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We present results forf B , f Bs
, f D , f Ds

and their ratios in the presence of two flavors of light sea quarks
(Nf52). We use Wilson light valence quarks and Wilson and static heavy valence quarks; the sea quarks are
simulated with staggered fermions. Additional quenched simulations with nonperturbatively improved clover
fermions allow us to improve our control of the continuum extrapolation. For our central values the masses of
the sea quarks are not extrapolated to the physicalu, d masses; that is, the central values are ‘‘partially
quenched.’’ A calculation using ‘‘fat-link clover’’ valence fermions is also discussed but is not included in our
final results. We find, for example,f B5190(7)(217

124)( 22
111)( 20

18) MeV, f Bs
/ f B51.16(1)(2)(2)(20

14), f Ds

5241(5)(226
127)( 24

19)( 20
15) MeV, and f B / f Ds

50.79(2)( 24
15)(3)( 20

15), where in each case the first error is statis-
tical and the remaining three are systematic: the error within the partially quenchedNf52 approximation, the
error due to the missing strange sea quark and to partial quenching, and an estimate of the effects of chiral
logarithms at small quark mass. The last error, though quite significant in decay constant ratios, appears to be
smaller than has been recently suggested by Kronfeld and Ryan, and Yamada. We emphasize, however, that as
in other lattice computations to date, the latticeu,d quark masses are not very light and chiral log effects may
not be fully under control.

DOI: 10.1103/PhysRevD.66.094501 PACS number~s!: 12.38.Gc, 12.15.Hh, 13.20.2v
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I. INTRODUCTION

Accurate values for the leptonic decay constants ofB and
Bs mesons are crucial for interpreting experimental meas

ments ofB-B̄ mixing and bounds on, or future measureme

of, Bs-B̄s mixing. Knowledge of the decay constan
~coupled with knowledge of the correspondingB parameters!
makes possible a determination of the Cabibbo-Kobaya
Maskawa~CKM! elementsVtd and Vts from these experi-
ments.

In theD-meson sector, CLEO-c will measure leptonic d
cay rates at the 3–4 % level@1#. Assuming 3-generation uni
tarity, this translates into determinations off Ds

and f D with
roughly 2% accuracy. Coupled with accurate theoreti
computations of ratios such asf B / f Ds

, this will provide cru-
cial information about theB sector. In addition, if computa
tions of theD and Ds decay constants themselves can
performed at the few percent level, the experiments will
rectly determineVcs andVcd with similar precision.

At least in principle, lattice QCD offers a means to com
pute quantities such asf B or f B / f Ds

with control over all
sources of systematic error. Here, we present a computa
by the MILC Collaboration of the decay constantsf B , f Bs

,

0556-2821/2002/66~9!/094501~33!/$20.00 66 0945
e-

s

i-

-

l

e
-

-

on

f D , f Ds
, and their ratios. We take into account the effects

virtual quark loops from two light flavors of sea quarks; i.e
we have two ‘‘dynamical quarks.’’ Additional discussion an
preliminary results for the dynamical calculation can
found in Refs.@2,3#. Our earlier work, which focused on th
quenched approximation and used dynamical configurat
only for an estimate of the quenching errors, appeared in@4#,
with further details in@5#.

This paper is organized as follows. Our lattice formalis
is presented in Sec. II. We discuss the Fermilab approac
heavy quarks on the lattices@6#, and explain how we adapt i
to Wilson and nonperturbatively improved@7# clover quarks.
We also explain our use of perturbative renormalization a
the choice of scale~‘‘ q* ’’ !.

Section III gives the lattice computational details. We d
cuss the generation of configurations, the evaluation of qu
propagators for Wilson, clover, and static quarks, and vari
aspects of the analysis, including fitting and extrapolati
The most significant open issue here involves the effec
chiral logarithms on the light quark mass extrapolations.
important recent work, Kronfeld and Ryan@8# and Yamada
@9# ~building on work of the JLQCD Collaboration@10#!
have argued that standard linear or quadratic extrapolat
from typical lattice light quark masses miss the logarithms
©2002 The American Physical Society01-1
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low mass and drastically underestimate such quantities
f Bs

/ f B . Since the quark masses available to the present

culation are of this typical size, it is imperative that we es
mate the chiral logarithm effects as best we can. We devi
method to estimate, at least crudely, such effects.
method is based on the extrapolation of the ratio of the lig
light to the heavy-light decay constant.

In Sec. IV we reexamine the quenched approximati
The dominant source of systematic error in our previo
quenched computation@4# was the continuum extrapolation
Two new features of the current analysis have significan
reduced that error:~i! new running with both Wilson and
clover quarks and~ii ! a new central value for the scaleq* for
the heavy-light axial current@11#.

We then turn to the dynamical quark data in Sec. V. T
improved control over discretization errors in the quench
approximation gives us more confidence in the central va
and errors deduced from the continuum extrapolation of
dynamical quark data. Other sources of systematic error
cluding the chiral extrapolation, higher order perturbati
theory, and the effects of partial quenching are also discus
in detail. Finally we clarify the effects of ‘‘fat-link’’ fermions
using some new test runs in the quenched case. These
light on why the preliminary values for heavy-light deca
constants with fat-link fermions on dynamical configuratio
were anomalously low@12#.

Our conclusions and the outlook for reducing the m
systematic uncertainties are discussed in Sec. VI. We
scribe work in progress that addresses the outstanding is
in the chiral and continuum extrapolations.

The computation presented in this paper is rather com
cated: we use several different actions, operators, renor
izations, fitting techniques, and extrapolations. Part of
reason for this is that the simulations with dynamical qua
are extremely demanding computationally and theref
have taken years to complete. During that time, as our
derstanding of the physics and analysis issues grew,
methods evolved. The variety of methods used does have
important virtue: it allows us to estimate many of the sy
tematic effects in a direct way.

II. FORMALISM

In a groundbreaking paper@6#, El-Khadra, Kronfeld and
Mackenzie~EKM! show that one can make sense of hea
Wilson-like1 fermions on the lattice even whenamQ*1,
where a and mQ are the lattice spacing and heavy qua
mass, respectively. Indeed, in the nonrelativistic limitmQ
@LQCD , they show that the effective Hamiltonian has t
form ~after Foldy-Wouthuysen-Tani transformation!

1‘‘Wilson-like’’ means that the fermion action includes the naiv
discretization of the Dirac equation plus a Wilson term to remo
doublers. There may be further additional correction terms to
duce lattice artifacts. Standard Wilson fermions as well as ‘‘clov
fermions@13# fall into this class.
09450
as
al-

-
a
e

t-

.
s

y

e
d
e
r

n-

ed

hed

e-
es

li-
al-
e
s
e
n-
ur
ne
-

y

H5Q̄S M11g0A02
DW 2

2M2
2

iSW •BW

2M3
DQ1O~1/mQ

2 !, ~1!

whereQ is the effective heavy quark field,DW is the spatial
covariant derivative,BW is the chromomagnetic field,SW are
the Pauli matrices, andmQ is a generic heavy quark mas
The massesM1 , M2, andM3 are particular functions of the
bare heavy quark massam0 that depend on the quark action
Herem0 is given by

am05
1

2kQ
2

1

2kc
, ~2!

wherekQ is the heavy quark hopping parameter andkc is its
critical value.2 The ‘‘pole mass,’’M1, controls the exponen
tial decay of the zero-momentum propagator in Euclide
time, but is just an additive constant in bound state energ
The nontrivial physics of a heavy quark in a heavy-lig
bound state is controlled at this order by the ‘‘kinetic mas
M2, which fixes the heavy-quark energy-momentum disp
sion relation, and the ‘‘magnetic mass,’’M3, which governs
chromomagnetic effects, such as hyperfine splittings.

For computations of heavy-light decay constants, one a
needs to know how the lattice axial current,q̄g0g5Q, renor-
malizes. At tree level but through order (1/mQ), EKM show
that the renormalization is given simply by the replaceme
Q→QI , where the tree-level improved field is

QI~x!5A2kQeaM1@11ad1gW •DW #Q~x!, ~3!

with d1 another function ofam0. We have included the stan
dard A2kQ factor needed to go from lattice-normalized
continuum-normalized fields.

At tree level, one has

aM15 ln~11am0!,

aM25
am0~11am0!~21am0!

214am01~am0!2

5
eaM1sinh~aM1!

11sinh~aM1!
,

aM35
am0~11am0!~21am0!

2~11am0!1cSWam0~21am0!
,

d15
am0

2~11am0!~21am0!
, ~4!

wherecSW is the coefficient of the clover term.

e
-

’’

2We assume throughout this paper that the spatial and temp
hopping parameters are chosen equal, that the Wilson paramer
51, and that the spatial and temporal parts of the clover term
present, have equal coefficients. This is not the complete gener
of Ref. @6#, but is sufficient for our purposes.
1-2
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A large fraction of the one-loop corrections to Eq.~4! can
be included with tadpole renormalization@14#. We usekc to
define the mean field value,u0, of the gauge link:u0
[1/(8kc). Absorbing u0 into k gives a tadpole-improved
hopping parameter,k̃, and bare mass,m̃0:

k̃[u0k5
k

8kc
, k̃c51/8

am̃0[am0 /u05
1

2k̃
2

1

2k̃c

54
kc

k
24. ~5!

We denote the tadpole-improved versions of the quanti
in Eq. ~4! by M̃1 , M̃2 , M̃3, andd̃1. They are found simply
by replacingm0→m̃0. Similarly, the tadpole-improved ver
sion of Eq.~3! is

Q̃I~x!5A2kQu0eaM̃1@11ad̃1gW •DW #Q~x!

5A12
3kQ

4kc
@11ad̃1gW •DW #Q~x!. ~6!

For some applications, thed̃1 term here may be neglected.
is therefore convenient also to define

Q̃I
0~x![A12

3kQ

4kc
Q~x!. ~7!

We take the physical mass of our lattice heavy-light m
sons to be the meson kinetic mass,MQq,2 . Although MQq,2
could be determined directly from the meson dispersion
lation, that would require the computation of meson pro
gators with nonzero momenta, which in any case are ra
noisy. Instead we defineMQq,2 by @15#

MQq,25MQq,11M̃22M̃1 , ~8!

whereMQq,1 is the pole mass of the meson determined
the lattice, andM̃2 andM̃1 refer to the heavy quark,Q. The
UKQCD Collaboration, in Fig. 8 of Ref.@16#, compares the
kinetic meson mass determined by the dispersion rela
with that given by Eq.~8! ~but without tadpole improve-
ment!. The agreement is good, and would in fact be s
better if the tadpole improved version were used.

A. Wilson fermions

For Wilson fermions (cSW50), the magnetic massM3 is
not equal to the kinetic massM2, even at tree level. As
discussed in Refs.@17# and @4#, this produces an error a
fixed a of O@(cmag21)LQCD /MQq#, where cmag

[M2 /M3. Hence there is little point in keeping thed̃1 term
in Eq. ~6!, which is also ofO(LQCD /MQq). @Indeed, keep-
ing such terms without including at least theO(g2) pertur-
bative corrections to them is likely to increase the system
error @3#.# We thus setd̃150 in the Wilson case and us
Eq. ~7!.
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The 1-loop mass-dependent perturbative matching for
heavy-light axial vector current has been calculated by Ku
mashi @18#. Since we include tadpole renormalization f
both the heavy and light quarks through Eq.~7! ~with d̃1
50), we adjust the result to reflect our choice ofkc to define
the mean link~Ref. @18# uses the Feynman-gauge link!. The
continuum contribution to the matching generates a lo
rithm of the heavy quark mass. In@18#, this is taken as
logM1. Since we takeM2 as the physical mass, we als
adjust the result of@18# to replaceM1 with M2 in the loga-
rithm.

Additional issues for perturbative matching are the de
nition of the coupling constant and the scale at which it
evaluated. We use the couplingaV , whose value at scale
3.4018/a is defined in terms of the plaquette@14,19#. It has
become standard to evaluate the coupling at the Lepa
Mackenzie scaleq* @14#, defined by

log„~q* !2
…5

E d4qI~q!log~q2!

E d4qI~q!

, ~9!

whereI (q) is the complete integrand for the quantity of in
terest. In other words, the 1-loop axial vector current ren
malization constant, ZA , is given by ZA51
1aV(q* )CFzA /(4p), where CF is the quadratic Casimir
andzA[*d4qI(q). Here, we needZA in three cases~light-
light, static-light, and heavy-light!, which we denote byZA

qq,
ZA

Statq, andZA
KUR , respectively, where KUR emphasizes th

we are talking about the heavy-light renormalization const
computed by Kuramashi@18#. We adopt corresponding nota
tion for zA and I.

Unfortunately, at the time the analysis described here w
performed,q* for ZA

KUR had not been determined@20#. For
ZA

qq with kc-tadpole improvement,q* 52.32/a @21#, which
we use here when fixing the scale throughf p . ForZA

Statqwith
plaquette tadpole improvement, Hernandez and Hill@22#
found q* 52.18/a. Since the light-light and static-light val
ues ofq* were so close, it was argued in@4# that either could
be used in the heavy-light case, and in fact the light-lig
value q* 52.32/a was chosen for the standard computati
~central value!.

Recently, Bernard and DeGrand@11# have repeated the
Hernandez and Hill computation. They find a significan
different value ofq* for the kc-tadpole-improvedZA

Statq.
Their result depends on the heavy-light mass, which en
through the continuum part of the matching. However t
mass dependence is rather weak over the range of ma
used in the current numerical work, and it is therefore a
equate to use an average valueq* '1.43/a. Since Ref.@11#
has not yet appeared, it may be helpful to summarize h
the reasons for the disagreement with Ref.@22#.

First of all, Ref. @22# sets to zero certain parts of th
lattice integrand whose contributions to the matching van
by contour integration. This is a standard procedure@23# for
evaluating integrals involving a static quark propagat
However, such integrals do not vanish when the integran
1-3
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first multiplied by log(q2), as in Eq. ~9!. Bernard and
DeGrand argue that it is incorrect to discard parts of
integrand unless their contributions to both the numera
and denominator of Eq.~9! vanish.

Secondly, there are ‘‘constant’’ terms in the matchi
coming from the dimensionally regularized continuum in
grals. Hernandez and Hill treat these as constant over
4-dimensional Brillouin zone. Similarly, the log(amQ) term
in ZA

Statq, which comes from both continuum and lattice i
tegrals, is set to zero in@22# by the choicea51/mQ . In
contrast, Ref.@11# keeps the full continuum integrands a
well as the full lattice integrands. This does introduce a sm
amount of arbitrariness: the dimensionally regulated c
tinuum integrals must be replaced by finite, subtrac
4-dimensional integrals, and there is some freedom in h
the subtraction is done. However, as long as the subtrac
is ‘‘reasonable,’’ the arbitrariness inq* is small. If we accept
the results of Ref.@11#, thenq* for ZA

Statq is no longer very
close to q* for ZA

qq. Instead, we take the static-lightq*
'1.43/a for ZA

KUR . SinceamB is quite large on our lattices
('1.2 to 4), we believe this is a reasonable choice.
course, it is always necessary to consider a range ofq* to
estimate perturbative errors, and the range we pick~see Sec.
IV ! includes the light-lightq* , as well as the values in Re
@20#.

Summarizing the results of this section, we may expr
the 0th component of our renormalized heavy-light curr
as

A0
KUR5ZA

KUR~q* ! q̄̃I
0g0g5Q̃I

0 , ~10!

with q* 51.43/a, with Q̃I
0 given by Eq.~7!, and with a cor-

responding expression for the tadpole improved light qu
field, q̃I

0 . For convenience, we also use Eq.~10! for the
light-light pseudoscalars~‘‘pions’’ !, even though the mas
dependence of Ref.@18# is negligible in that case. We tak
q* 52.32/a @21# for light-light renormalization.

The errors in our heavy-light Wilson calculation are fo
mally O(aLQCD) and O(aV

2). Note that, in the Fermilab
formalism, one should think of these errors as multiplied
an arbitrary@but presumablyO(1)] function of aMQ , since
we are working to all orders inaMQ . Thus the dependenc
on a is in general complicated. An example of such comp
cated behavior is the difference between lattice chromom
netic effects, which go likeaLQCD /(aM3), and the desired
behavioraLQCD /(aM2) @see Eq.~4!#. Of course, in the truly
asymptotic regime whereaMQ!1, the leading errors are
indeed linear ina, but this region is not currently accessib
in practical calculations.

In the static-light case, we have

A0
STAT5ZA

STAT~q* !qD I
0g0g5h, ~11!

whereh is the static quark field,ZA
STAT is the one-loop renor-

malization constant for the static-light current@23,24# with
tadpole improvement, andq* 51.43/a.
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B. Nonperturbative clover fermions

For our computations with clover fermions, we take t
clover coefficientcSW calculated nonperturbatively by th
ALPHA Collaboration@7#. The 0th component of the reno
malized, improved@through O(a)] light-light axial vector
current~which is needed here to set the scale withf p) is then

A0
NP5ZA

NPA4kq1
kq2

~11bAam̄0!@A01cAa]0P5#,

A05q̄1g0g5q2 ; P55q̄1g5q2 , ~12!

where kq1
, kq2

are the hopping parameters of the lig

quarks, andm̄05(mq1,01mq2,0)/2 is their average bare mas

ZA
NP andcA are the nonperturbative values given in@7#. The

coefficientbA has not been determined nonperturbatively
the ALPHA Collaboration, although the differencebA2bP
has @25#. Bhattacharyaet al. @26# have determinedbA at b
56.0 and 6.2, but not atb56.15, which is one of the cou
plings used here. OurbA is therefore taken from perturbatio
theory @27#, but with couplingaV(q* ), with q* chosen as
the value (>1/a) that produces the nonperturbative result@7#
for the similar quantitybV . This gives bA51.47 at b
56.15 and 1.42 atb56.0. In the systematic error analysi
we allow bA to vary over a range of values3 ~see Sec. IV!.

