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Abstract Modeling reactive transport in porous media, using a local chemical equilibrium assumption, leads
to a system of advection-diffusion PDE’s coupled with algebraic equations. When solving this coupled system,
the algebraic equations have to be solved at each grid point for each chemical species and at each time step. This
leads to a coupled non-linear system. In this paper a global solution approach that enables to keep the software
codes for transport and chemistry distinct is proposed. Themethod applies the Newton-Krylov framework to
the formulation for reactive transport used in operator splitting. The method is formulated in terms of total
mobile and total fixed concentrations and uses the chemical solver as a black box, as it only requires that
on be able to solve chemical equilibrium problems (and compute derivatives), without having to know the
solution method. An additional advantage of the Newton-Krylov method is that the Jacobian is only needed as
an operator in a Jacobian matrix times vector product. The proposed method is tested on the MoMaS reactive
transport benchmark.

Keywords Geochemistry· transport in porous media· Newton-Krylov methods· advection–diffusion–
reaction equations

Mathematics Subject Classification (2000)76V05 · 65M99

1 Introduction

The simulation of multi-species reacting systems in porousmedia is of importance in several different fields: for
computing the near field in nuclear waste simulations, in thetreatment of bio-remediation, in CO2 sequestration
simulations and in the evaluation of underground water quality.

This work deals with numerical methods for solving coupled transport and chemistry problems. The trans-
port of solutes in porous media is described by partial differential equations of advection–diffusion type, wheres
multi-species chemistry involves the solution of ordinarydifferential equations (if the reactions are kinetic) or
nonlinear algebraic equations (if local equilibrium is assumed). After discretization, one is led to a system of
nonlinear equations, coupled the unknowns for all chemicalspecies at all grid points.
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After the influential paper by Yeh and Tripathi [47], operator splitting methods, where transport and chem-
istry are solved for separately at each time step (possibly iterating to convergence), became the methods
of choice. Some representative papers where operator splitting methods are used are [39], [38], [4], [21],
[29], [41]. Operator splitting methods are easy to implement, and the splitting errors can be controlled by care-
fully restricting the time step. On the other hand, the time-step restriction can become their main drawback, as
it can be difficult to get the fixed point iteration to convergefor more difficult problems.

More recently, global methods have become popular, due to the increase in computing power now avail-
able. In this approach, the full non-linear system is solvedin one step, usually by some form of Newton’s
method. Most papers use the Direct Substitution Approach (see [17], [14]), where onesubstitutes the chemical
equations in the transport equations. On the other hand, theproblem can also be put in the form of a Differential
Algebraic Equations (DAE), enabling the use of powerful software (see [11]). Finally, the chemical equations
can be eliminated locally, and a system involving transportequations, with a source term coming from the
reactions has to be solved. This approach is taken in [25, 26], where additionally a reduction method leads to
a smaller system. Most of the papers quoted above employ a Newton method for solving the nonlinear system
at each time step, with the difficulty that the Jacobian matrix has to be computed, stored and factored. This can
become problematic for large problems, and Hammond et al. [17] have used the Jacobian-Free Newton–Krylov
method, where the Newton correction is solved for by an iterative method. The Jacobian is only needed through
the computation of a directional derivative. The method keeps the fast convergence of Newton’s method, while
only requiring Jacobian matrix–vector products, and thesecan be approximated by finite differences.

The method presented in this paper is a global method where the chemical equations are eliminated locally,
leading to a nonlinear system where the transport and chemistry subsystems remain separated. Thus the residual
can be evaluated by calling separately written transport and chemistry modules. The system is then solved by a
Newton-Krylov method, and it will be shown how the Jacobian matrix–vector product can also be computed by
the same module. Thus the main contribution of this paper is to show that a global method can be implemented
while still keeping transport and chemistry modules separated. This property will be referred to as using “black–
box solvers”. As the chemical equilibrium equations are notsubstituted in the transport equations, the transport
and chemistry parts of the nonlinear residual are easily identified, and can each be computed by calling on
standard solution modules.

An outline of the paper is as follows. In section 2 the chosen model is explained, and the methods used for
solving the (non-reactive) transport part, and the chemical equilibrium system are detailed. Section 2.3 shows
how we obtain the coupled model. Couple formulations and coupling algorithms are the subject of section 3,
beginning with a review of existing methods, while our approach is presented in section 3.2. Numerical results,
in particular experience with the MoMaS benchmark, are shown in section 4.

2 Reactive transport equations

In this work, the transport of several reacting species in a single phase flow through a porous medium is
considered. The species can react both between themselves and with the porous matrix. In this section the
numerical methods used to solve the individual subsystems of the coupled problem will be described.

