fits over all
energy to the zero momentum state. These points are ther@r—a_nd constant fits f0a_<0.5 GeV’ ('826'(.))' BOth types
fore not included in the fits. Note that the term of ordero.'c fits are ge'nerally quite good. The exception Is the. constant
1M éq is not reliably determined in our data; it changes signflt for the ratiofg_/Tg i In [4], the relatively poor F:onfldence
between the Wilson and the clover cases. This is not surpridéVvel of the constant fit fofg_/fg (or fp_/fp) relative to that
ing since in neither case is the formalism correct throughof the linear fit led us to choose a linear extrapolation for the
order lMéq foraMg~1. central value of the ratios. That, in turn, required choosing
Using fits like those in Figs. 15—17, we now interpolatethe linear extrapolation for the central values of the decay
the data, replace the perturbative logarithm in &g, and  constants themselves, since it would be inconsistent to as-
divide by the appropriatQ’M_Qq to find f5, fBS, fo, andeS sume linear behavior fdrBs/fB but constant behavior fdig

for each data set. The resulting decay constants and ratig$dfg_separately. Note, however, that if we just look at the
will be extrapolated to the continuum in Secs. IV and V.two finest latticed a<0.36(GeV) *,3=6.3], the behavior
Before doing so, however, we repeat the analysis so far for

all the other~25 versions of reasonable plateau choices, as——

discussed in Sec. Il C. We then find the standard deviation °Despite the fact that static quarks are triviati}(a) improved,

of the results over the other versions and add it in quadraturgie functionh(aM) does not vanish even as,—c for fixed a,
with the raw jackknife error of the central value. Henceforth,because the Wilson light quarks still haga) errors.
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TABLE VIII. Same as Table VII, but for ratios of decays constants.

Name fs /fe fo /fo fe/fp, fs /fo, fg/fp
guenched Wilson
A 1.21339) 1.18621) 0.76824) 0.92620) 0.91127)
B 1.20Q30) 1.187129) 0.79331 0.92828) 0.94150)
E 1.14734) 1.14616) 0.73940) 0.91633) 0.84646)
C 1.19722) 1.17117) 0.74028) 0.88825) 0.867132)
CP 1.19121) 1.15212) 0.75236) 0.89926) 0.867141)
D 1.14216) 1.12416) 0.75523) 0.86620) 0.84926)
H 1.14522) 1.12818) 0.77628) 0.88819) 0.87525)
N;=2 Wilson
L 1.16816) 1.16216) 0.777130) 0.91822) 0.90338)
N 1.16233) 1.17325) 0.78837) 0.92729) 0.92441)
] 1.16@25) 1.137118) 0.78932) 0.91623) 0.89730)
M 1.191(30) 1.15926) 0.79325) 0.92822) 0.92Q125)
P 1.16812) 1.17212) 0.78416) 0.91412) 0.91918)
u 1.19628) 1.16212) 0.76341) 0.90437) 0.88642)
T 1.13434) 1.131(16) 0.84041 0.95832) 0.95041)
S 1.15817) 1.14611) 0.79019) 0.92715) 0.90519)
G 1.17914) 1.158 §) 0.78820) 0.937126) 0.91222)
R 1.16@15) 1.14Q 8) 0.81428) 0.94720) 0.927132)
guenched clover

CP1_NP-IOY 1.15616) 1.12Q3) — — —
CP1_NP-tad 1.1536) 1.1219) 0.80Q19) 0.92312) 0.89618)
J_NP-IOY 1.15714) 1.1178) — — —
J_NP-tad 1.16@4) 1.1218) 0.77321) 0.89218) 0.86624)

of fg_/fg is quite consistent with a constant; such a fit is also

FIG. 18. fz vs a for quenched lattices; the scale is setfyy.
Diamonds are results with Wilson light quarks and Wilson or static
heavy quarks. Octagons and crosses are results with nonpertur
tive clover heavy and light quarks; “NP-10Y(octagongand “NP-

00 02 04 06 08
a (Gev)™!

LA LN BB BUNLELELE LN shown in Fig. 20.
[ & quenched Wilgon i The new quenched clover data, shown in Figs. 18—-21 for
250 — o quenched NP-I0Y = both the NP-IOY and NP-tad schemes, have clarified the
- queﬁ:f";ﬁ ’t‘fjf?gho'?s 1 situation somewhat. The discretization errors here should be
E— const. fit to ¢ a<0.5; CL=0.95 | considerably smaller than for Wilson valence quarks. As dis-
= Coonet: b o gt:g:gg cussed in 2Se(:. Il B the errors are fg)rmam(azAéCD) and
() either O(ay) (NP-1QY), or O(a Mg) (NP-tad. Because
=, 200 1 there will also be a function liké(aMg) in this case, the
N T actual behavior witta whenaMq~1 is likely to be compli-
T cated. The best we can do with just two clover data points is
T to assume that the errors are small enough that a constant
T extrapolation is warranted; such fits are shown in Figs. 18—
150 ] 21. Comparable extrapolation of clover data with a constant
B | | | | | T was performed in Ref§17,54].

For st/fB the clover data show very littla dependence

and give a result compatible with the various constant fits to
the smalla Wilson data. The clover results are not compat-
ible with the linear extrapolation of the Wilson data, which

are now seen to give a rather low result. Recent preliminary

b%uenched resulfst5] with clover valence quarks on Syman-

zik improved glue are also incompatible with the Wilson
linear extrapolation. For our central quenched value of

tad” (crossegdiffer in how the renormalization of the heavy quarks . i
is performed(see text For clarity, the octagons have been moved st/fB or st/fD we therefore drop the linear Wilson ex-
slightly to the right, and the fit to the crosses has been slighthftrapolation and average the four constant extrapolations: two
lowered. for Wilson (a<0.5 GeV'! and a<0.36 GeV 1) and two
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300 LI} I LI I B ) | LI I I | | LI I B ) LI I I | _I T I rrTa I rrTa I rrTa I T I -
R 4 ¢ quenched Wilgon
¢ quenched Wilson [ x quenched NP-tad 7
- O quenched NP-IOY 7 1.3 — 0 quenched NP-IOY —
- X quenched NP-tad - | lin. fit to ¢; CL=0.57 i
| lin. fit to ¢; CL=0.79 i . fit to ¢ a<0.5; CL=0.09
~congt. fit to ¢ a<0.5; CL=0.69 - . fit to ¢ a<0.36; CL=0.9; -
~ 250 — -congt. fit to o; CL=0.26 — N . fit to 0; CL=0.95 i
% | - const. fit to x; OL=0.82 i 2 . fit to x ; OL=0.81
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FIG. 19. Same as Fig. 18, but fog . For clarity, the octagons FIG. 20. fg _/fg vsafor quenched lattices. Labels are the same
have been moved slightly to the rights. as in Fig. 18, but one additional fit is shown: a constant fit to the