For chiral extrapolations, our canonical procedure~see
Sec. III D! for both Wilson and clover quarks is to use th
kinetic quark massaM2 @Eq. ~4!# as the independent vari
able. ThroughO(a), this is equivalent to the clover ‘‘im-
proved quark mass,’’am̃q5am0(11bmam0), with the
choice bm520.5. A nonperturbative determination by th
ALPHA Collaboration@25# gives insteadbm'20.709 atb
56.0 andbm'20.695 atb56.15; while boosted perturba
tion theory with the result of Ref.@27# givesbm520.662 at
b56.0 andbm'20.655 atb56.15. In the clover case, we
have tried both these sets ofbm values instead of our canon
cal procedure, but found only negligible changes in the c
tral values, errors, and goodness of fits. For example,f B
changes by less than 0.4% atb56.0 and 0.1% atb56.15.
We do not, therefore, consider the standard improved qu
mass further.

Since Eq.~12! is valid only throughO(a), it is likely to
produce large scaling errors if applied to the renormalizat
of the heavy-light axial vector current for heavy quarks w
amQ,0*1. Instead, the straightforward approach is to use
1-loop, O(a), perturbative matching for clover fermions a
calculated by Ishikawa, Onogi and Yamada@28,29#. We call
this approach ‘‘NP-IOY,’’ where IOY refers to the author
and NP indicates nonperturbative, becausecSW has the value
given in @7#, and Eq.~12! is used in computingf p .

Since Ref.@28# uses tadpole improvement defined throu

3At b56.0, Ref.@26# getsbA51.28(3)(4), which is within our
range. Note however, that Refs.@7,26# get quite different values of
cA at b56.0, indicating that effects ofO(a2) and higher play a
significant role at this coupling.
1-4
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kc @29#, just as we did above, we may summarize our ap
cation of their result as

A0
NP-IOY5ZA

IOYq̄̃Ig0g5Q̃I1Z12
IOYq̄̃I

0g0g5agW •DW Q̃I
0 , ~13!

whereQ̃I andQ̃I
0 are given by Eqs.~6! and~7! ~and similarly

for q̃I and q̃I
0), and where

ZA
IOY511aV~q* !rA

(0)

Z12
IOY52aV~q* !~rA

(1)1rA
(2)!/~2aM̃2!, ~14!

with rA
(0) , rA

(1) , andrA
(2) defined in@28#. We have used the

fact that the operatorsq̄̃Ig0g5gW •DW Q̃I and 2 q̄̃IgW •DQ g0g5Q̃I
have equal matrix elements between zero-momentum st
as is the case for our evaluation of decay constants, to c
bine the coefficientsrA

(1) andrA
(2) . For a central value ofq* ,

we take the result from the static-light calculation of R
@11#, using the appropriate value ofcSW and taking the heavy
quark mass to be the mass of theB. This givesq* 53.34/a at
b56.0 andq* 52.85/a at b56.15. Unlike@28#, we include
the d̃1 factor for the light quark in the first term of Eq.~13!.
This is just for convenience, sinced̃1 is negligible for our
light quarks. We have neglectedd1 for heavy and light
quarks in the correction term~proportional toZ12

IOY) in Eq.
~13!. We remark here that with our current data we use N
IOY for f B , f Bs

but not for f D , f Ds
because the approxima

tions in @28# are not applicable near theD mass.
The errors in the NP-IOY calculation are formal

O(a2LQCD
2 ) and O(aV

2). Again, one should think of thes
errors as multiplied by an arbitraryO(1) function ofaMQ ,
making thea-dependence complicated in general. For e
ample, ifMQ is held fixed anda is varied in the region where
aMQ;1, lineara dependence (;aLQCD

2 /MQ) is possible.
Although NP-IOY is a well-defined approach to heav

light physics with nonperturbative clover fermions, it do
not take advantage for heavy quarks of the nonperturba
information in Eq.~12!. An alternative, which has been use
by the APE@30# and UKQCD@16# Collaborations, is to ap-
ply Eq. ~12! for moderateamQ,0 , where it is still approxi-
mately justified, and then extrapolate up to theB mass. That
approach has two main systematic errors: First, one ha
guidance from heavy quark effective theory~HQET! about
the order of the polynomial in 1/mQ with which to extrapo-
late to theB mass, and secondO(a2) errors, while relatively
small for the moderate masses studied, can grow rather la
when extrapolated over a wide mass range. We prefer ins
a different method, which we call ‘‘NP-tad’’ for reasons di
cussed below. The idea here is to replace Eq.~12! by an
equivalent expression throughO(a) but which has the ad
vantage of having a reasonable limit for largeamQ,0 . The
modified Eq.~12! is then used directly at or near theB mass.

Equation~12! applied to a heavy-light current gives
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A0
NP5ZA

NPA4kQkqS 11bA

amQ,01amq,0

2 D
3@A01cAa]0P5#,

A05q̄g0g5Q; P55q̄g5Q. ~15!

Note thatA0
NP does not approach a static limit foramQ,0

→`. Instead, it goes to2` becausecA,0 and ]0P5
;sinh(MQq,1);amQ,0 . (MQq,1 is the meson pole mass!
Even if cA were zero,A0

NP would still blow up because of the
termbAamQ,0 . For this reason, small discretization errors f
moderateamQ,0 may be magnified significantly if Eq.~15! is
used to extrapolate to theB.

To define the NP-tad alternative, we first let

R~MQq![
^0u]0P5uQq&

~mQ,01mq,0!^0uA0uQq&
, ~16!

whereQq is a generic heavy-light pseudoscalar meson. D
to a cancellation of sinh(MQq,1) ~from ]0) and the explicit
mQ,0 in the denominator, one expectsR has a finite limit as
amQ,0→`. This is confirmed by our simulations. Then

A0
NP85ZA

NPA4kqkQA11~bA12cAR!amQ,0

3A11~bA12cAR!amq,0 A0 ~17!

gives results for ^0uA0
NP8uQq& that are identical to

^0uA0
NPuQq& through O(a). However, becausekQamQ,0

→1/2 askQ→0, Eq.~17! has a static limit, unlike Eq.~12!.
The mass dependence of Eq.~17! is in fact very similar to

the Fermilab formalism at tadpole-improved tree level.
deed, from Eqs.~6! and~5!, the Fermilab version of Eq.~17!
is

A0
FNAL5ZAA4kqkQA11amQ,0 /u0

3A11amq,0 /u0A0 , ~18!

where ZA5ZA
tadu0 is the renormalization constant for th

axial vector current without the tadpole factor removed, a
where we have dropped thed1 terms for simplicity. Hence
Eq. ~17! is equivalent to Eq.~18! but with a special~mass-
dependent! value for the tadpole factor: u05(bA
12cAR)21. The similarity to tadpole improvement~within
the context of nonperturbative renormalization! is the reason
for the name ‘‘NP-tad.’’ Note that, at tree level, wherebA
5ZA5u051 andcA50, NP-tad is in fact identical to the
Fermilab approach.

In practice, we put thed1 terms as well as the correspon
ing perturbative subtraction back into the axial vector c
rent. Thus Eq.~17! becomes

A0
NP - tad5ZA

NPA4kqkQA11~bA12cAR!amQ,0

3A11~bA12cAR!amq,0 A0
d1 - sub ~19!

with
1-5
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TABLE I. Lattice parameters. The upper group corresponds to quenched lattices; the lower gro
dynamical lattices withNf52 staggered quarks. The set G was generated by HEMCGC@35#. Sets marked by
* are new since Ref.@4#. Heavy and light Wilson quark propagators were generated on all sets except
5.7-large. On the latter set, which includes lattices of various sizes, only light quark propagators
generated. Normal~‘‘thin-link’’ ! clover propagators were computed on set J and CP1, a 199 lattice sub
CP. ~See Table II for thin-link clover parameters.! Fat-link clover propagators were generated on set CPF~a
99 configuration subset of CP1! and RF~a 98 configuration subset of set R!.

Name b (amq) Size No. confs.

A 5.7 83348 200
B 5.7 163348 100
5.7-large 5.7 123348, 163348, 203348, 243348 403, 390, 200, 184
E 5.85 123348 100
C 6.0 163348 100
*CP 6.0 163348 305
*J 6.15 203364 100
D 6.3 243380 100
H 6.52 3233100 60

L 5.445 ~0.025! 163348 100
N 5.5 ~0.1! 243364 100
O 5.5 ~0.05! 243364 100
M 5.5 ~0.025! 203364 199
P 5.5~0.0125! 203364 199
*U 5.6 ~0.08! 243364 202
*T 5.6 ~0.04! 243364 201
*S 5.6 ~0.02! 243364 202
G 5.6 ~0.01! 163332 200
R 5.6 ~0.01! 243364 200
m
he

e

a

o
a

tiv
a

r

h
ab
an

r
ch

in-

lat-
of

-
ere

ad-
ef.

ec-

l-
se of
o-
A0
d1 - sub[@11aV~q* !rA

(sub)#A01q̄g0g5ad̃1gW •DW Q

2q̄ad̃1gW •DQ g0g5Q, ~20!

whererA
(sub) is the IOY perturbative correction coming from

thed1 terms alone, which we extract by comparing the co
plete perturbative result computed with and without t
terms @31#. In Eq. ~20!, d̃15d1(am̃Q,0) and d̃15d1(am̃q,0)
in the second and third terms, respectively, withd1(am0)
given in Eq.~4!. As before,d1(am̃q,0) is negligible and is
included merely for convenience.

Equations~19! and ~20! define the NP-tad approach. Th
errors of NP-tad are formallyO(a2LQCD

2 ) and O(a2MQ
2 ).

Thus, the errors could in principle be large asMQ increases
at fixed a. The hope is that the requirement that the dec
constants have a limit asMq→` has forced thea2MQ

2 ~and
higher! terms to have small coefficients, but this is n
proven. We emphasize that the NP-tad approach is logic
neither better nor worse than the method of Refs.@16,30# for
B physics. NP-tad is an attempt to keep the nonperturba
O(a) information and yet include some higher effects in
smooth way, but there is noa priori guarantee that all o
most of such effects are included.A posteriori, one can com-
pare how well the methods scale with lattice spacing. T
scaling of NP-tad results currently appears to be compar
to that seen with standard nonperturbative normalization
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extrapolation in Ref.@16#.4 With only two lattice spacings in
the NP-tad data and in@16#, however, this comparison is fa
from definitive. We therefore use the NP-IOY approa
~whose errors are better understood!, in addition to both the
NP-tad method and standard Wilson fermions, in determ
ing the central value and errors.

III. COMPUTATIONAL DETAILS

A. Lattice generation and inversion

Table I shows the lattice parameters used. Quenched
tices are generated using a standard combination
pseudoheat bath@32# and overrelaxed@33# updates. Succes
sive configurations are separated by 200 iterations, wh
each iteration consists of 1 heat bath and 4~9 for set H,b
56.52) overrelaxed sweeps. The sets J and CP are new
ditions to the quenched lattices previously analyzed in R
@4#. Dynamical fermion lattices were separated by 10 traj
tories~each of unit molecular dynamics time! of the R algo-
rithm @34#. ~Set G, from HEMCGC@35#, is separated by 10
trajectories of time 1/A2 in MILC units.!

4An earlier version of Ref.@16# showed considerably worse sca
ing, but that appears to have been associated more with the u
scaler 0 from the potential than with the normalization and extrap
lation.
1-6
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Unimproved Wilson valence fermion propagators we
generated for all these sets except J.~On set 5.7-large only
light Wilson propagators were computed.! Because our cal-
culations were initially limited by slow I/O speeds and la
of long-term storage, we performed the calculations
heavy-light meson propagators ‘‘on the fly’’—i.e., withou
storing quark propagators. The hopping parameter expan
of the heavy quark propagator, as proposed by Henty
Kenway @36#, makes this possible. Further, the expans
allows us to study a large number of heavy quark mas
with almost no additional expense. For this reason, we c
tinued using the approach of Ref.@36# even after faster I/O
and better storage became available.

In the hopping-parameter approach, the light quark pro
gator, for a single spin-color source, is first computed w
standard methods~red-black preconditioning; minimal re
sidual!. The heavy quark propagator for the same spin-co
source is then computed order by order in the heavy hopp
parameter. At each order, the contribution to the me
propagators, summed over space, is stored to disk. The
meson propagator for any heavy hopping parameter,kQ , can
then be reconstructed after the fact by multiplying the sto
results by appropriate powers ofkQ and summing over itera
tions as well as spin and color. Propagators in the static-l
limit, where the heavy quark mass is taken to infinity, can
obtained as a by-product of this procedure.

Our quark sources are Coulomb-gauge Gaussians. We
the overrelaxed gauge fixer until the sum of the trace of
spacelike links~normalized to 1 when all links are unit ma
trices! changes by less than 731027 per pass. This takes, fo
example, about 435 passes on set D, and a comparable
ber of passes on the other sets.

Our Wilson light quark propagators are computed
three values ofkq , giving light quark masses (mq) in the
range 0.7ms&mq&2.0ms , where ms is the strange quark
mass. We analyze heavy-light mesons with 8 to 10 he
quark masses per data set, with heavy-light pseudoscalar
son masses (MQq) in the range 1.25 GeV&MQq
&4.0 GeV. The heavy quark propagators are computed w
400 passes of the hopping parameter expansion. Figu
shows the convergence on set D of the hopping param
expansion for heavy-light meson correlators at the maxim
time separation~half-way across the lattice!. The value ofkQ
(0.1456) used in Fig. 1 gives a meson mass ofMQq
;1.1 GeV when the light quarkkq is extrapolated toku,d .
Since 1.1 GeV is slightly lighter than the lightest value us
in our analysis, we are confident that the expansion is un
control.

Because the heavy-light mesons must be constructe
each of the 400 orders of the hopping parameter expansio
is too expensive to sum the central point of the smeared s
over the entire spatial volume, even using fast Fourier tra
forms ~FFT’s!. Instead, we simply sum over 16 points in th
L3 spatial volume: the 8 points (0,0,0), (L/2,0,0), (0,L/2,0),
. . . , (L/2,L/2,0), . . . ,plus the 8 points obtained by addin
(L/4,L/4,L/4) to each of the previous points. This fixes t
lowest nonzero momentum which contributes to be (2,2
~and permutations! in units of 2p/L. For the heavy-light
mesons studied here, these higher momentum states are
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pressed sufficiently at asymptotic Euclidean time by th
higher energy. However, in the largest physical volumes, s
N, O, U, and T, the higher momentum states for the heav
mesons are quite close to the ground state, and we are
quired to go to large times (tmin /a;22–27) for the smeared
smeared propagators in order to make single exponentia
with good confidence levels.

The static-light mesons have no such suppression, and
contribution of higher momentum states is limited only
their overlap with the sources. Using computed static-lig
wave functions@37#, we find that the contamination in static
light decay constants from nonzero momentum states
small ('0.7%) for lattices with spatial size of'1.5 fm ~sets
A, C, CP, D, E, G, H!. However, on all other~larger! sets the
contamination is expected to be large. We therefore h
performed a dedicated static-light computation on those
tices, with relative smearing functions taken from@38# and
zero momentum intermediate states enforced by a comp
FFT sum over spatial slices. In addition, the dedicated st
light computation has been run on sets A and E~because the
plateaus from the hopping method proved to be poor! and
sets G and CP~as a check of the hopping method!. On the
latter sets, the two methods give consistent results, but
choose the dedicated method because the errors are sm
Thus, only on sets C, D, and H is the hopping approach u
for the final analysis of the static-light mesons.

Standard~‘‘thin-link’’ ! clover improved valence quar
propagators have been generated using stabilized
conjugate gradient inversion@39# ~for light quarks! and the
hopping parameter expansion~for heavy quarks! on
quenched sets J and ‘‘CP1,’’ a 199-lattice subset of CP
this case we have 5 light and 5 heavy quark masses, in
same range as for the Wilson valence quarks. For the he
quarks we sum, on the fly, the orders in the hopping exp

FIG. 1. Convergence of the hopping parameter expansion
heavy-light pseudoscalar meson correlators on set D.kQ50.1456,
while kq50.1507, the lightest of the three light quarks analyzed
this set. The values of the smeared-smeared and smeared-loca
relators att540 ~half-way across the lattice! are shown with the
solid and dashed lines, respectively.
1-7
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TABLE II. Parameters used for nonperturbative, thin-link clover fermions~quenched configurations!.