2.1 Transport model

The transport of a single species through a porous medium (a domain Ω ⊂ Rd , with d = 1,2 or 3), with
porosityφ, in a known Darcy fieldu, subject to dispersion and molecular diffusion, follows the linear advection–
dispersion equation

φ
∂c
∂t

+L(c) = q, in Ω (1)

where
L(c) = ∇ · (uc)−∇ · (D∇c),
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is the transport operator, andq is a source term. The diffusion–dispersion tensorD is given by

D = deI + |u|(αLE(u)+αt(I−E(u))) , Ei j(u) =
uiu j

|u|2
,

wherede is the molecular diffusion coefficient, andαL (resp.αt) is the longitudinal (resp. transverse) disper-
sivity coefficient.

In this work, we restrict to a one dimensional problem, so that the transport equation over a bounded
intervalΩ =]0,L[ can be written as

φ
∂c
∂t

+
∂
∂x

(

−D
∂c
∂x

+uc

)

= q, 0 < x < L, 0 < t < T, (2)

where the porosityφ and the diffusion–dispersion coefficientD can both depend on space. Because the flow is
assumed compressible, the velocityu is taken to be a constant.

The initial condition isc(x,0) = c0(x) and, in view of the applications, the boundary conditions are a
Dirichlet condition (given concentration)c(0, t) = cd(t) at the left boundary (x = 0) and zero diffusive flux
∂c
∂x

= 0 at the right boundary (x = L). More general boundary conditions could easily be accommodated.

2.1.1 Discretization in space

We treat the space and time discretization separately, as wewill use different time discretizations for the
different parts of the transport operator.

For space discretization a cell-centered finite volume scheme will be used, see for instance [13]. The inter-
val [0,L] is divided intoNg intervals[xi− 1

2
,xi+ 1

2
] of lengthhi, wherex 1

2
= 0,xNg+

1
2

= L. For i = 1, ..,Ng, denote
by xi the center andxi+1/2 the right end of elementi. Finally, denote byci, i = 1, ..,Ng the approximate solution
in cell i.

Equation (2) is written in the form

φ
∂c
∂t

+
∂ϕ
∂x

= q, (3)

where the fluxϕ(x, t) = −D
∂c
∂x

+uc has been split as the sum of a diffusive fluxϕd = −D
∂c
∂x

and an advective

flux ϕa = uc.
Equation (3) is integrated over a cell]xi−1/2,xi+1/2[ giving

φihi
dci

dt
+ϕd,i+ 1

2
+ϕa,i+ 1

2
−ϕd,i− 1

2
−ϕa,i− 1

2
= hiqi, i = 2, . . . ,Ng. (4)

The flux approximations required to close the system are provided by finite differences. The diffusive flux
needs a value for the diffusion coefficient, which is taken asthe harmonic average (as done in mixed finite
element methods):

ϕd,i+ 1
2

= −Di+ 1
2

(

ci+1− ci

hi+ 1
2

)

(5)

with

Di+ 1
2

=
2DiDi+1

Di +Di+1
, D 1

2
= D1, DNg+

1
2

= DNg and hi+ 1
2

=
hi +hi+1

2
For the advective flux, an upwind approximation is used, so that (assumingu > 0), ϕa,i+ 1

2
= uci

These approximations are corrected to take into account theboundary conditions, both atx = 0 and at
x = L. The semi-discrete system can be summarized by the finite dimensional system

M
dc
dt

+Lc = q+g, (6)

wherec ∈ RNg now represents the vector of cell concentrations,L ∈ RNg,Ng is the matrix form of the transport
operator,M ∈ RNg,Ng is a mass matrix accounting for variable porosity and mesh size,q ∈ RNg is a give source
term andg ∈ RNg represents the effects of the boundary conditions.
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2.1.2 Time discretization

Let denote by∆t the time step (taken constant for simplicity) used to discretize the time interval[0,T ] and
denote bycn

i the (approximate) value ofci(n∆t). The first and most straightforward alternative is to discretize
equation (6) by the backward Euler method, see for instance [3]. This is the method that is used in section 3 to
keep the description simple, but is not the recommended method, as it leads to an overly diffusive scheme.

Better alternatives are obtained by exploiting the structure of the transport operator, and by using different
time discretizations for the advective and for the diffusive parts. Specifically, the diffusive terms should be
treated implicitly, and the advective terms are better handled explicitly.