two diamonds (Wilson quark results with smallest a (a
) <0.36 GeV'?). For clarity, the octagons have been moved slightly
for clover (NP-IOY and NP-tagl"® The systematic error of o the right and the fit to the octagons has been slightly lowered.
the continuum extrapolation is then taken as the standard
deviation of the four individual extrapolations. The other de-light-light decay constants from linear to quadratichiral
cay constant ratiosfg/fp, fg_/fp, andfg/fp) are treated  choice 11”).! The errors of the chiral extrapolation and other
similarly, although there is one fewer result to average, sincéystematic errors within the quenched approximation are col-
NP-IQY is not applicable. lected in Tables IX and X. Note that the quoted chiral errors
Though we have dropped the linear extrapolation from theare all positive. This can be traced to the effect of the qua-
analysis of the ratios, it is not inconsistent to include it in thedratic extrapolation of 4, (used to set the scale through),
analysis of the decay constants themselves. Indeedfgfor which is clearly, though slightly, concave dowsee Figs. 6
and st, the downward trend of the clover data asde- and 7. The concavity infq in the region of theB is less

creases makes it difficult to rule out the linear extrapolationPronounced. _ _ .
of the Wilson data. On the other hand, constant clover ex- 1he perturbative error is estimated by varying, over a

trapolations do give results closer to the constant Wilson ex-féasonable range,” the values of used in the one-loop
trapolations than to the linear Wilson extrapolations. for renormalization constants. For Wilson fermions, we take the
S

- i * =
(and fp, not shown, the situation is reversed: The clover range for the heavy-light currents to bea%/q” <2.86A,

i with 1.43& the central value, as described in Sec. Il A. Simi-
data have an upward trend aslecreases; yet constant clover

. ) . . . larly, for the light-light Wilson currentg]* ranges between
extrapolations give resul{slightly) closer to the linear Wil 1/a and 4.634, with 2.32A the central value. In the clover

son extrapolations than to the constant Wilson extrapola-ase erturbation theorv for the heavv-liaht currents is onl
tions. To obtain the central values of the decay constants, w P y y-ilg y

: levant for NP-IOY. For central values, we takg
therefore average the results of all the extrapolations an§3.34b (set CP1 andq®* = 2.854 (set J, which come from

take the standard deviation of the results as the continuu%e static-light calculation of11] with the corresponding

extrapolation error. Fofg and fg a total of four fits are - L
, ) | s clover coefficients. The scalg* is then allowed to range
included: linear Wilson, constant Wilson, constant NP-IOY ponveen 14 and twice the central value. For light-light clo-
and constant NP-tad. Fdip and fp_ there are three fits, o cyrrents, onlyb, is treated perturbatively: the central
since NP-IOY is omitted. value forg* is taken to be H (see Sec. Il B This gives the
As described in Sec. Ill D, we estimate the chiral extrapo-central values fob, shown in Table II. The upper end of the
lation errors by comparingafter continuum extrapolation  range ofb, shown comes from taking* =0.7/a; the lower
the central Va|ue$WhiCh use “chiral choice IY) with those end, from using “boosted perturbation theory” W|tgz
obtained by changing the chiral fits of the heavy-light and

0 o _ in the dynamical case, we attempt to estimate an additional chi-
Although the calculation in Ref28] is not well controlled atthe  ral error coming from chiral logarithms by performing a separate
D mass, the NP-IOY procedure may be usedffor/fp because the  chiral extrapolation of ,4/fo,. (See Secs. IIl E and V DThis is
renormalizations cancel. Note that NP-tad involves the light quarknot feasible in the quenched case: the quenched chiral lofigqin
mass in the renormalizatiorisee Eqs(16) and (19)] so does not have coefficients with unknown magnitude and i§8]; while faq
give identical results to NP-IOY even fng/fB or fDS/fD. has no quenched logs at all at one |d6p).

094501-22



LATTICE CALCULATION OF HEAVY-LIGHT DECAY . .. PHYSICAL REVIEW D 66, 094501 (2002

UL LA LR B B Wilson magnetic mass error. From the tadpole improved

[ o quenched Wilson i tree-level model, one estimates these errors-286 for fg
x que{lchidt IzP-tagL 0.60 T and ~3% for fp (see[4]). An alternative estimate comes
300 |— in. fit to ¢; CL=0. — . . .
,,,,,,,,,,,,, const. fit to ¢ 8<0.5; CL=0.89 from the comparison of the results of interpolations to the

----- congt. fit to x; CL=0.10

physical heavy meson masses using the “heavier-heavies”
[fit (i)—see Sec. lll Fwith those using the “lighter-heavies”
T [fit (ii)]: the lighter masses are affected much less by the
. magnetic mass error, and the static point is not affected at all.
— We take the larger of the two estimates as our magnetic mass
4 error for Wilson fermions.
4 The magnetic mass error is absent for clover fermions.
J Therefore, in our final error budge(3ables IX and X we
i multiply the Wilson magnetic mass error by 1/2 or 2/3, de-
200 — ] pending on the relative number of Wilson and clover esti-
A I P T P mates that go into the central value.
0.0 0.2 0.4 0.6 0.8 Note that the magnetic mass errors in the tables are con-
a (GeV)_l siderably smaller fplB mesons than fob mesons, despite
the fact that the difference betwedéh, and M; increases

FIG. 21. f_vsa for quenched lattices. Labels are the same agwith the lattice mass. The point is that the magnetic mass

in Fig. 18, but the NP-IOY points have been omitted because th&TOrS are systematic effects on théVily corrections, and
perturbative calculation is not available at the relevant latticeSUCh corrections are inherently bigger omesons than for
masses. B’s. Further, especially large errors can be introduced if

1/Mq fits in the range of th@ are extrapolated back to tie
=6/(8(P)) ((P) is the mean plaquette, normalized to have®gion: For that reason we alwgys use @i (“lighter-
maximum 1. This is equivalent to taking g* of roughly heavies’) for central values of ratios that involve bob's
5.25h, SO we are using a rather conservative range. andB’s: fg/fp, fp /fp, andfg/fp.