Set b No. confs. cSW ZA cA bA bA range

CP1 6.0 199 1.769 0.7924 20.0828 1.472 1.256→1.586
J 6.15 100 1.644 0.8050 20.0426 1.423 1.244→1.510
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sion for a givenkQ—i.e., this is a standard inversion, whic
does not allow a choice of arbitrarykQ after the fact. How-
ever, our experience with the Wilson case leads us to bel
that a large number of heavy quark masses is unneces
the behavior off QqAMQq with 1/MQq is quite smooth. Fur-
ther, we are now able to perform an FFT sum of the me
propagators, so that zero momentum is enforced and
tamination from excited states is reduced. The full Fermi
formalism allows us to choose heavy quark masses nea
b quark mass in this case; we therefore do not need to c
pute static-light mesons here to stabilize an extrapolation

As explained in Sec. II B, we take the ALPHA Collabo
ration @7# values, where available, for the normalization a
improvement constants of our clover fermions. The para
eters used are shown in Table II.

B. Covariant fits

We need to fit correlators in time, extrapolate/interpol
in light and heavy quark masses, and extrapolate in lat
spacing to the continuum. In all cases except the last,
data are correlated, so covariant fits are preferable. As is
known @40#, however, it requires a large statistical sample
determine accurately the small eigenvalues of the covaria
matrix. With limited statistics, such eigenvalues will b
poorly determined and can make the covariant fits unsta
This is a particular problem in the current analysis beca
the large time dimension of our lattices and the fact that
fit two channels simultaneously means that we often m
fits with 25 or more degrees of freedom.

The technique we use to deal with the problem of sm
eigenvalues has many similarities to the methods propose
@40# but has some advantages in our analysis. It is base
a standard approach in factor analysis@41#. We first compute
the correlation matrix~the covariance matrix, but normalize
by the standard deviations to have 1’s along the diago!
and find its eigenvalues and eigenvectors. We then rec
struct the correlation matrix from the eigenvectors, but om
ting those corresponding to eigenvalues less thanlcut, a cut-
off. The resulting matrix is of course singular. It is made in
an acceptable correlation matrix by restoring the 1’s alo
the diagonal. Finally, the corresponding covariance matri
constructed~by putting back the standard deviations!, in-
verted, and used in the standard way for making the fits

The above technique interpolates smoothly between s
dard covariant fits, where no eigenvalues are omitted,
noncovariant~uncorrelated! fits, where all eigenvalues ar
omitted. Furthermore, because the correlation~as opposed to
covariance! matrix is used, the eigenvalues are normaliz
with the average eigenvalue always equal to 1. This allo
us to make a uniform determination of which eigenvalues
keep, which is very important since we are dealing w
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thousands of fits, and it is impossible to examine each fit
hand. Our standard procedure is to chooselcut51, i.e., we
drop all eigenvalues less than 1. The eigenvectors kept t
cally account for 90–95 % of the total covariance. Inde
when one changes how the covariance matrix is compu
~for example, by increasing the number of configuratio
eliminated in the jackknife!, the eigenvalues smaller than
generally change drastically with our typical sample size
;100. The approach eliminates unstable, ‘‘pathological’’ fi
completely.

We have checked that the final results are not significa
affected when we keep several more~or several fewer! ei-
genvalues throughout. Furthermore, on our set with
greatest statistics~set CP, 305 configurations! we are able to
compare with a wide variety of different cuts on the eige
value, as well as standard covariant fits where all eigenva
are kept. We find that central values almost always ag
within one statistical sigma, and usually differ by much le
than that. In data discussed below~and tabulated at http:/
www.physics.wustl.edu/;cb/Nf52_tables! we show for
comparison fits with different eigenvalue cuts for this set

One disadvantage of the current approach, as well a
the methods in@40#, is that there is no true quantitative me
sure of ‘‘goodness of fit.’’ When eigenvalues are remove
the truncated chi-squared,xcut

2 , tends to be~but is not al-
ways! considerably smaller than the ‘‘true’’x2 from a com-
plete covariant fit. However, our experience has shown
requiring xcut

2 /d.o.f.,1 with lcut51 produces fits that are
almost always acceptable by a standard criterion (C
.0.05, with C.L. the confidence level! when the data allow
a fully covariant~uncut! fit. This is not the case for nonco
variant fits (lcut5`). Such fits may havexcut

2 /d.o.f.!1 and
yet extend to a fully covariant fit with extremely small C.L
For example, exponential fits to a correlator which inclu
several points clearly outside the plateau region can still h
xcut

2 /d.o.f.!1 when lcut5`, but not, in our experience
whenlcut51.

At every stage in the analysis, we compute statistical
rors by the jackknife procedure. The covariance matrices
also computed by jackknife. For the quenched sets, ther
no evidence of a nonzero autocorrelation length. Howeve
the dynamical sets, the errors typically increase with
number of configurations omitted in the jackknife until;4
configurations are omitted. To be conservative, we determ
our statistical errors and covariance matrices by omittin
configurations at a time~for both dynamical and quenche
sets!.

C. Correlator fits and extraction of decay constants

We compute ‘‘smeared-local’’ and ‘‘smeared-smeare
pseudoscalar meson propagators in each of three ca
1-8
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heavy-light, static-light, and light-light~the last with degen-
erate masses only!. These correlators are defined by

GSL~ t !5(
xW

^0uA0
R~xW ,t !x5

†~0W ,0!u0& ~21!

GSS~ t !5(
xW

8 ^0ux5~xW ,t !x5
†~0W ,0!u0&, ~22!

whereA0
R is the relevant renormalized current, namelyA0

KUR

@Eq. ~10!#, A0
STAT @Eq. ~11!#, A0

NP - IOY @Eq. ~13!#, A0
NP - tad@Eq.

~19!#, or A0
NP @Eq. ~12!—for light-light quantities only#. For

GSS, the prime on the sum indicates that onlyNsink points on
a time-slice are included. As discussed above, for all
Wilson heavy-light and light-light data,Nsink516. For the
clover and the dedicated static computations, the comp
sum is performed ~with FFT!, so one hasNsink5V
[nxnynz . In Eqs.~21! and~22!, x5 is the Gaussian pseudo
scalar source, given by

x5~xW ,t !5(
yWzW

e2yW2/r 0
2
e2zW2/r 0

2
q̄~xW1yW !g5Q~xW1zW !. ~23!

The width r 0 varies from 2.33 lattice spacings~set A! to 8
spacings~set H! and is chosen to be roughly 0.35 fm. For t
Henty-Kenway hopping calculations, the sums in Eq.~23!

run over evenyW , zW only, so that we may exploit an even-od
decomposition. In Eq.~23! and below, we use the notation o
the heavy-light case~quarksQ andq) generically: for light-
light formulas, let Q→q; for static-light formulas, letQ
→h.

For large Euclidean timet, GSL and GSS are fit simulta-
neously and covariantly to single exponential forms, with
same mass in both channels

FIG. 2. Light-light effective masses for set R,k50.159. The fit
ranges are 8 to 31 forGSL and 10 to 31 forGSS. The smeared-
smeared masses are shifted upward for clarity. The long horizo
lines show the fit value of the mass. The error in the fit value
indicated at the left end of the fit lines by two short horizontal lin
09450
e

te

e

GSL→zSLe
2Mt; GSS→zSSe

2Mt. ~24!

In other words, these are fits with three parameters:M, zSL
andzSS. Central values uselcut51.0 throughout, except fo
set CP, wherelcut50.1. Typical effective mass plots for th
light-light and heavy-light cases are shown in Figs. 2, 3, a
4, respectively. Here and below, we generally chooseNf
52 and clover data for the plots because the quenched
son data have been discussed in more detail previously@4,5#.

We vary the fit range~in t) in each channel over severa
choices that appear to be in the asymptotic, ‘‘plateau,’’ reg

tal
s
.

FIG. 3. Same as Fig. 2, but for heavy-light effective masses
set J,kQ50.098,kq50.1347. The fit ranges are 12 to 18 forGSL

and 8 to 16 forGSS.

FIG. 4. Same as Fig. 2, but for heavy-light effective masses
set M,kQ50.120,kq50.160. Fit ranges are 13 to 31 forGSL and
19 to 31 forGSS. The heavy quark is computed with the Hent
Kenway hopping expansion. The late plateau inGSS is due to con-
tamination from nonzero momentum states because the sink is
summed over complete time slices.
1-9
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C. BERNARDet al. PHYSICAL REVIEW D 66, 094501 ~2002!
for the effective mass. Combining such choices for the lig
light, heavy-light and static-light cases, we have appro
mately 25 different versions of the analysis on each data
Our central values are taken from the version which has
best blend of small statistical errors and low, or at least
ceptable, values ofxcut

2 /d.o.f. Here ‘‘acceptable’’ is defined
with few exceptions, asxcut

2 /d.o.f.,1.3, with lcut51. ~In
about 85% of the central value choices,xcut

2 /d.o.f.,1.! The
exceptions are~i! a few fits to heavy-light mesons outside th
ranges of mass that we include in our final determination
the decay constants,~ii ! a few fits to heavy-light mesons o
the largest lattices, where the slow approach to
asymptotic regime for smeared-smeared correlators c
puted with the Henty-Kenway approach~see Sec. III A! left
us with somewhat noisy data at larget, and~iii ! the fit to the
static-light meson with heaviest light quark on set G, wh
had rather noisy data. In these exceptional cases, we r
our definition of acceptablexcut

2 /d.o.f. to be less than 1.9, 1.7
and 1.6, respectively.

Of course, with the approximately 900 channels we
one should expect that some fits over truly asymptotic ran
will have poorx2/d.o.f. simply because of statistical fluctu
tions. However, since ourxcut

2 generally underestimates th
full x2, we have tried to make choices which are more c
servative than a standard criterion, of say, confidence le
.0.05.

From the fits, the pseudoscalar decay constantsf Qq for
given quark masses are then obtained via

f QqAMQq5
A2

a3/2
ANsink

V

zSL

AzSS

, ~25!

where we use the definition of the decay constant that g
f p5130.7 MeV:

^0uA0
contuQq,pW 50&[2 i f QqMQq , ~26!

with Acont the continuum axial vector current.5

Data for the masses and decay constants for each o
sets listed in Table I are posted at http
www.physics.wustl.edu/;cb/Nf52_tables. The files
‘‘ name_qq.dat,’’ where ‘‘name’’ is the set name~A, B,
E, . . .! give dimensionless light-light masses and decay c
stants as a function of hopping parameter. Simila
‘‘ name_Qq.dat’’ and ‘‘name_Statq.dat’’ give dimensionles
masses and values fora3/2f QqAMQq for heavy-light and
static-light mesons, respectively. For set CP, additional fi
with ‘‘lambda-cut5X’’ appended to the name, show the e
fect of various truncations of the correlation matrix. F
heavy-light mesons the masses tabulated are the sh

5When Eq.~25! is used for static-light mesons with the Hent
Kenway hopping approach, an extra factor ofA2 is required on the
right-hand side. This arises from the fact that the highest mom
tum state (p,p,p) aliases the zero momentum state with our ev
site-only source, and the higher momenta are not suppresse
Euclidean time for the static case.
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massesaMQq,2 , Eq. ~8!; for the static-light case they ar
simply the pole masses. Time ranges, number of degree
freedom, andxcut

2 are included for all fits. For sets CP1 and
the nonperturbative clover lattices, ‘‘name’’ gets a further
qualifier in the heavy-light case, which is either ‘‘NP-IOY
or ‘‘NP-tad’’ for the two types of renormalization performed

To enable the reader to see the effects of various re
malizations used, as well as to make possible reanalysi
the data by other groups, we have tabulated additional
data. For all sets, we have separately computed correlato
the bare lattice axial currentA0:

GSL
bare~ t !5(

xW
^0uA0~xW ,t !x5

†~0W ,0!u0&; A05q̄g0g5Q.

~27!

We fit GSL
bare simultaneously withGSS, as in Eq.~24!, giving

us the three quantitiesM, zSL
bareandzSS. We then defineJbare

by

Jbare5ANsink

V

zSL
bare

AzSS

. ~28!

Jbareis basically the unrenormalized decay constant. For
ample, in the case of our heavy-light Wilson data, for whi
the renormalized current is given by Eq.~10!, we have

f QqAMQq5
A2

a3/2
ZA

KURA12
3kQ

4kc
A12

3kq

4kc
Jbare.

~29!

The masses and quantitiesJbare are posted in the files
‘‘ name_qq_bare.dat,’’ ‘‘name_Qq_bare.dat,’’ ‘‘name_Statq_
bare.dat.’’6

For heavy-light mesons with the nonperturbative clov
action, we have posted additional intermediate data. We
fine

A0
dim4[q̄g0g5agW •DW Q ~30!

A0
d1[A01@d1~am̃Q,0!1d1~am̃q,0!#A0

dim4 ~31!

A0
d12sub

5@11aV~q* !rA
(sub)#A0

1@d1~am̃Q,0!1d1~am̃q,0!#A0
dim4 ~32!

A0
imp[A11~bA12cAR!amQ,0

3A11~bA12cAR!amq,0 A0
d1- sub, ~33!

where ‘‘imp’’ stands for ‘‘improved,’’ and where Eq.~32! is a
rewriting of Eq. ~20!, using the fact that the operator

n-
-
in

6Again, for static-light correlators computed with the hopping a
proach, we include an extra factor ofA2 on the right-hand side o
Eq. ~28!. In this case the heavy-light masses tabulated are the~pole!
masses directly from the fits, not the shifted masses.
1-10
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q̄̃Ig0g5gW •DW Q̃I and 2 q̄̃IgW •DQ g0g5Q̃I have equal zero-
momentum matrix elements. For each current in Eqs.~30!–
~33!, we define a correspondingJ, as in Eq.~28!. Results
for Jdim4, Jd1, Jd1- sub, andJ imp are tabulated in the files
‘‘ name_Qq_intermediate.dat,’’ where ‘‘name’’ now is just
CP1 or J. From Eqs.~13!, ~6!, ~30!, and~31!, these quantities
are related to the decay constants in the NP-IOY case b

f QqAMQq5
A2

a3/2
A12

3kQ

4kc
A12

3kq

4kc

3@ZA
IOYJd11Z12

IOYJdim4#. ~34!

Similarly, from Eqs.~19!, ~32!, and ~33!, we have in the
NP-tad case:

f QqAMQq5
A2

a3/2
ZA

NPA4kQkqJ imp ~35!

5
A2

a3/2
ZA

NPA4kQkqA11~bA12cAR!amQ,0

3A11~bA12cAR!amq,0J
d12sub. ~36!

In practice, when Eqs.~24! and ~25! are used to compute
f QqAMQq, Eqs. ~34! and ~36! are obeyed only up to sma
corrections. This is because two separate fits are perfor
to compute the two terms in Eq.~34!; whereas the quantitie
are added first and then fit in Eq.~24!. For Eq. ~36!, the
discrepancy is due to the fact that the factors l
A11(bA12cAR)amQ,0 and their errors are not included i
the fit here, but are factored in later.

Finally, we also compute smeared-local light-light vec
meson propagators. These are fit covariantly to single ex
nentials~two parameter fits!. Raw data for the vector channe
appear in the files ‘‘name_qq-vector.dat.’’

D. Chiral extrapolations

Chiral extrapolations/interpolations are needed for
light-light pseudoscalars, which are used to set the s
~through f p) and to findkc and the physical values ofku,d
andks , the hopping parameters of the up/down and stra
quarks.~We generally determineks by adjusting the degen
erate pseudoscalar mass toA2mK

2 2mp
2 , the tree-level chiral

perturbation theory value.! The light-light vectors provide
alternative determinations of the scale~throughmr) andks
~through mf) and require additional chiral extrapolation
The heavy-light and static-light masses and decay const
also need to be extrapolated/interpolated in light quark m
to the up/down and strange quark masses.

We have tried chiral extrapolations using either the b
light quark massmq,0 or the light quark tadpole-improve
kinetic massM̃q,2 as the independent variable.7 For both Wil-

7As discussed in Sec. II B, we also tried the standardO(a) im-
proved quark mass in the clover case, but the fits were not sig

cantly different from those withM̃q,2 .
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son and clover quarks, the confidence level of linear fits
MQq , f Qq , and f qq is better withM̃q,2 thanmq,0 , so we use
it from now on in all cases.

An important question is which functional form on
should fit to. Unfortunately, as in other lattice computatio
to date, we have been forced to work at fairly large values
light quark mass. In this region, our data for decay consta
both f Qq , and f qq , are quite linear. There is little evidenc
for chiral logarithms, which should introduce significant cu
vature as one approaches the chiral limit, as emphasized
cently by Kronfeld and Ryan@8# and Yamada@9#. This is
presumably not a problem with chiral perturbation theo
(xPT), but simply an indication that higher order terms~e.g.,
terms quadratic in quark mass! are as important as the chira
log terms in the current mass regime. Further, chiral log
would introduce yet another parameter in the heavy-li
case, theB-B* -p couplingg.8 It therefore seems clear to u
that fits of f Qq to the NLOxPT form would require at leas
four parameters: the value in the chiral limit, a linear slop
the coefficientg2, and a higher order~quadratic?! term in-
troduced to cancel most of the curvature of the logarithms
our relatively high mass region. With only three light qua
masses on most sets, it is clear that such an approach i
feasible at present. In work in progress@45#, however, we are
consistently using five light quark masses and expect tha
will be able to include chiral logs and quadratic terms
rectly in the fits for central values.