As mentioned in Sec. Il A, there is a systematic error The remaining two systematic errors, the effect of the
associated with the fact that,,,=M,/Mj is not equal to 1  interpolation in 1Mo, and the finite size errors, are esti-
with Wilson fermions. Becausey,,q has a complicated de- mated just as in Ref4]. For the central values, we truncate
pendence oa, this error is not removed by any of the simple the fit of f 5VM g4 VS 1M 4 at quadratic order. We estimate
extrapolations available to us. One may argue that the rethe error thereby introduced by changing to cubic (itéth
sidual effect is just one particular discretization error andmass range 1.25 to 4 GeV, plus the static point when avail-
therefore has already been included. However, if one modelable. The errors found are-1%; this is what one would
this error for both linear and constant extrapolations usingxpect if the mass scale of the cubic term~i€.75 GeV,
Eq. (4) for M, andM 5 (along the lines of what was done in roughly the scale size found in the linear and quadratic
Refs.[17] and[4]), one finds that the error is larger with a terms.
constant extrapolation but has the safiet unknown sign We estimate the finite volume effects by finding the frac-
in both cases. Therefore we believe it reasonable to includgonal difference between results on set (8patial size
as an additional error the linear extrapolation estimate of the-1.2 fm) and set B 2.5 fm). Since set A is smaller than

TABLE IX. Central values { . scalg and errors in MeV for the quenched decay constants. The statistical
errors and the effects of excited states are combined, as described at the end of Sec. Il F. Errors marked with
explicit + or — signs are treated as signed; all others are treated as symmetric. The scaleearuts are
not included in the total errawithin the quenched approximation but are shown for completeness.

fg fa, fo fo,
Central value 173.0 198.8 199.5 223.2
errors
Statistics and excited states 5.7 4.7 5.6 4.6
Continuum extrapolation 8.7 14.8 49 11.1
Chiral extrapolation +8.6 +9.4 +4.3 +6.5
Perturbative 9.6 14.1 6.6 10.9
Magnetic mass 1.7 1.9 5.1 5.7
1/M fit 2.0 1.7 0.5 0.2
Finite volume +2.8-8.5 +1.0-7.8 +3.8-5.1 +4.3-4.1
Scale(change tam,) -35 -59 +4.2 +4.0
ks (change tog) — +3.7 — +2.3

094501-23



C. BERNARDet al. PHYSICAL REVIEW D 66, 094501 (2002

TABLE X. Same as Table IX but for decay constant ratios.

fe /s fo /fo fg/fp, fg /fo, fg/fp

Central value 1.155 1.128 0.769 0.891 0.871
errors

Statistics and excited states 0.011 0.008 0.015 0.012 0.016
Continuum extrapolation 0.009 0.012 0.017 0.019 0.013
Chiral extrapolation +0.003 +0.014 +0.009 +0.009 +0.020
Perturbative 0.008 0.011 0.015 0.020 0.017
Magnetic mass 0.000 0.000 0.015 0.018 0.017
1/M fit 0.001 0.000 0.006 0.008 0.009
Finite volume +0.012-0.013 +0.008 - 0.000 +0.025-0.000 +0.003 -0.009 +0.028 - 0.000
Scale(change tam,) +0.001 —0.001 +0.009 +0.008 +0.007
ks (change tog) +0.025 +0.018 —0.009 +0.004 —

the other quenched lattices-(L.3—1.5 fm) and B is much The errors are statistical and systematiithin the quenched
larger, this should bound the finite volume error. To be con-approximation, respectively. Relevant systematic errors in
servative, we consider botte) the difference when all quan- Tables IX and X have been combined in quadrature. Errors
tities are computed individually on sets A and B &bl the whose signs are not likely to be r.eI|any determmed by our
difference when the light-light quantities are held fixed toProcedures(continuum extrapolation, perturbation theory,
their values from set 5.7-large. Sinde generally suffers Magnetic mass, M fits) have been treated as symmetric
larger finite size effects thafy,, these two estimates typi- errors. The other$ch|rall extrapolation and finite \{olurine
cally have opposite signs; in that case we include both estl@ve been treated as signed errors. The results in45.
mates as signed errors. When the estimates have the sagiffer from those in Ref[4] due to(i) inclusion of new data
sign, however, we simply choose the larger. from sets CP, CP1 and (ij) setting the central value of the
Tables IX and X also show errors associated with fixingh€avy-light scale from the static-light calculation of Ref.
the scale(changing fromf . to m,) and fixing s (changing [11], rather than that of Ref22]; and i) other changes in
from using the pseudoscalars to using theneson. Logi- analys_ls, motivated by the new runs. The most |mpor§ant of
cally, these should be considered errofshe quenched ap- these is the way we find the central value of the continuum
proximation, notwithin the quenched approximation, and are €xtrapolation(as discussed above, we now average our four
not included in this section. Indeed, the question “whaltgs possmle versions rathe_r than taking only the linear W|I§on
in the quenched approximation?” is only well defined whenfit). In addition, the details of the error estimate for the chiral
one specifies how the scale is fixed. Even in the continuur§Xtrapolation have changed. Some alternative chiral fits used
. . . . 2
limit, different scale choicegand different ways of fixinge, ~ Previously—e.g., linear fits ofn; vs quark mass—are con-
for strange-quark quantitisust give different results in the Vincingly excluded by the new data.
guenched approximation. The differences should of course V. RESULTS WITH DYNAMICAL OUARKS
go away in the continuum limit of the full theory. In Sec. V, ' Q
where we attempt to quote results that can be directly com- A. Continuum extrapolation
pared with experiment, such errors are taken into account.

Our final results for heavy-light decay constamtihin DynamicalN;=2 results forfg, fg, fg /fg, andfp_as

the quenched approximatidfixing the scale by ) are a function of lattice spacing are shown in Figs. 22, 23, 24,
and 25, respectively. Leaving aside the “fat clover” results
fs=1736)(16) MeV; fg =1995)( tgg) MeV for now, the data_l in aII_ cases seem to favor constant fits;
s indeed, the best linear fits have very small slopes. Note how-
‘18 ever that the smallest lattice spacing here is

fo=2006)(11) MeV; fp =2235)(-17) MeV ~0.45 (GeV) '~0.09 fm; whereas in the quenched case

we have data down te-0.23(GeV) 1~0.045 fm. It is thus
fBS fDS possible that the apparent independence of lattice spacing is
o= 1.161)(2), T 1.131)(2) due to the cancellation of two effect$) an overall decrease
B D as lattice spacing decreases, which was one of the alterna-
tives considered in the quenched case, @ndhe turning on

fg —0.772)( +4)- fBS—O 891)( 4 of short distance dynamical fermion effects as one moves
K‘ TA2)(Z3); E_ 891 (3 away from the quite coarse spacings of sets L and N. The
s s latter effect could be exacerbated by staggered flavor viola-
f tions, which would be especially large on the coarsest lattices
B_ +5 and which would reduce the effective number of dynamical
0.8712)( Z3). (45
fo flavors.

094501-24



LATTICE CALCULATION OF HEAVY-LIGHT DECAY . .. PHYSICAL REVIEW D 66, 094501 (2002

7T I LI I I | I LI I N | I LI I I | I LI I N | I -I T I LI I I | I LI I N | I LI I I | I LI L I | I i

250 O N,=2 Wilgon - O N=2 Wilgon E
[— % N=2 fat clover ] | - _
L % Ny=2 fat clover (corrected) 4 1.3 * Ny=2 fat clover

const. fit to O; CL=0.90 i - const. fit to O; CL=0.91 .

----- extrap of O with quench slope - -----adjustment of — 4

-
-
-
-
-
-

f, (MeV)
FaN)
S
|
|

150 — %‘ —

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
a (Gev)™! a (GeV)™!
FIG. 22. fg vsa for dynamicalN;=2 lattices; a few points have FIG. 24. fBS/fB vs a for dynamicalN¢=2 lattices. Labels are

been moved a slight distance horizontally for clarity. Squares arehe same as in Fig. 22, but no correction to the fat-link clover result
results with light Wilson valence quarks and Wilson or static heavyis needed for the ratio of decay constants. The alternative dashed
valence quarks. From left to right, the squares come f@#a56.6 line assumes a drop when-0 that is the same as the difference in
(sets G, R, S, T, Y B=5.5(sets P, M, O, )l andB3=5.445(set).  the quenched case between a constant fit to the results from the
The solid line is a fit of all the Wilson results to a constant. The highest threg8 values and a constant fit to those from the highest
dashed line shows what would happen if the dynamical results dewo g values.

creased for smaller lattice spacing with the same slope as the linear

fit to the corresponding quenched data. The fancy plus is the res
with fat-link clover valence quark@ight and heavyon set RF. The
fancy cross shows the “corrected” valysee text The fat clover
data(corrected or uncorrecte¢are not included in our final results.

Yhe continuum limit with the quenched slogsee Figs. 22,
23, and 25. For ratios of decay constants, we ruled out the
linear extrapolation in the quenched case. Yet the two finest
quenched latticeD and H have in general lower values for
o ) the ratios than the averages that include the quenchedGets

If the above possibility is realized, then thg=2 results 59 CP that are comparable to the finéét= 2 lattices. The
could well begin to_decrease_for still s_maller lattice spacingsywo alternatives for ratios are therefore taken to(Bethe
as the quenched-like behavior sets in. For the decay consgnstant extrapolation of al;=2 data, and(i) the first
stants, we therefore consider two alternative extrapolatlonséxtrapmation reduced by the quenched differerfeserage
the constant extrapolation of aM{=2 data, and a linear ¢ C, CP, D, and Bl — (average of D and H Figure 24
extrapolation that begins at the average value of the resulighoys these alternatives. In all cases we then take the central
on the two finest latticetsets R and Gand then continues to  y4jye to be the average of the two alternatives, and the error

300 LI} I LI B ) | LI L | LI B | I LI L | T 7T I LI I I | I LI I N | I LI I I | I LI N | I
x Ny=2 Wilgon X Ny=2 Wilson
- # N,=2 fat clover 7 300 — & N,=2 fat clover ]
L % N,=2 fat clover (corrected) 4 L % Ny=2 fat clover (corrected) 4
| const. fit to O; OL=0.76 i i const. fit to 0O; CL=0.15
----- extrap of O with quench slope -----extrap of O with quench slope
~ 250 — — —~ - b
> b
é i M ] § i K T
=, - K /,,’ % T = 250 — ”‘,a” ]
m‘ B ’,,/’ - a‘ B } ””’n’ -
Yy o e - S o se- -
200 [ } — - .
- '% . 200 — 'I' —
11 I L1 1 1 I L1 1 1 I L1 1 1 I L1 1 1 I 11 I L1 1 1 I L1 1 1 I L1 1 1 I L1 1 1 I

0.0 0.2 0.4 0.8 0.8 0.0 0.2 0.4 0.6 0.8
a (dev)! a (QeV)™!
FIG. 23. Same as Fig. 22, but ftbgs. FIG. 25. Same as Fig. 22, but f<[)55.
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TABLE XI. Central values {,. scale and errors in MeV for the dynamicaN;=2) decay constants. As
in Tables IX and X, the statistical errors and the effects of excited states are combined. The errors above the
line (i.e., up to and including finite volume errgrare treated as errors within tiNg =2 partially quenched
approximation. Errors below the line are treated as errors of that approximation. In general, errors marked
with explicit + or — signs are treated as signed, and other errors are treated as symmetric. The exception is
partial quenching, where we do not take the sign seriously but show it nevertheless in parentheses.

fg fg, fo fo,
Central value 190.5 217.3 214.9 241.0
errors
Statistics and excited states 7.1 6.4 6.1 5.2
Continuum extrapolation 11.3 21.0 8.5 18.7
Valence chiral extrapolation +16.6 +14.7 +7.5 +8.3
Perturbative 12.0 185 8.2 15.1
Magnetic mass 3.8 4.4 8.4 9.7
1/M fit 2.6 2.7 1.0 0.9
Finite volume +7.7—-0.0 +5.2—-0.0 +3.4—0.0 —-0.1-0.0
Partial quenching €)2.4 (—)3.0 (+)3.4 (-)3.8
Scale(change tam,) +10.6 +8.7 +5.4 +3.9
ks (change tog) — +3.9 — +2.3
Missing dynamicak quark +8.7 +9.2 +7.7 +8.9

of the continuum extrapolation to be the “sample standardsmearing step. The fat-link resuliset R displayed in Figs.

deviation” of the two (dividing by n—1=1, not n=2).
Central values and errors for tié=2 data are shown in
Tables Xl and XII.

B. Fat links

22-25 haveN=10, c=0.45. The clover coefficientg is
taken to have its tree-level valyé.0); this is also approxi-
mately the tadpole-improved value, since the fattening
strongly suppresses tadpole contributions. Physically, APE
smearing corresponds roughly to a Gaussian smearing of the

. i : . o
In the above discussion of the continuum extrapolationférmion-gauge field interaction over a range®)=cN/3
we ignored the fat-link clover results. If taken at face value 58

these results would imply the existence of extremely large Various kinds of fat links have come to play a major role
discretization errors. We therefore need to examine the fath lattice simulations in the last few years. The motivation
link computations in detail. These computations use valenc#r introducing them in the context of Wilson-like fermions
quarks—both heavy and light—with the standard clover ac{59] was that they improve the chiral properties of the fer-

tion, but with gauge links that have first been “fattened” by
N iterations of APE smearin§57]. The coefficient of the
sum of the staples is/6 and that of the forward link is 1
—cC; a projection back intdSU(3) is included after each

mions. This happens in sevefatlated ways: First, fat links
reduce additive mass renormalization. They also suppress ex-
ceptional configurations, which present a severe challenge to
clover computations on our dynamical lattidd®,60. (This

TABLE XIll. Same as Table XI but for decay constant ratios.