For our ‘‘standard’’ chiral extrapolations, we thus consid
only quadratic and linear fits inM̃q,2 . For each physical
quantity, we choose one of these fits for the central va
and the other is taken, where appropriate, to give a stan
chiral extrapolation error. Note thatf B @46# and f p @47# have
similar chiral log effects in full QCD:

f B5 f B
0F11

1

16p2f 2 S 2
3~113g2!

4
mp

2 ln~mp
2 !1••• D G

~37!

f p5 f F11
1

16p2f 2
@22mp

2 ln~mp
2 !1•••#G . ~38!

Since we fix the lattice scale withf p and always use the
same type of chiral fit for bothf Qq and f qq , it is not unrea-
sonable to expect that much of the systematic effect com
from not including the curvature of Eqs.~37! and ~38! will
cancel. In Secs. III E and V D, we explain how we test th
assumption and estimate the chiral logarithm effects in
dynamical case.

fi-

8CLEO @42# has recently measured theD* 1 width, which gives,
using lowest orderxPT, aD-D* -p coupling g2'0.35. However,
NLO xPT and theD* →Dp decay givesg2'0.07@43#; while NLO
xPT on theD* 1 width @Eq. ~21! in @43## givesg2'0.22. A recent
lattice computation@44# givesg2'0.45. There is also some unce
tainty in going from theD to theB system.
1-11
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Figure 5 shows the chiral extrapolation ofmp
2 to find kc ,

with both linear and quadratic fits. Since the independ
variable, M̃q,2 , itself depends onkc , such fits have to be
iterated two or three times to find a self-consistent value
kc where bothmp

2 andM̃q,2 vanish. This has been done on
for the quadratic fit in Fig. 5 to emphasize the difference w
the linear fit.

Table III shows the results forkc and xcut
2 values for all

the data sets. Note that the linear fits are uniformly v
poor; while quadratic fits are quite good wherever there
enough light masses to compute axcut

2 . Although usingam0

as the independent variable actually reduces thexcut
2 values

of the linear fits somewhat, they remain very poor. The
features agree with what was found in Ref.@4#. We therefore
use only quadratic fits/solves from here on formp

2 vs aM̃q,2 .
Table IV gives the values ofks resulting from these fits.

The case off qq vs aM̃q,2 is a more difficult one. Figures
6 and 7, and Table V show the extrapolations. Although
linear fits in both figures appear reasonable to the eye, th
Fig. 7 has a rather high value ofxcut

2 /d.o.f. as do many of the
other linear fits in Table V. Where comparisons can be ma
the quadratic fits are better. On the other hand, the quad
fits often have quite large statistical errors, especially in
Wilson case where there are only three light quark mas
Furthermore, on the sets with the finest lattice spacings~C,
CP, D, H, G, R, CP1, J! the linear fits are generally accep
able ~set R is an exception!. For these reasons, we use t
linear fits for the central values and take the quadratic fits
estimate the ‘‘standard chiral systematic error.’’ As me
tioned above, the fits in future work@45# will include chiral
logs as well as quadratic terms.

Figure 8 shows a typical linear extrapolation of the ligh
light vector mass to the physical point for up/down quar
As seen in Table V, the linear fits are almost always qu

FIG. 5. (amp)2 vs aM̃q,2 for set CP1. The solid line is a qua
dratic fit; the dotted line, the alternative linear fit. The fits ha
xcut

2 /d.o.f.50.06 and 36.5, respectively, withlcut51. The bursts
are the extrapolated points where (amp)250.
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good, and we use the scale set withmr in this way as an
alternative to that fromf p . The same fits also give an alte
native value forks , using mf . The results are shown in
Table IV.

Sample chiral fits for heavy-light masses and decay c
stants are shown in Figs. 9 and 10. Although the extrapola
data for all the sets are too extensive to tabulate here,
are available at http://www.physics.wustl.edu/;cb/Nf
52_tables, in the files ‘‘name_chiral_mass.dat’’ and
‘‘ name_chiral_fsqrtM.dat.’’ In the latter files we give
f QqAMQq, rather thanf Qq , becausef QqAMQq is what we
will need later to extrapolate/interpolate to the mass of thB
andD mesons. For the decay constants from sets CP1 an
‘‘ name’’ includes the qualification NP-IOY or NP-tad be
causef Qq will of course depend on how the renormalizatio
is done.

For almost all data sets, the linear chiral fits of the hea
light masses are quite good, at least in the important rang
meson masses between theD and theB. Sets L and T are
exceptions, which is perhaps not surprising since their c
elators are quite noisy to begin with, making it difficult t
find good plateaus. Indeed, for set T the data are no
enough that covariant chiral fits for heavy-light masses
not converge, with any choice forlcut exceptlcut5`, i.e.,
noncovariant fits. However, since the linear fits to hea
light masses were fine on the vast majority of the sets,
believe it is reasonable to use them exclusively. Linear fits
the static-light masses are always acceptable.

The situation for the heavy-light decay constants is sim
lar to that for the light-light decay constants. Again, there
a small amount of curvature in these plots, and the direc
of curvature is the same as for the light-light case.~Compare
Fig. 10 with Figs. 6 and 7.! Therefore, quadratic chiral fits o
f Qq are better than linear ones where the comparison ca
made, but, as before, the quadratic fits/solves lead to sig
cantly larger statistical errors. The main difference with t
light-light case is that the linear fits typically improve as t
mass of the heavy quark increases, so that by the time
physical b quark mass is reached they are generally qu
reasonable. The only exceptions to this rule are the sets
for which linear fits are poor over the whole heavy-qua
mass range, and T, which is noisy and again requires no
variant fits. In the static-light case, linear fits are alwa
good. We thus choose linear fits everywhere for the cen
values but use quadratic fits for the heavy-lights in estim
ing the systematic error in the standard chiral extrapolati
As discussed above, we expect that extrapolating both lig
light and heavy-light fits in the same way will cancel at lea
some of the systematic error associate with curvature
chiral logarithms. Therefore, we change from linear to qu
dratic fits in both cases at once when we make our estim
of the ‘‘standard’’ chiral error.

To summarize: For central values, we use quadratic ch
fits in aM̃q,2 for mp

2 and linear fits for heavy-light and static
light masses and all the decay constants. We call this com
nation ‘‘chiral choice I.’’ Our standard chiral systematic e
rors are found by comparing the central values with
1-12
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TABLE III. Extrapolations ofa2mp
2 vs aM̃q,2 to find kc . When the number of degrees of freedom is

~quadratic fit with 3k values!, a solver is used instead of a fitter. For fits, the cutoff on correlation ma
eigenvalues (lcut) is 1. For set 5.7-large, which consists of several lattice sizes, the central value
average over all sets, the error is a combined weighted error, and thex2 and d.o.f. shown are the ones from
the volume 203348. See Sec. V B for a description of the fat-link computations.

Name kc xcut
2 d.o.f. kc xcut

2 d.o.f.
quadratic fit linear fit

quenched Wilson
A 0.169433~237! — 0 0.168607~89! 29.3 1
B 0.169340~100! — 0 0.168383~52! 227.0 1
5.7-large 0.169748~24! 0.3 2 0.168862~33! 703.3 3
E 0.161397~124! — 0 0.161046~89! 20.1 1
C 0.157228~95! — 0 0.156778~46! 62.5 1
CP 0.157274~74! — 0 0.156906~25! 44.0 1
D 0.151825~55! — 0 0.151663~35! 28.0 1
H 0.149368~20! — 0 0.149248~15! 18.9 1

Nf52 Wilson
L 0.169422~61! — 0 0.168160~50! 299.4 1
N 0.169515~56! — 0 0.168513~25! 496.4 1
O 0.167197~41! — 0 0.166483~30! 306.8 1
M 0.165919~59! — 0 0.165211~33! 192.3 1
P 0.165257~47! — 0 0.164864~28! 144.5 1
U 0.163065~27! — 0 0.162570~16! 426.6 1
T 0.161528~22! — 0 0.161887~27! 155.9 1
S 0.161400~20! — 0 0.160802~12! 447.2 1
G 0.161158~72! — 0 0.160821~45! 38.7 1
R 0.161167~23! — 0 0.160798~12! 328.9 1

quenched clover
CP1 0.135342~18! 0.1 2 0.135168~8! 109.4 3
J 0.135862~20! 0.0 2 0.135792~16! 45.8 3

fat-link clover (N510, c50.045)
CPF 0.125558~22! 0.2 2 — — —
RF 0.125666~25! — 0 — — —
fo
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results of ‘‘chiral choice II’’: quadratic fits formp
2 and both

light-light and heavy-light decay constants, and linear fits
heavy-light masses and static-light masses and decay
stants. For the light-light vector meson masses, which e
only in various systematic error estimates~alternative scale
determination frommr , alternativeks determination from
mf), we always use linear fits.

E. Chiral logarithm effects

The standard chiral systematic error just described d
not directly take into account the sharp curvature in dec
constants at very small quark mass caused by terms o
form 2mp

2 ln(mp
2) in Eqs. ~37! and ~38!. Putting aside the

issue of scale choice, an extrapolation in the full theory t
ignores the chiral log inf Qq is expected to overestimatef B

and underestimatef Bs
/ f B @8# ~since 2mp

2 lnmp
2 is concave

down with rapid variation at small mass!. However, because
we set the scale withf p and use the same extrapolations f
f qq and f Qq , the effect on the individual decay constants
09450
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less clear. Even ratios such asf Bs
/ f B are affected indirectly

by the scale choice, through the fixing ofks , the hopping
parameter for the strange quark.~Fixing kb , the bottom
quark hopping parameter, has little effect on the ratio
does represent another scale effect on the individual de
constants.! It is easy to see that our scale choice should p
f B and f Bs

/ f B in the opposite direction of thef Qq extrapola-

tion. We can thus hope that such effects largely cancel,
this is a justification for taking our central values and erro
from the standard linear and quadratic chiral fits describe
the previous section.

However, to test the above assumption and estimate
errors induced by not directly fitting with chiral log forms
we need alternative methods of evaluation that do not
volve chiral extrapolations of individual decay constan
One approach that takes advantage of the fact that the c
logs in f B and f p are similar in magnitude is to perform
chiral extrapolations only on the ratiof B / f p ~more precisely,
f Qq / f qq). Given the expected range for the parameterg2, the
1-13
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C. BERNARDet al. PHYSICAL REVIEW D 66, 094501 ~2002!
ratio has a chiral log term of opposite sign from that off B
alone and either comparable or greatly reduced magni
@see Eqs.~37! and ~38! and the footnote shortly before#. In
practice, since the slope off qq is greater thanf Qq , f qq / f Qq
is more linear thanf Qq / f qq , and we work with the former.

Figure 11 shows a chiral extrapolation off qq / f Qq for set
R, with kQ chosen so thatMQq is near theB mass. There is
clear curvature, so a linear fit is not appropriate, and we
~solve! quadratically. To the extent that a residual chiral l
remains in the ratio, the quadratic fit should somewhat ov
estimatef p / f B and hence alsof Bs

/ f B .
However, to take real advantage of the presumed red

tion of chiral logs in f p / f B and known sign of the error in
f Bs

/ f B , we must eliminate the dependence of the scale

ks on a chiral extrapolation. This means that common sc
choices such asf p , mr or mN cannot be used. Further, w
are reluctant to employ static potential quantities such as

TABLE IV. Values of ks , the hopping parameter of the strang
quark, from fits to the light-light pseudoscalars and vectors. In
former case, we adjust the pseudoscalar mass toA2mK

2 2mp
2 ; in the

latter, we adjust the vector mass tomf . The values ofx2 and
degrees of freedom can be found by referring to the correspon
fits in Tables III and V. Data from set 5.7-large are combined as
Table III. See Sec. V B for a description of the fat-link compu
tions.

Name ks ~pseudoscalars! ks ~vectors!
quadratic fit linear fit

quenched Wilson
A 0.164331~432! 0.163173~407!
B 0.163629~355! 0.163709~215!
5.7-large 0.163916~100! 0.163456~78!

E 0.158203~170! 0.157729~351!
C 0.154567~97! 0.154780~229!
CP 0.154857~99! 0.154638~152!
D 0.150395~66! 0.150316~102!
H 0.148415~42! 0.148322~87!

Nf52 Wilson
L 0.164114~201! 0.164064~184!
N 0.164436~213! 0.164027~202!
O 0.162938~121! 0.162691~120!
M 0.161778~205! 0.161830~206!
P 0.161518~141! 0.161374~106!
U 0.159690~81! 0.159373~103!
T 0.158610~121! 0.157243~148!
S 0.158633~68! 0.158423~50!

G 0.158795~94! 0.158350~146!
R 0.158736~55! 0.158465~85!

quenched clover
CP1 0.133882~41! 0.133515~63!

J 0.134665~45! 0.134400~56!

fat-link clover (N510, c50.045)
CPF 0.123206~46! 0.123481~137!
RF 0.123440~62! 0.123236~162!
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string tension,r 0, or r 1, because their physical values a
only known phenomenologically, with uncertain errors. I
stead, we look at three more-or-less physical quantities a
ciated with thes quark: the vector meson massmf , and the
mass and decay constant of a would-bess̄ pseudoscalar,mss

and f ss. To be precise, thess̄ meson is made of two valenc
quarks with the physical strange quark mass, but in a s
dard sea quark background: either the physicalNf53 case
~with mu5md5m̂phys and ms

phys), or, corresponding more
closely to our simulations, theNf52 case~with mu5md

e

ng
n

FIG. 6. The light-light pseudoscalar decay constant,f qq , vs

aM̃q,2 for set J. The solid line is a linear fit; the dotted line, th
alternative quadratic fit. The fits havexcut

2 /d.o.f.51.1 and 0.005,
respectively, withlcut51 ~1 eigenvector of 5 kept!. The bursts are

the extrapolated points whereM̃q,2 takes its physical value~i.e., k
5ku,d). The burst on the dotted line has been displaced slightly
clarity.

FIG. 7. Same as Fig. 6, but for set R. The linear fit~solid line!
has xcut

2 /d.o.f.58.7, lcut51 ~1 eigenvector of 3 kept!; while the
quadratic fit~dotted line! has no degrees of freedom.
1-14
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TABLE V. Extrapolations ofa fqq andmr vs aM̃q,2 to find the scale,a21, using f p50.1307 GeV and
mr50.768 GeV. When the number of degrees of freedom is 0~quadratic fit with 3k values!, a solver is used
instead of a fitter. For fits, the cutoff on correlation matrix eigenvalues (lcut) is 1. Data from set 5.7-large ar
combined as in Table III. See Sec. V B for a description of the fat-link computations.

Name a21 (GeV) xcut
2 d.o.f. a21 (GeV) xcut

2 d.o.f. a21 (GeV) xcut
2 d.o.f.

f qq , linear fit f qq , quadratic fit mr , linear fit

quenched Wilson
A 1.391~66! 5.3 1 1.586~122! — 0 1.413~32! 1.5 1
B 1.311~48! 6.1 1 1.453~66! — 0 1.488~25! 0.0 1
5.7-large 1.339~14! 3.3 3 1.388~17! 0.3 2 1.450~8! 9.9 3
E 1.780~43! 3.4 1 1.851~63! — 0 1.848~73! 0.1 1
C 2.124~54! 1.8 1 2.266~96! — 0 2.414~102! 0.5 1
CP 2.211~48! 1.2 1 2.339~124! — 0 2.333~51! 0.2 1
D 3.151~91! 2.8 1 3.331~111! — 0 3.389~108! 0.2 1
H 4.388~121! 0.5 1 4.490~146! — 0 4.489~150! 0.0 1

Nf52 Wilson
L 1.375~30! 15.7 1 1.585~43! — 0 1.545~23! 0.0 1
N 1.432~35! 2.0 1 1.524~53! — 0 1.524~25! 0.3 1
O 1.568~25! 2.3 1 1.654~55! — 0 1.685~20! 0.9 1
M 1.608~47! 1.0 1 1.680~56! — 0 1.789~37! 0.3 1
P 1.713~38! 2.0 1 1.773~50! — 0 1.853~22! 2.3 1
U 1.800~25! 3.2 1 1.868~34! — 0 1.888~25! 0.3 1
T 1.800~37! 24.3 1 1.939~40! — 0 1.839~20! 0.7 1
S 2.038~28! 7.6 1 2.192~31! — 0 2.157~19! 0.5 1
G 2.243~38! 4.3 1 2.377~63! — 0 2.242~52! 0.0 1
R 2.194~26! 8.7 1 2.306~39! — 0 2.269~31! 3.6 1

quenched clover
CP1 1.994~29! 8.0 3 2.093~65! 3.9 2 1.908~26! 0.2 3
J 2.447~45! 3.3 3 2.545~90! 0.0 2 2.383~39! 1.4 3

fat-link clover (N510, c50.045)
CPF 1.847~18! 14.4 3 1.923~28! 0.5 2 2.114~61! 6.1 3
RF 1.873~27! 1.4 1 1.939~69! — 0 1.920~47! 0.3 1
a

ry

s.

n

5m̂phys). Here the superscript ‘‘phys’’ stands for the physic
mass, and we neglect isospin violations as usual.

The quantity f ss can be related tof K and f p in 1-loop
~NLO! partially quenched chiral perturbation theo
(PQxPT), in a manner independent of the analyticp4

~‘‘Gasser-Leutwyler’’! constants. Using the formulas in Ref
@48# and @49# for Nf52 andNf53, respectively, we find

f ss
(2)f p

f K
2

511
1

16p2f 2
@ 1

2 mp
2 ln~mss

2 /mp
2 !2 1

2 mss
2 1 1

2 mp
2 #'0.93

~39!

f ss
(3)f p

f K
2

511
1

16p2f 2
@ 3

2 mh
2 ln~mh

2/L2!2 1
2 mp

2 ln~mp
2 /L2!

2mss
2 ln~mss

2 /L2!#'0.95 ~40!

where, in the numerical evaluation, we have usedf 5 f p

5130.7 MeV andmss
2 5 3

2 mh
22 1

2 mp
2 . ~The latter relation is
09450
l

FIG. 8. Linear extrapolation of the light-light vector meso
mass to the physical point (r meson, indicated by the burst!. The
data are from set S. The fit hasxcut

2 /d.o.f.50.5 with lcut51.
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theoretically convenient here because it makes Eq.~40! ex-
plicitly independent of the chiral scaleL.!

For mss, we consider a few choices. Two tree level re
tions have already been mentioned:

mss
2 52mK

2 2mp
2 ~41!

mss
2 5 3

2 mh
22 1

2 mp
2 . ~42!

With Refs. @48,49#, we can also derive 1-loop relations fo
mss similar to Eqs.~39! and ~40!, although they do involve

FIG. 9. Linear chiral extrapolation of the heavy-light pseud
scalar meson mass, to the physical point (k5ku,d , indicated by the
burst!. The data are from set U,kQ50.113. The fit hasxcut

2 /d.o.f.
50.7 with lcut51.

FIG. 10. Linear~solid! and quadratic~dotted! chiral extrapola-
tions of f Qq to the physical point (k5ku,d indicated by the bursts!.
The data are from set CP1,kQ50.09, with NP-IOY renormaliza-
tion. The linear fit hasxcut

2 /d.o.f.51.0; the quadratic, 0.3. The pa
rameterlcut51 in both cases. The burst on the dotted line has b
displaced slightly for clarity.
09450
-

analytic terms indirectly through the quark mass ratios.
particular, we use theNf52 result:

mss
2 mp

2

mK
4

5
4m̂/ms

~11m̂/ms!
2

3F11
1

16p2f 2
@2mp

2 ln~mss
2 /mp

2 !1mss
2 2mp

2 #G
'0.17, ~43!

where we have takenms /m̂524.4 @50#.
We then perform a series of analyses. For each, we cho

2 of the quantitiesf ss, mss, andmf , and a method of evalu
ation for the ‘‘physical’’ quantitiesf ss @either Eq.~39! or Eq.
~40!# and/ormss @either Eq.~41!, Eq. ~42! or Eq. ~43!#. We
then fit the ratio of the 2 chosen quantities as a function
light quark mass (aM̃q,2) in order to determineks . Gener-
ally, only an interpolation or mild extrapolation is require
Figures 12 and 13 show two examples of such fits,
mss/ f ss and mss/mf , respectively. The former uses Eq
~41! and ~39!; while the latter, Eq.~43!. Note that a slight
extrapolation is required to findks in Fig. 12. In Fig. 13,ks
is determined by an interpolation, which is more similar
the standard analysis. The difference between the two si
tions gives some indication of the errors of the procedure
Table VI we show the results forks for 12 different versions
of such fits, performed on two different dynamical sets
configurations~the ones with the lightest sea quark masse!.

Givenks , the next step is to determine the scale,a21. We
consider one of the two quantities in the ratio used to de
mine ks , extrapolate or interpolate as needed to reachk
5ks , and set the result to the ‘‘physical’’ value of that qua
tity. The results from either of the two quantities in the ra
should be consistent; they are. Figure 14 shows a quad
extrapolation off qq to ks ; a21 is fixed from the result via

-

n

FIG. 11. Quadratic chiral extrapolation off qq / f Qq from set R,
with kQ50.125. The bursts show the extrapolation toks andku,d ,
with these values determined by method 6 in Table VI.
1-16
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LATTICE CALCULATION OF HEAVY-LIGHT DECAY . . . PHYSICAL REVIEW D 66, 094501 ~2002!
Eq. ~39!. Although an extrapolation is again required in th
particular case, it is only over a short distance in quark m

Once the scale is determined, the standard extrapola
of mqq

2 produces the light quark hopping parameter,ku,d . It
is, of course, very close tokc in all cases.

Results for various scale determinations are shown
Table VI. In most cases, the values ofa21 are significantly
larger than those from the standard linear~or quadratic! ex-
trapolation of f p ~see Table V!. This is not unexpected be
cause extrapolation from relatively large mass without
chiral log term in Eq.~38! should overestimatea fp . Further,
other lattice spacing determinations from light quark phys
~e.g.,mr , mN) also typically involve linear or quadratic ch

FIG. 12. Quadratic extrapolation ofmqq / f qq to mss/ f ss on set
R, with mss from Eq.~41! and f ss from Eq.~39!. The abscissa of the
burst gives the value of the quark mass,aMq,2 , atks . This particu-
lar determination is called ‘‘method 1’’~see text and Table VI!.

FIG. 13. Quadratic interpolation ofmqq /mqq
vec to mss/mf on set

R, with mss from Eq.~43!. The abscissa of the burst gives the val
of the quark mass,aMq,2 , at ks . This particular determination is
called ‘‘method 8’’~see text and Table VI!.
09450
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ral extrapolations from rather high masses, so their gener
good agreement with the standardf p scale cannot be used t
rule out the results in Table V. Indeed, it has been known
some time that heavy quark physics~charmonium or upsilo-
nium! typically gives scales;10 to 20 % larger than light
quark physics.~For a recent example, see Table I in Re
@51#.! It now appears that at least some of this discrepanc
due to the extrapolation in the light quark mass.

On the other hand, the result fora21 is unreasonably
large (*30% bigger than the central value! in three cases in
Table VI. ~In all other cases the scale is at most 17% grea
than the central value.! The three cases also have long e
trapolations to findks ~i.e., a value ofks very close to
kc—compare Table III! and very large statistical errors i
both ks anda21. These cases are marked with asterisks a
are omitted from any averages of decay constant effects

Given ks , ku,d , anda21, the ratio f qq / f Qq can now be
interpolated/extrapolated as in Fig. 11 toks andku,d . Using
the physicalf p and the relevant choice forf ss, this produces
f Qs or f Qu,d , which are then interpolated in heavy qua
mass in the same way as in our standard analysis, desc
in the next section. The differences of the final decay c
stants from the central values are displayed in Table VI
each of the methods. These differences will be used in S
V D to estimate the effects of chiral logs in the dynamic
case. We also explain there why we think it would be ina
propriate at this stage tocorrect the central values by the
chiral log effects. Instead we use the changes shown in T
VI only to estimate the systematic error.

F. Interpolations in heavy quark mass

We proceed to compute physical decay constants suc
f B and f Bs

for each lattice set. Our starting point is the valu

of f QqAMQq ~for q5u,d or q5s) as functions of the heavy
quark mass produced by the chiral fits of the previous t
sections.

The static limit is also included where we have it. Accor
ing to the heavy quark effective theory~HQET! @52#,
f QqAMQq should depend on the heavy meson mass a
polynomial in 1/MQq , up to logarithms. We therefore firs
divide out the one-loop logarithmic dependence of the de
constants in the heavy quark limit@53#, producing what we
call f Qq8 AMQq:

f Qq8 AMQq5
f QqAMQq

11aV~q* !ln~aMQq!/p
, ~44!

where we have ignored the difference between the he
quark and heavy meson masses, and whereq* takes the
values discussed in Secs. II A and II B.

The data are now expressed in physical units, always
ing f p to set the scale for the central values. The quan
f Qq8 AMQq is then plotted vs 1/MQq , whereMQq is the ki-
netic meson massMQq,2 defined in Eq.~8!. We fit to a poly-
nomial in 1/MQq , interpolate tomB , mBs

, mD or mDs
, and

then replace the logarithm in Eq.~44!, evaluated at the ap
propriate meson mass. These are always interpolations
1-17
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TABLE VI. Values of ks anda21 ~in GeV! for various methods of the analysis that do not require~long!
chiral extrapolation. For each method, the upper entry is from set R; the lower, from set P. These sh
compared with our central values, which come from linear chiral extrapolation off qq ~and quadratic inter-
polation of mqq

2 ): ks50.15873(5), a2152.19(3) GeV~set R!, andks50.16152(14),a2151.71(4) GeV
~set P!. We also show the changes~in MeV! from central values that each method produces in de
constants, as well as the average and standard devation of the mean of those changes. These qua
used in Sec. V D to estimate the systematic effects of chiral logarithms. Lines for whicha21 differs by more
than 20% from the central value~indicated by ‘‘*’’ ! are considered unreliable and are eliminated from
averages.

Method Description ks a21 f B f Bs
f D f Ds

1 ks : mss/ f ss; a: f ss 0.15909(7) 2.38(4) 111 117 12 16
mss: Eq. ~41!; f ss: Eq. ~39! 0.16137(15) 1.68(4) 23 27 17 212

2 ks : mss/ f ss; a: f ss 0.15926(7) 2.48(4) 113 128 10 113
mss: Eq. ~41!; f ss: Eq. ~40! 0.16166(14) 1.76(4) 22 13 16 24

3 ks : mss/ f ss; a: f ss 0.15847(8) 2.22(3) 18 15 14 23
mss: Eq. ~43!; f ss: Eq. ~33! 0.16024(22) 1.55(4) 27 221 17 221

4 ks : mss/ f ss; a: f ss 0.15937(7) 2.47(4) 113 124 11 110
mss: Eq. ~42! ; f ss: Eq. ~39! 0.16185(14) 1.75(4) 22 21 16 27

5 ks : mss/ f ss; a: f ss 0.15953(7) 2.57(4) 115 134 21 117
mss: Eq. ~42! ; f ss: Eq. ~40! 0.16211(13) 1.83(5) 20 19 15 10

6 ks : mss/mf ; a: mf 0.15922(6) 2.46(4) 113 121 11 17
mss: Eq. ~41! ; f ss: Eq. ~39! 0.16232(7) 1.96(2) 13 111 14 22

7 ks : mss/mf ; a: mf 0.15922(6) 2.46(4) 113 127 11 113
mss: Eq. ~41! ; f ss: Eq. ~40! 0.16232(7) 1.96(2) 13 116 14 14

8 ks : mss/mf ; a: mf 0.15871(6) 2.33(3) 110 110 13 20
mss: Eq. ~43! ; f ss: Eq. ~39! 0.16170(7) 1.89(2) 11 13 15 29

9 ks : mss/mf ; a: mf 0.15946(6) 2.53(4) 114 127 21 111
mss: Eq. ~42! ; f ss: Eq. ~39! 0.16262(7) 2.00(3) 13 115 13 12

10 ks : mss/mf ; a: mf 0.15946(6) 2.53(4) 114 132 21 117
mss: Eq. ~43! ; f ss: Eq. ~40! 0.16262(7) 2.00(3) 13 120 13 18

* 11 ks : f ss/mf ; a: f ss 0.16034(107) 2.83(47) 118 148 25 127
* f ss: Eq. ~39! 0.16479(71) 2.36(16) 19 147 22 135

12 ks : f ss/mf ; a: f ss 0.15881(80) 2.35(21) 111 117 13 16
* f ss: Eq. ~40! 0.16420(67) 2.25(14) 17 142 20 131

average 16 114 13 13
standard deviation of mean 2 3 1 2
oi

th
e
gh
s
t

i-
t
e

al

he

the
ts

se
ec.

ry
op-
by
extrapolations, because we have either the static-light p
~all Wilson sets! or heavy-light masses above theB ~the clo-
ver sets CP1 and J, using the Fermilab formalism!.

For the quenched Wilson data, we do two versions of
polynomial fit:~i! a quadratic fit to heavy-light mesons in th
approximate mass range 2 to 4 GeV plus the static-li
meson~‘‘heavier-heavies’’! and~ii ! a quadratic fit to meson
in the approximate mass range 1.25 to 2 GeV plus the sta
light meson~‘‘lighter-heavies’’!. These fits keep just one e
genvector of the correlation matrix, which corresponds
lcut50.9 to 1.1. To estimate the effect of leaving out high
powers in 1/MQq in the fits, we also perform, for the centr
09450
nt
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q* and chiral fit choices, fit~iii !: a cubic fit to all the mesons
in the range 1.25 to 4 GeV plus the static-light meson. T
correlation matrix for fit~iii ! typically has almost twice the
number of eigenvectors as fits~i! and ~ii !, and we keep 2 of
them. This corresponds tolcut50.2 to 1.0.

We make basically the same fits for the Wilson data on
dynamical lattices. The main difference is that we cut off fi
~i! and ~iii ! at approximately 3, rather than 4, GeV. The
lattices are almost all quite large, and, as explained in S
III A, we have trouble pulling out the lightest state for ve
heavy masses on large lattices with our approach to the h
ping expansion. To make up for some of the points lost
1-18
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LATTICE CALCULATION OF HEAVY-LIGHT DECAY . . . PHYSICAL REVIEW D 66, 094501 ~2002!
the reduced upper cutoff on fit~i!, we also reduce the lowe
cutoff slightly, to 1.8 GeV.

For the quenched clover sets, we make corresponding
However, the mass ranges are somewhat different bec
we have only five heavy quark values, do not have a st
point, and, most importantly, use standard algorithms w
FFT, facilitating the extraction of the lowest states even
very heavy masses. In this case, fit~i! ~heavier-heavies! is a
quadratic fit over the approximate meson mass range 2.3
GeV; while fit ~ii ! ~lighter-heavies! is over the mass range 1.
to 3 GeV.

FIG. 15. f Qq8 AMQq vs 1/MQq for set CP~quenched Wilson!. The
scale is set byf p . The solid line is fit~1! ~‘‘heavier-heavies’’! and
includes points marked with a cross. The dotted line is fit~2!
~‘‘lighter-heavies’’! and includes points marked with a plus. The fi
havexcut

2 /d.o.f.50.4 and 0.9, respectively, withlcut51 ~1 eigen-
vector kept!.

FIG. 14. Quadratic extrapolation on set R off qq to ks , which in
turn was found by extrapolation ofmss/ f ss using Eqs.~42! and
~39!. This is method 4 in Table VI.
09450
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In central values, we use fit~i! for f B and f Bs
and fit ~ii !

for f D and f Ds
. The alternative fits go into the systemat

error estimates, as in Ref.@4#. However, for the central val-
ues of ratios involving bothB and D mesons~i.e., f B / f Ds

,

f Bs
/ f Ds

, and f B / f D), both numerators and denominators a

taken from fit ~ii !. As explained in Sec. IV, this tends t
reduce the estimate of the magnetic mass error.

Figures 15, 16, and 17 give examples of the behavior
f Qq8 AMQq for the quenched Wilson, Wilson on dynamic

FIG. 16. Same as Fig. 15, but for set R~Wilson valence quarks
on dynamical lattices!. The solid line hasxcut

2 /d.o.f.50.2; the dotted
line, 0.3. The tail-off of f Qq8 AMQq in the range 0.2 GeV21

,1/MQq,0.3 GeV21 is attributed to the difficulty in isolating
asymptotic states for large masses and volumes—see text.

FIG. 17. Same as Fig. 15, but for set J~quenched clover!, with
NP-tad renormalization. The solid line hasxcut

2 /d.o.f.50.55; the
dotted line has no degrees of freedom. The solid line is sligh
concave down, unlike the case in Figs. 15 and 16.
1-19
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C. BERNARDet al. PHYSICAL REVIEW D 66, 094501 ~2002!
lattices, and quenched clover cases, respectively. Essen
all fits on all sets are acceptable. In Fig. 16, one can see
tail-off of f Qq8 AMQq for large heavy quark masse
(0.2 GeV21,1/MQq,0.3 GeV21). As mentioned above
we attribute this to contamination by higher momentu
states, which, for large masses and volumes, are very clo
energy to the zero momentum state. These points are th
fore not included in the fits. Note that the term of ord
1/MQq

2 is not reliably determined in our data; it changes s
between the Wilson and the clover cases. This is not surp
ing since in neither case is the formalism correct throu
order 1/MQq

2 for aMQ;1.
Using fits like those in Figs. 15–17, we now interpola

the data, replace the perturbative logarithm in Eq.~44!, and
divide by the appropriateAMQq to find f B , f Bs

, f D , and f Ds

for each data set. The resulting decay constants and r
will be extrapolated to the continuum in Secs. IV and
Before doing so, however, we repeat the analysis so far
all the other;25 versions of reasonable plateau choices
discussed in Sec. III C. We then find the standard devia
of the results over the other versions and add it in quadra
with the raw jackknife error of the central value. Hencefor

TABLE VII. Central values of decay constants, in MeV, for ea
data set. Statistical errors include the effect of changing the t
ranges over which correlators are fit, as described in the text.
sets A and B, the values reported are those for which the light-l
results (kc , ks , anda21) and their errors are taken from the ave
ages over set 5.7-large.