fg /fg fo /fp fg/fp, fg /fo, fg/fp

Central value 1.158 1.142 0.793 0.922 0.913
errors

Statistics and excited states 0.011 0.009 0.016 0.013 0.016
Continuum extrapolation 0.015 0.014 0.005 0.004 0.001
Valence chiral extrapolation —0.016 +0.005 +0.032 +0.019 +0.037
Perturbative 0.012 0.011 0.034 0.043 0.042
Magnetic mass 0.003 0.002 0.024 0.028 0.027
1/M fit 0.001 0.000 0.014 0.020 0.015
Finite volume —0.019-0.000 —0.018 +0.026—0.000 +0.010—0.000 +0.016—0.000
Partial quenching £)0.023  (-)0.026  (+)0.027 (=)0.021 (+)0.008
Scale(change tam,) —0.010 —0.005 +0.015 +0.017 +0.015
ks (change tog) +0.014 +0.017 —0.008 +0.004 —
Missing dynamicak quark +0.001 +0.007 +0.012 +0.015 +0.021

094501-26



LATTICE CALCULATION OF HEAVY-LIGHT DECAY . .. PHYSICAL REVIEW D 66, 094501 (2002

1.5 L} T L) T I T L) L) T I T T T L) I L) T L) T T T I T T T T I T T T T I T T T T I T T T T I
250 [— . —
- O thin link E | O thin clover, NP-IOY )
| x fat link, N=10, ¢=0.45 3 | X thin clover, NP-tad l
| ° fat clover, N=2, ¢=0.45 i
i ob T % fat clover, N=10, ¢=0.45
i ) 4 = i )l
5% © 200 — —
1.0 o — = L . J
/G\ U' ~ N4
« i F] ® N qf . ZI-'I':\ h
> L& J
I 5 ] 3
p%e - g
X0
[ % Xg0 T 150 |- —
o o - L ﬁ 4
0.5 [ — -| 1 I I T | I I T | I P I | I I T | I i
| © i 0.0 0.2 0.4 0.6 0.8
-1
'l L 'l L I 'l L 'l L I L 'l 'l L I 'l L 'l 'l a (Gev)
0 2 R4/a 6 8 FIG. 27. Effect of smearing on quenchég. The thin clover

points are a{3=6.0 and 6.15sets CP1 and)Jthe fat, at3=6.0

FIG. 26. Static potential at quench@d-5.85 with and without ~ (S€t CPF. The extrapolation of the thin clover results to the con-
c=0.45, N=10 APE-smeared fattening. tinuum is also shown.

To study more directly the effect of fattening on heavy-
occurs because they shrink the range of the real eigenmodgght decay constants, we have computed the decay constants
of the Dirac operator.Finally, in perturbation theory, fat with clover fermions on a 99 lattice subset of quenched set
links bring the vector and axial vector renormalization con-CP1, which we call CPF. We have tried four different levels
stantsZ, and Z, (as well as the scalar and pseudoscalarf fattening:c=0.45 withN=2, 6, and 10, and=0.25 with
renormalization constantsloser together. N=7. In these cases;gy is set equal to the tadpole-

Simulations of light quark systems with a variety of fat improved tree level value ag, with uy determined by the
link actions at lattice spacings in the range 0.1-0.2 fm showplaquette computed with the smeared links. The renormaliza-
little dependence of physical observables on the amount dfon constants are determined in the same way as for the
fattening, even for the very aggressive amount of fattening oflynamical caséset RF. A comparison of two of the smear-
the simulations we report here. For many quantities, thisng levels with the thin-link clover computations is shown in
amount of fattening also gives quite small discretization erFig. 27. The fat-linkfg values are considerably suppressed
rors[61]. compared to those from the thin links, which in turn are

We take the light-light renormalization coefficients for consistent with the results of continuum-extrapolated
fat-link clover fermions from the perturbative calculations of quenched Wilson fermionsee Sec. IY.

Ref. [11]. The heavy-lightsfor which perturbative calcula-  Figure 27 shows that the suppression produced by the
tions do not exigtare normalized using thstatic-light re- Iowes? and highest !evels of fattenlng are consistent. In fact,
sults of [11]. Although one expects that this should be there is not much difference in the_values of the heavy-llght
roughly correct for the large values aM at theB meson, it decay constants among the four different levels of fattening

introduces a possibly serious source of systematic error intd€ studied, even though the amount 9f smoothmg introduced
the fat-link results. Into the short-distance potential is quite different for the four

As first reported in Ref12], the fat-link clover results for cases. Furthermore, the light-light decay constants with fat

clover and thin clover links differ by only-7%: Compare
decay constants are seen to be much smaller than the aPPa f ,-determined lattice spacings of sets CP1 and CPF in

ent continuum-limit results of the Wilson quarks. Simula- Fig. 27, or see Table V. Note that in the light-light case we
tions of QQ systems with fat-link quarks also show that are using the correct renormalization factors from Ref].
fattening suppresses the magnitude of vector-pseudoscal@his suggests that the 25% suppression of heavy-light de-
mass splitting. A measurement of the heavy quark potentiatay constants for our fat links may be due more to the use of
gives some qualitative understanding of both effects: the atthe incorrect renormalization(static-light instead of heavy-
tractive short distance piece of the potential is washed awalight) than to scaling violations from the smoothing of the
by the fattening. This is shown in Fig. 26, where we computeshort-distance potential. Be that as it may, these quenched
the static potential using=0.45, N=10 APE-smeared fat studies show that the fat clovéd;=2 results may be ig-
links at quenche@=>5.85. The loss of this part of the po- nored, at least until fat-link heavy-light renormalization con-
tential leads to a suppression of the heavy quark wave funtants are available.

tion at the origin. Although this is an effect that would vanish ~ An alternative approach would be to try to correct the
in the continuum limit(for fixed N, c), it could introduce fat-link clover dynamical results by the factdgthin link
large scaling violations for short-distance-sensitive quantiquenchedl(fat link quencheylat a comparable lattice spac-
ties. ing. We can do this since the lattice spacings for sets CPF
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(quenchedand RF (N;=2) are quite close(See Table \). [ — - 1T - =
The corrected fat-link results shown in Figs. 22, 23, and 25 [ o Np=2 (Mg vatence=Mg dynam)
are consistent with the WilsoN;=2 _results. Howe_zver, we L fit to O ; CL=0.82
judge that the reasons for the fat-link suppression are not 300
well enough understood to be confident that the correction
factor is the same in the quenched and dynamical cases. We
therefore drop the fat cloveéd;=2 results and use the Wil-
son results only.

We emphasize that fat-link actions are formally neither
better nor worse than actions with thin links—the differences
lie only in the composition and strength of higher dimen-
sional(irrelevan) operators. However, from a practical point
of view one is interested in actions for which particular quan- 200
tities scale well with lattice spacing. Fat links are intended to - R
improve chirality, but chirality is a property of light quarks,
not heavy ones. In hindsight, there is no physical motivation 0 2 1 2 2
to construct or use fat-link actions for heavy quarks. Some mqq(GeV)
recent developmen{$§2] for fat-link actions for light quarks
have been influenced by our negative experience—one of the FIG. 28. “Fully unquenched” chiral extrapolation dfy at 8
design criteria is to minimize effects such as are shown ir=5.6 (sets G, R, S, T, W The burst shows the extrapolated value
Fig. 26. We are currently studying the behavior of decawhenmﬁq: m?.
constants simulated with thin-link heavy quarks and fat-link

250

fg (MeV)

light quarks. recaptured once the dynamical mass is itself extrapolated to
the physicalu,d point?
C. Partial quenching and chiral extrapolation In Fig. 28 we show the chiral extrapolation 6§ with

Mg valencé= Mg, dynamicaidt 8= 5.6. We call the dependent vari-
able “fg” because the heavy quark has already been inter-
é)_olated to théb quark mass, as in Sec. lll F. As an indepen-

Our central values wittN;=2 are computed in the “par-
tially quenched” approximation: dynamical quark configura-
tions are treated as fixed backgrounds and chiral extrapol .
tion is performed in the valence quark mass only. The mair%jent variable, we u;e thi pseudoscalar mass sq%d,
justification for using the partially quenched approximation@"d extrapolate tang,=m: . Note that the linear fit is ex-
can be seen qualitatively in Figs. 22—25: For our range of€llent, even though itincludes very heawy, values. How-
dynamical quark masses and with our statistical and systen®Ver. if we resztrlctednqq to a safer range for a chiral ex-
atic errors, there is no obvious trend in the decay constani§apolation [mg,<0.6 (GeV¥], the results would be
when the dynamica' quark mass is varied at f|XEd(Th|s essent|a|ly Unchanged. The behaVIOrfgfIS very similar to
statement is examined in more detail below. that of fg.

The standard systematic error associated with the valence- Figure 29 showdg_as a function of the dynamical quark
mass chiral extrapolation is then estimated in exactly thenass at3=5.6. The light valence quark mass has already
same way as in the quenched approximatioomparison of been interpolated to the strange quark mass, and only the

“chiral choice I” with “chiral choice 11" — see Secs. IIID  dynamicalu,d quark mass is varied. With the current statis-
and V). Effects of chiral logarithms at very low quark mass tical and discretization errors, there is little evidence here for
are considered separately in Sec. V D. dynamical quark mass dependerfasing anf . scalg. This

To estimate the systematic error due to partial quenchingnay be due, at least partially, to staggered flavor violations,
we perform a complete additional analysis in the “fully un- which reduce the effective range over which the dynamical
qguenched” theory, where the lighti(d) valence quark mass mass varies. Note, however, that thexya significant differ-
on a given lattice set is interpolated or extrapolated to thence when one compares these dynamical mass points to the
value of the dynamical mass on that set. Since the valendafinite mass caséthe quenched approximatipncompare
and dynamical quarks are simulated with different lattice acfigs. 19 and 23. The behavior 6f_ is nearly identical to

tions, the equality must be defined by some physical quangat seen in Fig. 29 the other decay constants, sudt as

tity. We demand that the pseudoscalgpion” ) have the  paye similar behavior when they are plotted as a function of
same mass with either action. We then perform chiral ex-

trapolations offgy With Mg yaiencé= Mg, dynamical USING data

from sets at fixeds: either 3=5.6 (sets G, R, S, T, Yor 12This approach could be dangerous if the dependendgqo6n
B=5.5(sets P, M, O, N\ Such extrapolations must be per- {he dgynamical quark mass at fixed valence mass were so violent that
formed in physical units because they involve different setsne chiral extrapolation of o4 in physical units became uncon-
with different lattice spacings. To set the scale, we use agolled. This does not appear to be the case, as seen in Figs. 28—30
usualf,q, extrapolated in valence quark mass to the physicabelow. However, in a work in progregg5], we employ a safer

u,d point, i.e.,f.. Note that the scale is set in a partially approach, in which the dynamical lattices have matched scales set
guenched manner. However the fully unquenched theory isdependently of the valence quarks using the static quark potential.
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FIG. 29. Same as Fig. 28 but f()gs. The valence quark masses
do not vary but are held fixed at the masses oftitends. The fit
is linear (not a constanf but has quite small slope.

the dynamical mass for fixed valence mass.
The chiral extrapolation ofDS/fD as a function of dy-

namical quark mas&epresented by the dynamioadéq) is
shown in Fig. 30. Fof 5, the light valence quark mass is put
equal to the dynamical mass; while fb_;s, it is kept equal to

the physical strange mass. Sinfee has fixed valence quark
mass, it, Iikest, changes little with dynamical quark mass;

while f varies more or less linearly, likes. We therefore
fit st/fD to the inverse of a linear function irmf]q, i.e., to
1/(c+dm(2]q), with c andd allowed to vary. The raticIiBS/fB
is fit in the same way; while the ratio‘%/st, fBS/st' and

fg/fp are fit to linear functions(The latter two ratios are,

- O Np=2 (mvalenee=mdynam) 7

(2 - —1/linear fit to O; CL=0.25 1

1
miq(GeV)z

FIG. 30. Chiral extrapolation dfp_/fp at3=5.5(sets P, M, O,
N) with the light valence quark mass figy equal to the dynamical
quark mass. The quantity I/L(S/fD) is fit to a linear function.
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FIG. 31. Lattice spacing dependence ©f after fully un-
guenched chiral extrapolation. From left to right, the points repre-
sent: 3=5.6, 5.5, and 5.445. When there is more than one lattice
spacing at a giveiB, the points are plotted at the lattice spacing of
the finest latticglowest dynamical magsThus3=5.6 and 5.5 are
represented by the lattice spacing of sets R and P, respectively. The
fit is to a constant.

like fg_, almost independent of the dynamical quark mass,

and so the fitting form makes little difference as long as
constant behavior is allowed.

We can now examine the dependence of the fully un-
quenched quantities on lattice spacing. Unfortunately, we can
perform the fully unquenched analysis only at t@owalues,

5.5 and 5.6, for each of which lattice sets exist with four
different dynamical quark masses. At the thBdralue of our
dynamical simulations #=5.445), we have only a single
dynamical massgm=.025, set ). We attempt a chiral ex-
trapolation there by using the average of tpaysica) pa-
rameters describing thméq dependence g8=5.6 and 5.5

(as determined aboyeEach parameter has a statistical error
estimated by propagating the statistical errors of #e5.6

and 5.5 data, and a systematic error taken to be the difference
between the average value and e 5.5 value. The overall
error atB3=5.445 is then determined by adding in quadrature
the intrinsic statistical error from set L and the statistical and
systematic errors coming from the chiral extrapolation. The
amount of chiral extrapolation required for set L is actually
quite small because the physical dynamical quark mass there
is close to the smallest masses availabl@at5.6 and 5.5.
Therefore the errors introduced by our “synthetic” chiral ex-
trapolation at3=5.445 do not appear to be large. However,
the fact that the third data point in the fully unquenched
analysis must be obtained in this way is another reason why
we prefer the partially quenched analysis for the central val-
ues.