Name f B f Bs
f D f Ds

quenched Wilson
A 193.6~8.6! 234.9~5.8! 216.6~7.8! 256.9~6.5!
B 196.8~11.1! 236.1~8.2! 220.7~10.9! 261.8~7.4!
E 190.9~7.7! 219.1~7.8! 214.7~8.6! 246.1~8.1!
C 172.3~8.0! 206.2~6.8! 198.8~7.7! 232.8~6.9!
CP 177.0~7.8! 210.8~6.4! 206.7~6.4! 238.2~5.7!
D 174.9~7.5! 199.8~6.5! 206.8~7.9! 232.5~6.3!
H 180.6~12.1! 206.7~10.8! 206.6~10.9! 232.9~9.0!

Nf52 Wilson
L 188.6~9.7! 220.3~10.3! 214.7~7.4! 249.5~6.7!
N 205.7~13.6! 239.0~10.4! 222.9~10.6! 261.5~7.6!
O 206.8~12.6! 239.9~10.8! 230.8~6.3! 262.4~5.0!
M 190.6~12.5! 226.9~10.2! 215.9~11.5! 250.2~8.4!
P 193.1~6.9! 225.6~6.4! 212.9~6.7! 249.5~5.9!
U 196.5~9.4! 235.0~7.9! 224.8~7.2! 261.2~7.6!
T 193.3~15.8! 219.3~12.5! 209.1~8.3! 236.3~6.7!
S 202.6~6.8! 234.6~5.6! 223.9~5.2! 256.6~4.7!
G 198.5~6.2! 234.0~6.7! 220.0~5.0! 254.7~5.2!
R 206.2~7.9! 239.2~8.1! 223.4~5.4! 254.6~5.1!

quenched clover
CP1_NP-IOY 184.1~5.7! 212.8~4.4! — —
CP1_NP-tad 176.1~5.2! 203.4~3.9! 196.3~3.7! 220.0~2.8!
J_NP-IOY 176.6~6.3! 204.4~5.9! — —
J_NP-tad 174.0~6.0! 201.9~5.7! 203.5~4.8! 228.2~4.1!
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the statistical error of any quantity will be taken from th
result of this procedure. Typically the procedure increases
statistical errors by;A2; we believe it mitigates any biase
introduced from our choice, for the central values, of the
with lowest statistical errors andxcut

2 /d.o.f.
In Table VII, we collect the central values off B , f Bs

, f D ,

and f Ds
for the various sets. Similarly, Table VIII gives cen

tral values of ratiosf Bs
/ f B , f Ds

/ f D , f B / f Ds
, f Bs

/ f Ds
, and

f B / f D .

IV. QUENCHED APPROXIMATION RESULTS

Final results and errors in the quenched approximation
determined much as in Ref.@4#. However, there are som
significant differences, especially for the continuum extrap
lation and the estimate of the associated errors. We dis
our methods in detail where they differ from@4#; where the
methods are the same, we include only a very brief desc
tion for completeness.

We begin with the continuum extrapolation of variou
quantities. We focus onf B , f Bs

, f Bs
/ f B , and f Ds

, which are

probably the most important, phenomenologically. Figu
18–21 show the data for these quantities as a function
lattice spacing. The behavior of the other decay consta
and ratios is similar.

It is not a priori obvious how to extrapolate decay co
stants and ratios to the continuum. As discussed in Sec. I
our Wilson valence results haveaV

2 errors as well as errors o
the form aLQCD3h(aMQ). Here h(aMQ) is a calculable
~in perturbation theory! function that is expected to beO(1)
everywhere.9 SinceaMQ*1 for our entire range ofa values,
the assumption of a dominantly linear dependence ona is
only one possibility. A practical alternative is the assumpti
that, for a smaller than some value, the errors are sm
enough that the difference with continuum values
negligible—so that extrapolation with a constant function
warranted.

We confront these assumptions with the data in Figs. 1
21. For the Wilson valence data, we show linear fits over
a and constant fits fora,0.5 GeV21 (b>6.0). Both types
of fits are generally quite good. The exception is the cons
fit for the ratio f Bs

/ f B . In @4#, the relatively poor confidence

level of the constant fit forf Bs
/ f B ~or f Ds

/ f D) relative to that
of the linear fit led us to choose a linear extrapolation for
central value of the ratios. That, in turn, required choos
the linear extrapolation for the central values of the dec
constants themselves, since it would be inconsistent to
sume linear behavior forf Bs

/ f B but constant behavior forf B

and f Bs
separately. Note, however, that if we just look at t

two finest lattices@a,0.36(GeV)21,b>6.3#, the behavior

9Despite the fact that static quarks are triviallyO(a) improved,
the functionh(aMQ) does not vanish even asMQ→` for fixed a,
because the Wilson light quarks still haveO(a) errors.

e
or
t
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TABLE VIII. Same as Table VII, but for ratios of decays constants.

Name f Bs
/ f B f Ds

/ f D f B / f Ds
f Bs

/ f Ds
f B / f D

quenched Wilson
A 1.213~39! 1.186~21! 0.768~24! 0.926~20! 0.911~27!

B 1.200~30! 1.187~29! 0.793~31! 0.928~28! 0.941~50!

E 1.147~34! 1.146~16! 0.739~40! 0.916~33! 0.846~46!

C 1.197~22! 1.171~17! 0.740~28! 0.888~25! 0.867~32!

CP 1.191~21! 1.152~12! 0.752~36! 0.899~26! 0.867~41!

D 1.142~16! 1.124~16! 0.755~23! 0.866~20! 0.849~26!

H 1.145~22! 1.128~18! 0.776~28! 0.888~19! 0.875~25!

Nf52 Wilson
L 1.168~16! 1.162~16! 0.777~30! 0.918~22! 0.903~38!

N 1.162~33! 1.173~25! 0.788~37! 0.927~29! 0.924~41!

O 1.160~25! 1.137~18! 0.789~32! 0.916~23! 0.897~30!

M 1.191~30! 1.159~26! 0.793~25! 0.928~22! 0.920~25!

P 1.168~12! 1.172~12! 0.784~16! 0.914~12! 0.919~18!

U 1.196~28! 1.162~12! 0.763~41! 0.904~37! 0.886~42!

T 1.134~34! 1.131~16! 0.840~41! 0.958~32! 0.950~41!

S 1.158~17! 1.146~11! 0.790~19! 0.927~15! 0.905~19!

G 1.179~14! 1.158~ 8! 0.788~20! 0.937~26! 0.912~22!

R 1.160~15! 1.140~ 8! 0.814~28! 0.947~20! 0.927~32!

quenched clover
CP1_NP-IOY 1.156~16! 1.120~8! — — —
CP1_NP-tad 1.155~16! 1.121~9! 0.800~19! 0.923~12! 0.896~18!

J_NP-IOY 1.157~14! 1.117~8! — — —
J_NP-tad 1.160~14! 1.121~8! 0.772~21! 0.892~18! 0.866~24!
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FIG. 18. f B vs a for quenched lattices; the scale is set byf p .
Diamonds are results with Wilson light quarks and Wilson or sta
heavy quarks. Octagons and crosses are results with nonpert
tive clover heavy and light quarks; ‘‘NP-IOY’’~octagons! and ‘‘NP-
tad’’ ~crosses! differ in how the renormalization of the heavy quar
is performed~see text!. For clarity, the octagons have been mov
slightly to the right, and the fit to the crosses has been slig
lowered.
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of f Bs
/ f B is quite consistent with a constant; such a fit is a

shown in Fig. 20.
The new quenched clover data, shown in Figs. 18–21

both the NP-IOY and NP-tad schemes, have clarified
situation somewhat. The discretization errors here should
considerably smaller than for Wilson valence quarks. As d
cussed in Sec. II B the errors are formallyO(a2LQCD

2 ) and
either O(aV

2) ~NP-IOY!, or O(a2MQ
2 ) ~NP-tad!. Because

there will also be a function likeh(aMQ) in this case, the
actual behavior witha whenaMQ;1 is likely to be compli-
cated. The best we can do with just two clover data point
to assume that the errors are small enough that a con
extrapolation is warranted; such fits are shown in Figs. 1
21. Comparable extrapolation of clover data with a const
was performed in Refs.@17,54#.

For f Bs
/ f B the clover data show very littlea dependence

and give a result compatible with the various constant fits
the small-a Wilson data. The clover results are not comp
ible with the linear extrapolation of the Wilson data, whic
are now seen to give a rather low result. Recent prelimin
quenched results@45# with clover valence quarks on Syman
zik improved glue are also incompatible with the Wilso
linear extrapolation. For our central quenched value
f Bs

/ f B or f Ds
/ f D we therefore drop the linear Wilson ex

trapolation and average the four constant extrapolations:
for Wilson (a,0.5 GeV21 and a,0.36 GeV21) and two

c
ba-

y
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for clover ~NP-IOY and NP-tad!.10 The systematic error o
the continuum extrapolation is then taken as the stand
deviation of the four individual extrapolations. The other d
cay constant ratios (f B / f Ds

, f Bs
/ f Ds

, and f B / f D) are treated
similarly, although there is one fewer result to average, si
NP-IOY is not applicable.

Though we have dropped the linear extrapolation from
analysis of the ratios, it is not inconsistent to include it in t
analysis of the decay constants themselves. Indeed, fof B
and f Bs

, the downward trend of the clover data asa de-
creases makes it difficult to rule out the linear extrapolat
of the Wilson data. On the other hand, constant clover
trapolations do give results closer to the constant Wilson
trapolations than to the linear Wilson extrapolations. Forf Ds

~and f D , not shown!, the situation is reversed: The clove
data have an upward trend asa decreases; yet constant clov
extrapolations give results~slightly! closer to the linear Wil-
son extrapolations than to the constant Wilson extrap
tions. To obtain the central values of the decay constants
therefore average the results of all the extrapolations
take the standard deviation of the results as the continu
extrapolation error. Forf B and f Bs

a total of four fits are
included: linear Wilson, constant Wilson, constant NP-IO
and constant NP-tad. Forf D and f Ds

there are three fits
since NP-IOY is omitted.

As described in Sec. III D, we estimate the chiral extrap
lation errors by comparing~after continuum extrapolation!
the central values~which use ‘‘chiral choice I’’! with those
obtained by changing the chiral fits of the heavy-light a

10Although the calculation in Ref.@28# is not well controlled at the
D mass, the NP-IOY procedure may be used forf Ds

/ f D because the
renormalizations cancel. Note that NP-tad involves the light qu
mass in the renormalizations@see Eqs.~16! and ~19!# so does not
give identical results to NP-IOY even forf Bs

/ f B or f Ds
/ f D .

FIG. 19. Same as Fig. 18, but forf Bs
. For clarity, the octagons

have been moved slightly to the right.
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light-light decay constants from linear to quadratic~‘‘chiral
choice II’’!.11 The errors of the chiral extrapolation and oth
systematic errors within the quenched approximation are
lected in Tables IX and X. Note that the quoted chiral erro
are all positive. This can be traced to the effect of the q
dratic extrapolation off qq ~used to set the scale throughf p),
which is clearly, though slightly, concave down~see Figs. 6
and 7!. The concavity inf Qq in the region of theB is less
pronounced.

The perturbative error is estimated by varying, over
‘‘reasonable range,’’ the values ofq* used in the one-loop
renormalization constants. For Wilson fermions, we take
range for the heavy-light currents to be 1/a<q* <2.86/a,
with 1.43/a the central value, as described in Sec. II A. Sim
larly, for the light-light Wilson currentsq* ranges between
1/a and 4.63/a, with 2.32/a the central value. In the clove
case, perturbation theory for the heavy-light currents is o
relevant for NP-IOY. For central values, we takeq*
53.34/a ~set CP1! andq* 52.85/a ~set J!, which come from
the static-light calculation of@11# with the corresponding
clover coefficients. The scaleq* is then allowed to range
between 1/a and twice the central value. For light-light clo
ver currents, onlybA is treated perturbatively; the centra
value forq* is taken to be 1/a ~see Sec. II B!. This gives the
central values forbA shown in Table II. The upper end of th
range ofbA shown comes from takingq* 50.7/a; the lower
end, from using ‘‘boosted perturbation theory’’ withg2

k

11In the dynamical case, we attempt to estimate an additional
ral error coming from chiral logarithms by performing a separ
chiral extrapolation off qq / f Qq . ~See Secs. III E and V D.! This is
not feasible in the quenched case: the quenched chiral logs inf Qq

have coefficients with unknown magnitude and sign@55#; while f qq

has no quenched logs at all at one loop@56#.

FIG. 20. f Bs
/ f B vs a for quenched lattices. Labels are the sam

as in Fig. 18, but one additional fit is shown: a constant fit to
two diamonds ~Wilson quark results! with smallest a (a
,0.36 GeV21). For clarity, the octagons have been moved sligh
to the right and the fit to the octagons has been slightly lowere
1-22
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LATTICE CALCULATION OF HEAVY-LIGHT DECAY . . . PHYSICAL REVIEW D 66, 094501 ~2002!
56/(b^P&) (^P& is the mean plaquette, normalized to ha
maximum 1!. This is equivalent to taking aq* of roughly
5.25/a, so we are using a rather conservative range.

As mentioned in Sec. II A, there is a systematic er
associated with the fact thatcmag[M2 /M3 is not equal to 1
with Wilson fermions. Becausecmag has a complicated de
pendence ona, this error is not removed by any of the simp
extrapolations available to us. One may argue that the
sidual effect is just one particular discretization error a
therefore has already been included. However, if one mo
this error for both linear and constant extrapolations us
Eq. ~4! for M2 andM3 ~along the lines of what was done i
Refs. @17# and @4#!, one finds that the error is larger with
constant extrapolation but has the same~but unknown! sign
in both cases. Therefore we believe it reasonable to incl
as an additional error the linear extrapolation estimate of

FIG. 21. f Ds
vs a for quenched lattices. Labels are the same

in Fig. 18, but the NP-IOY points have been omitted because
perturbative calculation is not available at the relevant latt
masses.
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Wilson magnetic mass error. From the tadpole improv
tree-level model, one estimates these errors as;2% for f B

and ;3% for f D ~see@4#!. An alternative estimate come
from the comparison of the results of interpolations to t
physical heavy meson masses using the ‘‘heavier-heav
@fit ~i!—see Sec. III F# with those using the ‘‘lighter-heavies’
@fit ~ii !#: the lighter masses are affected much less by
magnetic mass error, and the static point is not affected at
We take the larger of the two estimates as our magnetic m
error for Wilson fermions.

The magnetic mass error is absent for clover fermio
Therefore, in our final error budgets~Tables IX and X! we
multiply the Wilson magnetic mass error by 1/2 or 2/3, d
pending on the relative number of Wilson and clover es
mates that go into the central value.

Note that the magnetic mass errors in the tables are c
siderably smaller forB mesons than forD mesons, despite
the fact that the difference betweenM2 and M3 increases
with the lattice mass. The point is that the magnetic m
errors are systematic effects on the 1/MQ corrections, and
such corrections are inherently bigger forD mesons than for
B’s. Further, especially large errors can be introduced
1/MQ fits in the range of theB are extrapolated back to theD
region. For that reason we always use fit~ii ! ~‘‘lighter-
heavies’’! for central values of ratios that involve bothD ’s
andB’s: f B / f Ds

, f Bs
/ f Ds

, and f B / f D .
The remaining two systematic errors, the effect of t

interpolation in 1/MQq and the finite size errors, are est
mated just as in Ref.@4#. For the central values, we trunca
the fit of f QqAMQq vs 1/MQq at quadratic order. We estimat
the error thereby introduced by changing to cubic fits~with
mass range 1.25 to 4 GeV, plus the static point when av
able!. The errors found are;1%; this is what one would
expect if the mass scale of the cubic term is;0.75 GeV,
roughly the scale size found in the linear and quadra
terms.

We estimate the finite volume effects by finding the fra
tional difference between results on set A~spatial size
;1.2 fm) and set B (;2.5 fm). Since set A is smaller tha

s
e

e

tical
ked with
TABLE IX. Central values (f p scale! and errors in MeV for the quenched decay constants. The statis
errors and the effects of excited states are combined, as described at the end of Sec. III F. Errors mar
explicit 1 or 2 signs are treated as signed; all others are treated as symmetric. The scale andks errors are
not included in the total errorwithin the quenched approximation but are shown for completeness.

f B f Bs
f D f Ds

Central value 173.0 198.8 199.5 223.2
errors

Statistics and excited states 5.7 4.7 5.6 4.6
Continuum extrapolation 8.7 14.8 4.9 11.1
Chiral extrapolation 18.6 19.4 14.3 16.5
Perturbative 9.6 14.1 6.6 10.9
Magnetic mass 1.7 1.9 5.1 5.7
1/M fit 2.0 1.7 0.5 0.2
Finite volume 12.8 28.5 11.0 27.8 13.8 25.1 14.3 24.1

Scale~change tomr) 23.5 25.9 14.2 14.0
ks ~change tof) — 13.7 — 12.3
1-23
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TABLE X. Same as Table IX but for decay constant ratios.

f Bs
/ f B f Ds

/ f D f B / f Ds
f Bs

/ f Ds
f B / f D

Central value 1.155 1.128 0.769 0.891 0.871
errors

Statistics and excited states 0.011 0.008 0.015 0.012 0.016
Continuum extrapolation 0.009 0.012 0.017 0.019 0.013
Chiral extrapolation 10.003 10.014 10.009 10.009 10.020
Perturbative 0.008 0.011 0.015 0.020 0.017
Magnetic mass 0.000 0.000 0.015 0.018 0.017
1/M fit 0.001 0.000 0.006 0.008 0.009
Finite volume 10.01220.013 10.00820.000 10.02520.000 10.00320.009 10.02820.000

Scale~change tomr) 10.001 20.001 10.009 10.008 10.007
ks ~change tof) 10.025 10.018 20.009 10.004 —
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the other quenched lattices (;1.3–1.5 fm) and B is much
larger, this should bound the finite volume error. To be c
servative, we consider both:~a! the difference when all quan
tities are computed individually on sets A and B and~b! the
difference when the light-light quantities are held fixed
their values from set 5.7-large. Sincef p generally suffers
larger finite size effects thanf Qq , these two estimates typi
cally have opposite signs; in that case we include both e
mates as signed errors. When the estimates have the
sign, however, we simply choose the larger.

Tables IX and X also show errors associated with fixi
the scale~changing fromf p to mr) and fixingks ~changing
from using the pseudoscalars to using thef meson!. Logi-
cally, these should be considered errorsof the quenched ap
proximation, notwithin the quenched approximation, and a
not included in this section. Indeed, the question ‘‘what isf B
in the quenched approximation?’’ is only well defined wh
one specifies how the scale is fixed. Even in the continu
limit, different scale choices~and different ways of fixingks
for strange-quark quantities! must give different results in the
quenched approximation. The differences should of cou
go away in the continuum limit of the full theory. In Sec.
where we attempt to quote results that can be directly c
pared with experiment, such errors are taken into accou

Our final results for heavy-light decay constantswithin
the quenched approximation~fixing the scale byf p) are

f B5173~6!~16! MeV; f Bs
5199~5!~ 222

123! MeV

f D5200~6!~11! MeV; f Ds
5223~5!~ 217

118! MeV

f Bs

f B
51.16~1!~2!;

f Ds

f D
51.13~1!~2!

f B

f Ds

50.77~2!~ 23
14!;

f Bs

f Ds

50.89~1!~ 23
14!

f B

f D
50.87~2!~ 23

15!. ~45!
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The errors are statistical and systematic~within the quenched
approximation!, respectively. Relevant systematic errors
Tables IX and X have been combined in quadrature. Err
whose signs are not likely to be reliably determined by o
procedures~continuum extrapolation, perturbation theor
magnetic mass, 1/M fits! have been treated as symmetr
errors. The others~chiral extrapolation and finite volume!
have been treated as signed errors. The results in Eq.~45!
differ from those in Ref.@4# due to~i! inclusion of new data
from sets CP, CP1 and J;~ii ! setting the central value of th
heavy-light scale from the static-light calculation of Re
@11#, rather than that of Ref.@22#; and ~iii ! other changes in
analysis, motivated by the new runs. The most importan
these is the way we find the central value of the continu
extrapolation~as discussed above, we now average our f
possible versions rather than taking only the linear Wils
fit!. In addition, the details of the error estimate for the chi
extrapolation have changed. Some alternative chiral fits u
previously—e.g., linear fits ofmp

2 vs quark mass—are con
vincingly excluded by the new data.

V. RESULTS WITH DYNAMICAL QUARKS

A. Continuum extrapolation

DynamicalNf52 results forf B , f Bs
, f Bs

/ f B , and f Ds
as

a function of lattice spacing are shown in Figs. 22, 23,
and 25, respectively. Leaving aside the ‘‘fat clover’’ resu
for now, the data in all cases seem to favor constant
indeed, the best linear fits have very small slopes. Note h
ever that the smallest lattice spacing here
;0.45 (GeV)21'0.09 fm; whereas in the quenched ca
we have data down to;0.23(GeV)21'0.045 fm. It is thus
possible that the apparent independence of lattice spacin
due to the cancellation of two effects:~i! an overall decrease
as lattice spacing decreases, which was one of the alte
tives considered in the quenched case, and~ii ! the turning on
of short distance dynamical fermion effects as one mo
away from the quite coarse spacings of sets L and N. T
latter effect could be exacerbated by staggered flavor vi
tions, which would be especially large on the coarsest latti
and which would reduce the effective number of dynami
flavors.
1-24
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LATTICE CALCULATION OF HEAVY-LIGHT DECAY . . . PHYSICAL REVIEW D 66, 094501 ~2002!
If the above possibility is realized, then theNf52 results
could well begin to decrease for still smaller lattice spacin
as the quenched-like behavior sets in. For the decay c
stants, we therefore consider two alternative extrapolatio
the constant extrapolation of allNf52 data, and a linea
extrapolation that begins at the average value of the res
on the two finest lattices~sets R and G! and then continues to

FIG. 22. f B vs a for dynamicalNf52 lattices; a few points have
been moved a slight distance horizontally for clarity. Squares
results with light Wilson valence quarks and Wilson or static hea
valence quarks. From left to right, the squares come fromb55.6
~sets G, R, S, T, U!, b55.5 ~sets P, M, O, N!, andb55.445~set L!.
The solid line is a fit of all the Wilson results to a constant. T
dashed line shows what would happen if the dynamical results
creased for smaller lattice spacing with the same slope as the l
fit to the corresponding quenched data. The fancy plus is the re
with fat-link clover valence quarks~light and heavy! on set RF. The
fancy cross shows the ‘‘corrected’’ value~see text!. The fat clover
data~corrected or uncorrected! are not included in our final results

FIG. 23. Same as Fig. 22, but forf Bs
.
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the continuum limit with the quenched slope~see Figs. 22,
23, and 25!. For ratios of decay constants, we ruled out t
linear extrapolation in the quenched case. Yet the two fin
quenched lattices~D and H! have in general lower values fo
the ratios than the averages that include the quenched se~C
and CP! that are comparable to the finestNf52 lattices. The
two alternatives for ratios are therefore taken to be~i! the
constant extrapolation of allNf52 data, and~ii ! the first
extrapolation reduced by the quenched difference:~average
of C, CP, D, and H! 2 ~average of D and H!. Figure 24
shows these alternatives. In all cases we then take the ce
value to be the average of the two alternatives, and the e

re
y

e-
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ult

FIG. 24. f Bs
/ f B vs a for dynamicalNf52 lattices. Labels are

the same as in Fig. 22, but no correction to the fat-link clover re
is needed for the ratio of decay constants. The alternative da
line assumes a drop whena→0 that is the same as the difference
the quenched case between a constant fit to the results from
highest threeb values and a constant fit to those from the high
two b values.

FIG. 25. Same as Fig. 22, but forf Ds
.
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TABLE XI. Central values (f p scale! and errors in MeV for the dynamical (Nf52) decay constants. As
in Tables IX and X, the statistical errors and the effects of excited states are combined. The errors ab
line ~i.e., up to and including finite volume errors! are treated as errors within theNf52 partially quenched
approximation. Errors below the line are treated as errors of that approximation. In general, errors m
with explicit 1 or 2 signs are treated as signed, and other errors are treated as symmetric. The exce
partial quenching, where we do not take the sign seriously but show it nevertheless in parentheses.

f B f Bs
f D f Ds

Central value 190.5 217.3 214.9 241.0
errors

Statistics and excited states 7.1 6.4 6.1 5.2
Continuum extrapolation 11.3 21.0 8.5 18.7
Valence chiral extrapolation 116.6 114.7 17.5 18.3
Perturbative 12.0 18.5 8.2 15.1
Magnetic mass 3.8 4.4 8.4 9.7
1/M fit 2.6 2.7 1.0 0.9
Finite volume 17.7→0.0 15.2→0.0 13.4→0.0 20.1→0.0

Partial quenching (1)2.4 (2)3.0 (1)3.4 (2)3.8
Scale~change tomr) 110.6 18.7 15.4 13.9
ks ~change tof) — 13.9 — 12.3
Missing dynamicals quark 18.7 19.2 17.7 18.9
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of the continuum extrapolation to be the ‘‘sample stand
deviation’’ of the two ~dividing by n2151, not n52).
Central values and errors for theNf52 data are shown in
Tables XI and XII.

B. Fat links

In the above discussion of the continuum extrapolati
we ignored the fat-link clover results. If taken at face valu
these results would imply the existence of extremely la
discretization errors. We therefore need to examine the
link computations in detail. These computations use vale
quarks—both heavy and light—with the standard clover
tion, but with gauge links that have first been ‘‘fattened’’ b
N iterations of APE smearing@57#. The coefficient of the
sum of the staples isc/6 and that of the forward link is 1
2c; a projection back intoSU(3) is included after each
09450
d

,
,
e
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e
-

smearing step. The fat-link results~set RF! displayed in Figs.
22–25 haveN510, c50.45. The clover coefficientcSW is
taken to have its tree-level value~1.0!; this is also approxi-
mately the tadpole-improved value, since the fatten
strongly suppresses tadpole contributions. Physically, A
smearing corresponds roughly to a Gaussian smearing o
fermion-gauge field interaction over a range^x2&.cN/3
@58#.

Various kinds of fat links have come to play a major ro
in lattice simulations in the last few years. The motivati
for introducing them in the context of Wilson-like fermion
@59# was that they improve the chiral properties of the fe
mions. This happens in several~related! ways: First, fat links
reduce additive mass renormalization. They also suppress
ceptional configurations, which present a severe challeng
clover computations on our dynamical lattices@12,60#. ~This
TABLE XII. Same as Table XI but for decay constant ratios.

f Bs
/ f B f Ds

/ f D f B / f Ds
f Bs

/ f Ds
f B / f D

Central value 1.158 1.142 0.793 0.922 0.913
errors

Statistics and excited states 0.011 0.009 0.016 0.013 0.016
Continuum extrapolation 0.015 0.014 0.005 0.004 0.001
Valence chiral extrapolation 20.016 10.005 10.032 10.019 10.037
Perturbative 0.012 0.011 0.034 0.043 0.042
Magnetic mass 0.003 0.002 0.024 0.028 0.027
1/M fit 0.001 0.000 0.014 0.020 0.015
Finite volume 20.019→0.000 20.018 10.026→0.000 10.010→0.000 10.016→0.000

Partial quenching (2)0.023 (2)0.026 (1)0.027 (2)0.021 (1)0.008
Scale~change tomr) 20.010 20.005 10.015 10.017 10.015
ks ~change tof) 10.014 10.017 20.008 10.004 —
Missing dynamicals quark 10.001 10.007 10.012 10.015 10.021
1-26
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LATTICE CALCULATION OF HEAVY-LIGHT DECAY . . . PHYSICAL REVIEW D 66, 094501 ~2002!
occurs because they shrink the range of the real eigenm
of the Dirac operator.! Finally, in perturbation theory, fa
links bring the vector and axial vector renormalization co
stantsZV and ZA ~as well as the scalar and pseudosca
renormalization constants! closer together.

Simulations of light quark systems with a variety of f
link actions at lattice spacings in the range 0.1–0.2 fm sh
little dependence of physical observables on the amoun
fattening, even for the very aggressive amount of fattening
the simulations we report here. For many quantities,
amount of fattening also gives quite small discretization
rors @61#.

We take the light-light renormalization coefficients f
fat-link clover fermions from the perturbative calculations
Ref. @11#. The heavy-lights~for which perturbative calcula
tions do not exist! are normalized using thestatic-light re-
sults of @11#. Although one expects that this should b
roughly correct for the large values ofaM at theB meson, it
introduces a possibly serious source of systematic error
the fat-link results.

As first reported in Ref.@12#, the fat-link clover results for
decay constants are seen to be much smaller than the a
ent continuum-limit results of the Wilson quarks. Simul

tions of Q̄Q systems with fat-link quarks also show th
fattening suppresses the magnitude of vector-pseudos
mass splitting. A measurement of the heavy quark poten
gives some qualitative understanding of both effects: the
tractive short distance piece of the potential is washed a
by the fattening. This is shown in Fig. 26, where we comp
the static potential usingc50.45, N510 APE-smeared fa
links at quenchedb55.85. The loss of this part of the po
tential leads to a suppression of the heavy quark wave fu
tion at the origin. Although this is an effect that would vani
in the continuum limit~for fixed N, c), it could introduce
large scaling violations for short-distance-sensitive qua
ties.

FIG. 26. Static potential at quenchedb55.85 with and without
c50.45, N510 APE-smeared fattening.
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To study more directly the effect of fattening on heav
light decay constants, we have computed the decay cons
with clover fermions on a 99 lattice subset of quenched
CP1, which we call CPF. We have tried four different leve
of fattening:c50.45 withN52, 6, and 10, andc50.25 with
N57. In these cases,cSW is set equal to the tadpole
improved tree level value 1/u0

3, with u0 determined by the
plaquette computed with the smeared links. The renormal
tion constants are determined in the same way as for
dynamical case~set RF!. A comparison of two of the smear
ing levels with the thin-link clover computations is shown
Fig. 27. The fat-linkf B values are considerably suppress
compared to those from the thin links, which in turn a
consistent with the results of continuum-extrapolat
quenched Wilson fermions~see Sec. IV!.

Figure 27 shows that the suppression produced by
lowest and highest levels of fattening are consistent. In f
there is not much difference in the values of the heavy-li
decay constants among the four different levels of fatten
we studied, even though the amount of smoothing introdu
into the short-distance potential is quite different for the fo
cases. Furthermore, the light-light decay constants with
clover and thin clover links differ by only;7%: Compare
the f p-determined lattice spacings of sets CP1 and CPF
Fig. 27, or see Table V. Note that in the light-light case w
are using the correct renormalization factors from Ref.@11#.
This suggests that the;25% suppression of heavy-light de
cay constants for our fat links may be due more to the us
the incorrect renormalizations~static-light instead of heavy
light! than to scaling violations from the smoothing of th
short-distance potential. Be that as it may, these quenc
studies show that the fat cloverNf52 results may be ig-
nored, at least until fat-link heavy-light renormalization co
stants are available.

An alternative approach would be to try to correct t
fat-link clover dynamical results by the factor~thin link
quenched!/~fat link quenched! at a comparable lattice spac
ing. We can do this since the lattice spacings for sets C

FIG. 27. Effect of smearing on quenchedf B . The thin clover
points are atb56.0 and 6.15~sets CP1 and J!; the fat, atb56.0
~set CPF!. The extrapolation of the thin clover results to the co
tinuum is also shown.
1-27
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~quenched! and RF (Nf52) are quite close.~See Table V.!
The corrected fat-link results shown in Figs. 22, 23, and
are consistent with the WilsonNf52 results. However, we
judge that the reasons for the fat-link suppression are
well enough understood to be confident that the correc
factor is the same in the quenched and dynamical cases
therefore drop the fat cloverNf52 results and use the Wil
son results only.

We emphasize that fat-link actions are formally neith
better nor worse than actions with thin links—the differenc
lie only in the composition and strength of higher dime
sional~irrelevant! operators. However, from a practical poi
of view one is interested in actions for which particular qua
tities scale well with lattice spacing. Fat links are intended
improve chirality, but chirality is a property of light quark
not heavy ones. In hindsight, there is no physical motivat
to construct or use fat-link actions for heavy quarks. So
recent developments@62# for fat-link actions for light quarks
have been influenced by our negative experience—one o
design criteria is to minimize effects such as are shown
Fig. 26. We are currently studying the behavior of dec
constants simulated with thin-link heavy quarks and fat-l
light quarks.

C. Partial quenching and chiral extrapolation

Our central values withNf52 are computed in the ‘‘par
tially quenched’’ approximation: dynamical quark configur
tions are treated as fixed backgrounds and chiral extrap
tion is performed in the valence quark mass only. The m
justification for using the partially quenched approximati
can be seen qualitatively in Figs. 22–25: For our range
dynamical quark masses and with our statistical and syst
atic errors, there is no obvious trend in the decay const
when the dynamical quark mass is varied at fixedb. ~This
statement is examined in more detail below.!

The standard systematic error associated with the vale
mass chiral extrapolation is then estimated in exactly
same way as in the quenched approximation~comparison of
‘‘chiral choice I’’ with ‘‘chiral choice II’’ — see Secs. III D
and IV!. Effects of chiral logarithms at very low quark ma
are considered separately in Sec. V D.

To estimate the systematic error due to partial quench
we perform a complete additional analysis in the ‘‘fully u
quenched’’ theory, where the light (u,d) valence quark mas
on a given lattice set is interpolated or extrapolated to
value of the dynamical mass on that set. Since the vale
and dynamical quarks are simulated with different lattice
tions, the equality must be defined by some physical qu
tity. We demand that the pseudoscalar~‘‘pion’’ ! have the
same mass with either action. We then perform chiral
trapolations of f Qq with mq,valence5mq,dynamical using data
from sets at fixedb: either b55.6 ~sets G, R, S, T, U! or
b55.5 ~sets P, M, O, N!. Such extrapolations must be pe
formed in physical units because they involve different s
with different lattice spacings. To set the scale, we use
usualf qq , extrapolated in valence quark mass to the phys
u,d point, i.e., f p . Note that the scale is set in a partial
quenched manner. However the fully unquenched theor
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recaptured once the dynamical mass is itself extrapolate
the physicalu,d point.12

In Fig. 28 we show the chiral extrapolation off B with
mq,valence5mq,dynamicalat b55.6. We call the dependent var
able ‘‘f B’’ because the heavy quark has already been in
polated to theb quark mass, as in Sec. III F. As an indepe
dent variable, we use the pseudoscalar mass squared,mqq

2 ,
and extrapolate tomqq

2 5mp
2 . Note that the linear fit is ex-

cellent, even though it includes very heavymqq values. How-
ever, if we restrictedmqq to a safer range for a chiral ex
trapolation @mqq

2 ,0.6 (GeV)2#, the results would be
essentially unchanged. The behavior off D is very similar to
that of f B .