Figures 31 and 32 show the lattice spacing dependence of
fg and st/fB after the fully unquenched chiral extrapola-

tions. Like the partially quenched data of Figs. 22 and 24, the
fully unquenched data are quite consistent with constant be-
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1.20 SR N R IR TABLE XIll. Estimates of the effectgin MeV) of chiral loga-
| o N,=2 (ful hed) ) rithms on the extrapolation of decay constant ratios. For descrip-

F- ully unquenche tions of the methods, as well ag anda™ !, see Table VI in Sec.

- const. fit to 0O; CL=0.98 . Il E. Lines indicated by a “*” are eliminated from the averages.
i ) Method fe /fe fo /fo fel/fo, fe /fo, fa/fp

2 [ ] 1 +0.02 +0.02 +0.02 +0.05 +0.04
NG5 T T — ~0.02 -0.09 +0.07 +0.01 +0.00
o IR

b i J— I:|:| I i 2 +0.06 +0.06 +0.01 +0.06 +0.06
L J +0.02 -0.05 +0.05 +0.03 +0.02

B . 3 -0.02 -0.03 +0.04 +0.03 +0.01

i | —-0.07 -0.13 +0.08 —-0.00 —0.02

qqobe b b by by | 4 +0.04 +0.04 +0.02 +0.06 +0.05
0.0 0.2 0.4 0.6 0.8 +0.01 -0.06 +0.06 +0.02 +0.01

-1
a (QeV) 5 +0.08 +0.08 +0.00 +0.07 +0.07
FIG. 32. Same as Fig. 31, but fog_/fg. +0.05 —003 +004 +0.04 +0.03

+0.03 +0.03 +0.03 +0.06 +0.05

havior in a. The other decay constants and ratios behavg
+0.04 —-0.03 +0.06 +0.06 +0.05

similarly. The difference between the result of the constant

fits in the fully unquenched and partially quenched cases ig +0.05 +0.05 +001 +0.06 +0.05
defined to be the systematic error of partial quenching, and is +007 —000 +0.05 +0.06 +0.05
listed for the various quantities in Tables Xl and XlI. Given

the issues in the fully unquenched analysis, we believe that —-0.01 -0.02 +0.04 +0.04 +0.03
this error determination is merely a rough estimate of the +0.01 -0.07 +0.08 +0.05 +0.04

magnitude of the effect and do not take the sign of the dif-
ference seriously. We therefore symmetrize this error in the
final error analysis.

+0.05 +0.05 +0.02 +0.06 +0.06
+0.06 —-0.01 +0.05 +0.06 +0.06

10 +0.07 +0.08 +0.00 +0.06 +0.06

D. Rough estimate of chiral logarithm effects +0.08 +0.02 +0.04 +0.06 +0.06

As discussed in Sec. Il E, our rather heavy-light mass: 11 +0.12 +0.15 —-0.01 +0.10 +0.11

values preclude a detailed study of chiral logarithms. How= +018 4018 -002 +011 +011
ever, an extrapolation df,,/fqq (rather than individual de-

cay constanjs coupled Wlth methods of determining and 12 +0.02 +0.01 +0.02 +0.06 +0.03

! without significant chiral extrapolation, should provide * +0.17 +0.15 -0.01 +0.09 +0.10

an indication of the effect of the logarithms at light quark
mass. Recall that, in the full theory, the coefficient of the
chiral logs inf is probably larger than ifigq. This means

that any errors in coming from a quadratic extrapolation of

fqq/fqq Should be opposite to those in our standard extrapoof the average and the standard deviation of the mean. This is
lations of fq itself—especially for heavy-light decay con- sjightly more conservative than just taking the straight aver-
stant ratios, which are less sensitive to the scale determln@[ge Forfp_/fp, where the average is consistent with 0.00,

tion. In particular, thef 4o/foq approach should overestimate \ o taye the error as th@nsigned standard deviation of the
fB /fg, just as our standard approach may underestimate 'Fnean

Indeed, _the most significant change from the central value The chiral logarithm effects, while quite significant in the
occurs infg_/fg and is positive. case offg /fg and some of the other ratios, appear to be

Table VI of Sec. Il E shows the changes in the decayconsiderably smaller than has been anticipated in R&fa].
constants with various methods for fixings and a*.  we believe this due to the fact that we set the scale in our
Changes in the ratios are given in Table XIII. After eliminat- central values usind,, and extrapolate the light-light and
ing the three lines in each table marked with asteri@é®  heavy-light decay constants in the same manner. Thus, much
Sec. 1ll B, we average the changes in decay constants angf the chiral logarithm effects, which are similar f. and
ratios and find the standard deviations of the means. With the, = cancel.
exception of the quantityp /fp, the averages in all cases  On the other hand, we emphasize that our estimate of the
are positive and larger than the standard deviations of thehiral logarithm effects is, for a variety of reasons, rather
means. We define the “error due to chiral logarithm effects”rough. First of all, the changes in the decay constants and
in these cases as the sigripdsitive number that is the sum ratios vary a great deal among the different methods and

average +0.03 —-0.00 +0.04 +0.05 +0.04
stand. dev. of mean 0.01 0.01 0.01 0.00 0.01
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configurations shown in the tables. Indeed, the standard de- We still need to estimate the erraf the partially
viation (as opposed to the standard deviation of the mean quenchedN¢=2 approximation. One measure of this error

a change is typically the same size as the average change af@s already been discussed: the partial quenching error. The
is sometimes larger. Secondly, our approach reliegfito  effect of the missing third light virtual quarthe s quark) is

find the quantitiesnss and fss, and yPT is not necessarily €stimated in a direct way by assuming a simple linear depen-
rapidly convergent fors quarks. We have also performed dence of the decay constants on the number of dynamical
only a partially quenched analysis of this issue. Because dfavors. The error is thus chosen to be one half the difference
the size of the errors, we have not attempted to extrapolatef the Ny=2 and quenched calculations. This estimate is

the dynamical quarks to their physical masses. Finally, we2P€led “missing dynamicas quark™ in Tables XI and XII.
note that there is an inherefthough presumably smalin- We also estimate the effect in two indirect ways: by deter-

consistency in our determinations of anda %, which in- mining the change in the results whénthe scale is fixed by

directly use the physical values 6f , f., m. andm (or m, (instead off;), and (ii) for strange quark gquantities,

m, or m,). We cannot force all these quantities to have theirWhen s is fixed by the vector meson sectonf) instead of
h" . I¢ ) | i . th 9 thout a d : Ithe pseudoscalars. In full QC@nd with no other systematic
physical values at once in a theory without a ynam'caerrors), these differences should vanish, so their size is an

strange quark. For this reason, it is unclear for examplegtimate of the distance we are from the full theory.