Figure 29 showsf Bs
as a function of the dynamical quar

mass atb55.6. The light valence quark mass has alrea
been interpolated to the strange quark mass, and only
dynamicalu,d quark mass is varied. With the current stat
tical and discretization errors, there is little evidence here
dynamical quark mass dependence~using anf p scale!. This
may be due, at least partially, to staggered flavor violatio
which reduce the effective range over which the dynami
mass varies. Note, however, that thereis a significant differ-
ence when one compares these dynamical mass points t
infinite mass case~the quenched approximation!: compare
Figs. 19 and 23. The behavior off Ds

is nearly identical to

that seen in Fig. 29; the other decay constants, such asf B ,
have similar behavior when they are plotted as a function

12This approach could be dangerous if the dependence off qq on
the dynamical quark mass at fixed valence mass were so violent
the chiral extrapolation off Qq in physical units became uncon
trolled. This does not appear to be the case, as seen in Figs. 2
below. However, in a work in progress@45#, we employ a safer
approach, in which the dynamical lattices have matched scale
independently of the valence quarks using the static quark poten

FIG. 28. ‘‘Fully unquenched’’ chiral extrapolation off B at b
55.6 ~sets G, R, S, T, U!. The burst shows the extrapolated valu
whenmqq

2 5mp
2 .
1-28
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the dynamical mass for fixed valence mass.
The chiral extrapolation off Ds

/ f D as a function of dy-

namical quark mass~represented by the dynamicalmqq
2 ) is

shown in Fig. 30. Forf D , the light valence quark mass is p
equal to the dynamical mass; while forf Ds

, it is kept equal to

the physical strange mass. Sincef Ds
has fixed valence quar

mass, it, likef Bs
, changes little with dynamical quark mas

while f D varies more or less linearly, likef B . We therefore
fit f Ds

/ f D to the inverse of a linear function inmqq
2 , i.e., to

1/(c1dmqq
2 ), with c andd allowed to vary. The ratiof Bs

/ f B

is fit in the same way; while the ratiosf B / f Ds
, f Bs

/ f Ds
, and

f B / f D are fit to linear functions.~The latter two ratios are

FIG. 29. Same as Fig. 28 but forf Bs
. The valence quark masse

do not vary but are held fixed at the masses of theb ands. The fit
is linear ~not a constant!, but has quite small slope.

FIG. 30. Chiral extrapolation off Ds
/ f D at b55.5 ~sets P, M, O,

N! with the light valence quark mass inf D equal to the dynamica
quark mass. The quantity 1/(f Ds

/ f D) is fit to a linear function.
09450
like f Bs
, almost independent of the dynamical quark ma

and so the fitting form makes little difference as long
constant behavior is allowed.!

We can now examine the dependence of the fully u
quenched quantities on lattice spacing. Unfortunately, we
perform the fully unquenched analysis only at twob values,
5.5 and 5.6, for each of which lattice sets exist with fo
different dynamical quark masses. At the thirdb value of our
dynamical simulations (b55.445), we have only a single
dynamical mass (am5.025, set L!. We attempt a chiral ex-
trapolation there by using the average of the~physical! pa-
rameters describing themqq

2 dependence atb55.6 and 5.5
~as determined above!. Each parameter has a statistical err
estimated by propagating the statistical errors of theb55.6
and 5.5 data, and a systematic error taken to be the differe
between the average value and theb55.5 value. The overall
error atb55.445 is then determined by adding in quadratu
the intrinsic statistical error from set L and the statistical a
systematic errors coming from the chiral extrapolation. T
amount of chiral extrapolation required for set L is actua
quite small because the physical dynamical quark mass t
is close to the smallest masses available atb55.6 and 5.5.
Therefore the errors introduced by our ‘‘synthetic’’ chiral e
trapolation atb55.445 do not appear to be large. Howev
the fact that the third data point in the fully unquench
analysis must be obtained in this way is another reason
we prefer the partially quenched analysis for the central v
ues.

Figures 31 and 32 show the lattice spacing dependenc
f B and f Bs

/ f B after the fully unquenched chiral extrapola
tions. Like the partially quenched data of Figs. 22 and 24,
fully unquenched data are quite consistent with constant

FIG. 31. Lattice spacing dependence off B after fully un-
quenched chiral extrapolation. From left to right, the points rep
sent:b55.6, 5.5, and 5.445. When there is more than one lat
spacing at a givenb, the points are plotted at the lattice spacing
the finest lattice~lowest dynamical mass!. Thusb55.6 and 5.5 are
represented by the lattice spacing of sets R and P, respectively
fit is to a constant.
1-29
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havior in a. The other decay constants and ratios beh
similarly. The difference between the result of the const
fits in the fully unquenched and partially quenched case
defined to be the systematic error of partial quenching, an
listed for the various quantities in Tables XI and XII. Give
the issues in the fully unquenched analysis, we believe
this error determination is merely a rough estimate of
magnitude of the effect and do not take the sign of the
ference seriously. We therefore symmetrize this error in
final error analysis.

D. Rough estimate of chiral logarithm effects

As discussed in Sec. III E, our rather heavy-light ma
values preclude a detailed study of chiral logarithms. Ho
ever, an extrapolation off qq / f Qq ~rather than individual de-
cay constants!, coupled with methods of determiningks and
a21 without significant chiral extrapolation, should provid
an indication of the effect of the logarithms at light qua
mass. Recall that, in the full theory, the coefficient of t
chiral logs inf qq is probably larger than inf Qq . This means
that any errors in coming from a quadratic extrapolation
f qq / f Qq should be opposite to those in our standard extra
lations of f Qq itself—especially for heavy-light decay con
stant ratios, which are less sensitive to the scale determ
tion. In particular, thef qq / f Qq approach should overestima
f Bs

/ f B , just as our standard approach may underestimat
Indeed, the most significant change from the central va
occurs inf Bs

/ f B and is positive.
Table VI of Sec. III E shows the changes in the dec

constants with various methods for fixingks and a21.
Changes in the ratios are given in Table XIII. After elimina
ing the three lines in each table marked with asterisks~see
Sec. III E!, we average the changes in decay constants
ratios and find the standard deviations of the means. With
exception of the quantityf Ds

/ f D , the averages in all case
are positive and larger than the standard deviations of
means. We define the ‘‘error due to chiral logarithm effec
in these cases as the signed~positive! number that is the sum

FIG. 32. Same as Fig. 31, but forf Bs
/ f B .
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of the average and the standard deviation of the mean. Th
slightly more conservative than just taking the straight av
age. Forf Ds

/ f D , where the average is consistent with 0.0
we take the error as the~unsigned! standard deviation of the
mean.

The chiral logarithm effects, while quite significant in th
case of f Bs

/ f B and some of the other ratios, appear to
considerably smaller than has been anticipated in Refs.@8,9#.
We believe this due to the fact that we set the scale in
central values usingf p and extrapolate the light-light an
heavy-light decay constants in the same manner. Thus, m
of the chiral logarithm effects, which are similar inf p and
f B , cancel.

On the other hand, we emphasize that our estimate of
chiral logarithm effects is, for a variety of reasons, rath
rough. First of all, the changes in the decay constants
ratios vary a great deal among the different methods

TABLE XIII. Estimates of the effects~in MeV! of chiral loga-
rithms on the extrapolation of decay constant ratios. For desc
tions of the methods, as well asks anda21, see Table VI in Sec.
III E. Lines indicated by a ‘‘*’’ are eliminated from the averages.

Method f Bs
/ f B f Ds

/ f D f B / f Ds
f Bs

/ f Ds
f B / f D

1 10.02 10.02 10.02 10.05 10.04
20.02 20.09 10.07 10.01 10.00

2 10.06 10.06 10.01 10.06 10.06
10.02 20.05 10.05 10.03 10.02

3 20.02 20.03 10.04 10.03 10.01
20.07 20.13 10.08 20.00 20.02

4 10.04 10.04 10.02 10.06 10.05
10.01 20.06 10.06 10.02 10.01

5 10.08 10.08 10.00 10.07 10.07
10.05 20.03 10.04 10.04 10.03

6 10.03 10.03 10.03 10.06 10.05
10.04 20.03 10.06 10.06 10.05

7 10.05 10.05 10.01 10.06 10.05
10.07 20.00 10.05 10.06 10.05

8 20.01 20.02 10.04 10.04 10.03
10.01 20.07 10.08 10.05 10.04

9 10.05 10.05 10.02 10.06 10.06
10.06 20.01 10.05 10.06 10.06

10 10.07 10.08 10.00 10.06 10.06
10.08 10.02 10.04 10.06 10.06

* 11 10.12 10.15 20.01 10.10 10.11
* 10.18 10.18 20.02 10.11 10.11

12 10.02 10.01 10.02 10.06 10.03
* 10.17 10.15 20.01 10.09 10.10

average 10.03 20.00 10.04 10.05 10.04
stand. dev. of mean 0.01 0.01 0.01 0.00 0.01
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configurations shown in the tables. Indeed, the standard
viation ~as opposed to the standard deviation of the mean! of
a change is typically the same size as the average chang
is sometimes larger. Secondly, our approach relies onxPT to
find the quantitiesmss and f ss, andxPT is not necessarily
rapidly convergent fors quarks. We have also performe
only a partially quenched analysis of this issue. Becaus
the size of the errors, we have not attempted to extrapo
the dynamical quarks to their physical masses. Finally,
note that there is an inherent~though presumably small! in-
consistency in our determinations ofks anda21, which in-
directly use the physical values off p , f K , mp and mK ~or
mh or mf). We cannot force all these quantities to have th
physical values at once in a theory without a dynami
strange quark. For this reason, it is unclear for exam
whether it is better to useNf52 or Nf53 PQxPT in finding
f ss; we hope that our range of methods gives a reason
range of results.

Given the crude nature of the chiral log error, we belie
that it would be inappropriate at this stage to use the co
putations described in Sec. III E to correct our central valu
Instead, we use them only for error estimates.

E. Final error estimates and results

The magnetic mass error in Tables XI and XII is es
mated with almost the same method as we used for
quenched calculation. The only difference is that here all
valence quarks are of Wilson type, so that there is no red
tion of the magnetic mass error in the final error budget
the relative number of Wilson and clover estimates. The p
turbative and 1/M fit errors in the tables are determined
exactly the same manner as in the quenched approxima

The errors due to finite volume are studied by compar
results on sets R and G, both of which haveb55.6 and
am50.01, but which have spatial volumes 243 and 163, re-
spectively. Note that all but one of ourNf52 sets are large
~spatial size;2.1–3.3 fm); only set G is comparable in siz
(;1.4 fm) to the quenched lattices. The difference betw
sets R and G is therefore likely to be a considerable ove
timate of the actual finite volume error. Despite this, t
differences are almost never statistically significant. Her
‘‘significant difference’’ is defined as one that is larger th
the sum, in quadrature, of the statistical errors of the t
sets. When the difference is insignificant, we set the fin
volume error to zero, as indicated in Tables XI and XII
the notation ‘‘→0.0.’’ The only case where we find a signifi
cant (;1.6s) effect is in f Ds

/ f D .
The total systematic errorwithin the current approxima

tion ~partially quenchedNf52 theory! is then taken to be the
sum of all the systematic errors above the line in Tables
and XII: continuum extrapolation, valence chiral extrapo
tion, perturbative, magnetic mass, 1/M fit, and finite volume
errors. Since these errors show no evidence of correlati
we perform the sum in quadrature. We do, however, tr
positive and negative errors separately, since the valence
ral extrapolation error represents a binary choice and h
well determined sign.
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We still need to estimate the errorof the partially
quenchedNf52 approximation. One measure of this err
has already been discussed: the partial quenching error.
effect of the missing third light virtual quark~thes quark! is
estimated in a direct way by assuming a simple linear dep
dence of the decay constants on the number of dynam
flavors. The error is thus chosen to be one half the differe
of the Nf52 and quenched calculations. This estimate
labeled ‘‘missing dynamicals quark’’ in Tables XI and XII.
We also estimate the effect in two indirect ways: by det
mining the change in the results when~i! the scale is fixed by
mr ~instead of f p), and ~ii ! for strange quark quantities
whenks is fixed by the vector meson sector (mf) instead of
the pseudoscalars. In full QCD~and with no other systemati
errors!, these differences should vanish, so their size is
estimate of the distance we are from the full theory.

The total error of the partially quenchedNf52 approxi-
mation is then defined to be the maximum of the four e
mates below the line in Tables XI and XII: partial quenchin
scale,ks , and missing dynamicals quark. The latter three
estimates have a well-determined sign, and we therefore
the maximum positive and maximum negative error se
rately. ~As discussed above, the partial quenching error
treated symmetrically.! For the individual decay constants
the scale and missing dynamicals quark estimates are alway
largest; while the errors in the ratios are almost always do
nated by the partially quenched error.

Finally we include an additional error due to the fact th
our extrapolations from rather large light quark masses c
not see the chiral logarithms directly. This error is estima
in Sec. V D. We emphasize that it is necessarily crude.

Our final results for heavy-light decay constants, inclu
ing the effects of dynamical quarks, are

f B5190~7!~ 217
124!~ 22

111!~ 20
18! MeV,

f Bs
5217~6!~ 228

132!~ 23
19!~ 20

117! MeV,

f D5215~6!~ 215
116!~ 23

18!~ 20
14! MeV,

f Ds
5241~5!~ 226

127!~ 24
19!~ 20

15! MeV,

f Bs

f B
51.16~1!~2!~2!~ 20

14!,

f Ds

f D
51.14~1!~ 23

12!~3!~1!,

f B

f Ds

50.79~2!~ 24
15!~3!~ 20

15!,

f Bs

f Ds

50.92~1!~6!~2!~ 20
15!,

f B

f D
50.91~2!~ 25

16!~ 21
12!~ 20

15!. ~46!
1-31



th
ti

d

s;

nt
nt

an
of

ion
s
th
a

lc
r
W
tr

is-
e

he

rk
itl

t

as
D

hiral
e,
nto
-
hose

n
rs of
pt-
ods

e
lts.
rgy
E-
–

06
701
re

for
nter,
p-
er-
PC

ed

C. BERNARDet al. PHYSICAL REVIEW D 66, 094501 ~2002!
Here the errors are, respectively, statistical, systematic wi
the Nf52 partially quenched approximation, the systema
errors of that approximation~due to partial quenching an
the missing virtual strange quark!, and an estimate of the
effect of chiral logarithms.

The result forf Ds
is consistent with experimental result

Ref. @63# obtains f D
s
15280(19)(28)(34) MeV, which the

Review of Particle Physicscites as ‘‘the best and most rece
value’’ @64#. Our Nf52 values are consistent with rece
results of CP-PACS@65# and preliminary results of JLQCD
@10#, though our central values of the decay constants
ratios f Bs

/ f B and f Ds
/ f D are somewhat lower than those

CP-PACS.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

Equation~46! and Tables XI, XII, VI and XIII summarize
our results. Chiral extrapolation, continuum extrapolat
and perturbation theory are generally the biggest source
errors for the decay constants, while partially quenching,
missings quark, and the magnetic mass are also import
for many of the ratios. Because the latticesu,d have neces-
sarily been rather heavy, as they have in other lattice ca
lations to date, the effects of chiral logarithms at low qua
mass have only been investigated crudely and indirectly.
believe that is the error over which we have the least con
at present.

Work in progress@45# addresses many of the above
sues. Improved actions have decreased the continuum
trapolation errors significantly, as well as eliminated t
separate magnetic mass error. A dynamicals quark is now
explicitly included. Further, since the computations use
wide range of both dynamical and light valence qua
masses, we hope to treat the chiral logarithms explic
within a partially quenched framework@55,66#. This should
provide more direct evidence about the issue of the size
rt

.

D

po
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chiral logarithm effects@8,9#, as well as eliminate the explici
partial quenching error.

Future calculations will use staggered light quarks,
have already been investigated in conjunction with NRQC
heavy quarks@67#. This will allow for very light valence
masses and therefore make possible a detailed study of c
logarithms. To improve the chiral extrapolations still mor
one-loop chiral perturbation theory calculations that take i
account staggered taste13 violation will be needed. Such cal
culations for pseudoscalar meson masses already exist; t
for heavy-light decay constants are in progress@68#.

The next step after that is likely to involve perturbatio
theory. Once the other errors have been reduced, the erro
one-loop perturbative calculations will no longer be acce
able. Higher order calculations using automated meth
@69# or nonperturbative computations will be required.
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