whether it is better to use;=2 orN;=3 PQ(_PT in finding The total error of the partially quenchw: 2 approxi—
fss; we hope that our range of methods gives a reasonabl@ation is then defined to be the maximum of the four esti-
range of results. mates below the line in Tables XI and XII: partial quenching,

Given the crude nature of the chiral log error, we believesca|e,,<s, and missing dynamica quark. The latter three
that it would be inappropriate at this stage to use the comestimates have a well-determined sign, and we therefore find
putations described in Sec. Ill E to correct our central valuesthe maximum positive and maximum negative error sepa-

Instead, we use them only for error estimates. rately. (As discussed above, the partial quenching error is
treated symmetrically.For the individual decay constants,
E. Final error estimates and results the scale and missing dynamicajuark estimates are always

. . . . largest; while the errors in the ratios are almost always domi-
The magnetic mass error in Tables Xl and XIl is esti- nated by the partially quenched error.

mated with almost the same method as we used for the pi,5|iy we include an additional error due to the fact that

guenched calculation. The only difference is that .here all they extrapolations from rather large light quark masses can-
valence quarks are of Wilson type, so that there is no reduG;qt see the chiral logarithms directly. This error is estimated
tion of the magnetic mass error in the final error budget foliy Sec. v D. We emphasize that it is necessarily crude.

the relative number of Wilson and clover estimates. The per-  Our final results for hea\/y-"ght decay constants, includ-

turbative and M fit errors in the tables are determined in ing the effects of dynamical quarks, are

exactly the same manner as in the quenched approximation.

The errors due to finite volume are studied by comparing fe=1907)(ZIH(3H(TH MeV,
results on sets R and G, both of which hage=5.6 and
am=0.01, but which have spatial volumes32and 18, re- fg,=2176)( 13 (13)(15) MeV,
spectively. Note that all but one of old;=2 sets are large
(spatial size~2.1-3.3 fm); only set G is comparable in size fo=2156)( (5 Mev,
(~1.4 fm) to the quenched lattices. The difference between
sets R and G is therefore likely to be a considerable overes- fo.=2425)( *2D(*D(*3) Mev,
timate of the actual finite volume error. Despite this, the s
differences are almost never statistically significant. Here a f
“significant difference” is defined as one that is larger than Bs_ 1.161)(2)(2)( 4
the sum, in quadrature, of the statistical errors of the two fg -0
sets. When the difference is insignificant, we set the finite
volume error to zero, as indicated in Tables XI and Xl by st
the notation “~0.0.” The only case where we find a signifi- K =1.141)( t%)(3)(1),

cant (~1.60) effect is inst/fD.

The total systematic errarithin the current approxima- fg
tion (partially quenched\; =2 theory is then taken to be the T =0.792)( 3 (3)(13),
sum of all the systematic errors above the line in Tables XI Ds
and XII: continuum extrapolation, valence chiral extrapola-
tion, perturbative, magnetic massMLfit, and finite volume fBS s
errors. Since these errors show no evidence of correlations, K=0.92(1)(6)(2)( -0/
we perform the sum in quadrature. We do, however, treat s
positive and negative errors separately, since the valence chi- f
ral extrapolation error represents a binary choice and has a 2 -0.912)( 2 (5D). (46)
well determined sign. fo
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Here the errors are, respectively, statistical, systematic withichiral logarithm effect$8,9], as well as eliminate the explicit
the N;=2 partially quenched approximation, the systematicpartial quenching error.
errors of that approximatiofdue to partial quenching and Future calculations will use staggered light quarks, as
the missing virtual strange quarkand an estimate of the have already been investigated in conjunction with NRQCD
effect of chiral logarithms. heavy quarkg67]. This will allow for very light valence
The result forfp_is consistent with experimental results; masses and therefore make possible a detailed study of chiral
Ref. [63] obtains fp+=280(19)(28)(34) MeV, which the logarithms. To improve the chiral extrapolations still more,
Review of Particle Pshysites as “the best and most recent one-loop chiral perturbation theory calculations that take into
, - . ) account staggered tasteviolation will be needed. Such cal-
value” [64]. Our N;=2 values are consistent with recent

results of CP-PACS65] and preliminary results of JLOCD culations for pseudoscalar meson masses already exist; those

[10], though our central values of the decay constants anfjpr heavy-light decay constants are in progras.

tosf /1 dfe /f hat | than th f The next step after that is likely to involve perturbation
ratiostg /g andfp /1p are somewnat lower than those o theory. Once the other errors have been reduced, the errors of

CP-PACS. one-loop perturbative calculations will no longer be accept-
able. Higher order calculations using automated methods
VI. CONCLUSIONS AND FUTURE DIRECTIONS [69] or nonperturbative computations will be required.

Equation(46) and Tables Xl, XllI, VI and XIlIl summarize
our results. Chiral extrapolation, continuum extrapolation
and perturbation theory are generally the biggest sources of We thank the HEMCGC Collaboration for use of lattice
errors for the decay constants, while partially quenching, thget G, and K.-I. Ishikawa for sharing unpublished results.
missings quark, and the magnetic mass are also importanThis work was supported by the U.S. Department of Energy
for many of the ratios. Because the latticesl have neces- under contracts DOE-DE-FG02-91ER-40628, DOE-DE-
sarily been rather heavy, as they have in other lattice calcuFG03-95ER-40894, DOE-DE-FG02-91ER-40661, DOE-
lations to date, the effects of chiral logarithms at low quarkDE-FG02-97ER-41022 and DOE-DE-FG03-95ER-40906
mass have only been investigated crudely and indirectly. Wand National Science Foundation grants NSF-PHY99-70701
believe that is the error over which we have the least controhknd NSF—PHY00-98395. Calculations for this project were
at present. performed at Oak Ridge National Laboratory Center for

Work in progresg45] addresses many of the above is- Computational Sciences, San Diego Supercomputer Center,
sues. Improved actions have decreased the continuum ekdiana University, National Center for Supercomputing Ap-
trapolation errors significantly, as well as eliminated theplications, Pittsburgh Supercomputer Center, Maui High Per-
separate magnetic mass error. A dynamigagjuark is now  formance Computing Center, Cornell Theory Center, CHPC
explicitly included. Further, since the computations use gUniversity of Utal), and Sandia National Laboratory.
wide range of both dynamical and light valence quark
masses, we hope to treat the chiral logarithms explicity
within a partially quenched framewofl65,66]. This should BWe prefer the term “taste” for the quantum number introduced
provide more direct evidence about the issue of the size dfy doubling in order to distinguish it from physical flavor.
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