If this idea is applied directly to equation (6), the resulting fully discrete scheme is only stable under a
CFL (Courant–Friedrichs–Lewy) conditionu∆t ≤ maxI hi. As this may be too severe a restriction (some of our
applications require integration over a very large time interval), an alternative is to use an operator splitting
scheme, as proposed by Siegel et al. [43] (see also [20, 31]).In this work, splitting is used only within the
(linear) transport step, but recent papers by Kačur et al. [16, 22] apply splitting directly to a transport with
sorption model by solving (analytically) a nonlinear advection step, followed by a nonlinear diffusion step.
This is different from operator splitting as used in geochemical models, as the chemistry terms are solved for
together with the transport terms.

The splitting scheme works by taking several small time steps of advection, controlled by a CFL condition,
within a large time step of diffusion. The scheme has been shown to be unconditionally stable, and has a good
behavior in advection dominated situations.

More precisely, the time step∆t will be used as the diffusion time step, it is divided into M time steps of
advection∆tc such that∆t = M∆tc where M ¿1, the advection time step will be controlled by CFL condition.

Equation (3) will be solved over the time step[tn, tn+1] by first solving the advection equationφ
∂c
∂t

+
∂
∂x

(uc) = 0

overM steps of size∆tc each, and then solving the diffusion equationφ
∂c
∂t

+
∂
∂x

(−D
∂c
∂x

) = q starting from the

value at the end of the advection step.

Advection step The interval[tn, tn+1] is divided intoM intervals[tn,m, tn,m+1], m = 0, ...M − 1, wheretn,0 =
tn, tn,M = tn+1. Denotecn,m

i the approximate concentration c at timetn,m andcn,0 = cn. The advection equation
is discretized in time using the explicit Euler method to obtain











φi(
cn,m+1

i − cn,m
i

∆tc
)+u

(

cn,m
i − cn,m

i−1

hi−1/2

)

= 0, i = 2, . . . ,Ng,

cn,m+1
1 = cg(t

n,m+1)

m = 0, . . . ,M−1. (7)

Diffusion step The diffusion part is discretized by an implicit Euler scheme, starting fromcn,M
i :

−
Di− 1

2

hi− 1
2

∆tcn+1
i−1 +

(

φihi +
Di+ 1

2

hi+ 1
2

∆t +
Di− 1

2

hi− 1
2

∆t

)

cn+1
i −

Di+ 1
2

hi+ 1
2

∆tcn+1
i+1 = φihic

n,M
i +qihi∆t, i = 2, . . . ,Ng −1

(8)
As above, 2 equations accounting for the boundary conditions must be added.

2.2 Chemical equations

The chemical model is described in this section. In this study, we assume a local chemical equilibrium at every
point, which means that the chemical phenomena occur on muchfaster scale than transport phenomena. This
is a common modeling assumption for reactive transport in porous media, at least when the only reactions
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considered are aqueous phase and sorption reactions (theseare “sufficiently fast” reactions according to Ru-
bin [34]). This would not be the case if mineral dissolution was taken into account, as these reactions typically
need kinetic models.

Consider a set ofNe chemical species(X j) j=1,...,Ne linked byNr reactions

Ne

∑
j=1

νi jX j ⇆ 0, i = 1, . . . ,Nr

whereν is the stoichiometric matrix. Following Morel [32], we distinguish betweencomponent andsecondary
species by extracting a full rank matrix fromν. Component species are a minimal subset of the species such
that the other secondary species can be written in terms of them (in a unique way). Each secondary species
gives rise to a reaction that expresses how it is formed in terms of the components, and to a mass action law
that gives the value of itsactivity in terms of the component activities. Similarly, each component gives rise to a
conservation equation, expressing how the given total concentration of such a component is distributed among
the component itself and the secondary species.

Additionally, in the context of reactive transport, it is required to know how the species are split between
those that are in solution, and those that have been adsorbedon the solid matrix (in this paper we do not take
precipitation into account). We thus introduce (with obviously Ne = Nc +Ns +Nx +Ny)

– mobile componentsc j, j = 1, . . . ,Nc,
– fixed componentss j, j = 1, . . . ,Ns,
– mobile secondary speciesx j, i = 1, . . . ,Nx,
– fixed secondary speciesy j. i = 1, . . . ,Ny.

We have identified the name of the species with their concentrations, and we assume an ideal solution (activities
and concentrations are identified). Mobile secondary species x can be expressed as linear combinations of
mobile components while secondary fixed species depend on both mobile and fixed components. Therefore the
mass action laws are written as

xi = Kxi

Nc

∏
j=1

c
Si j
j , i = 1, . . . ,Nx, yi = Kyi

Nc

∏
j=1

c
Ai j
j

Ns

∏
j=1

s
Bi j
j , i = 1, . . . ,Ny, (9)

whereKxi and Kyi are the equilibrium constants, andSi j, Ai j and Bi j are the entries of the stoichiometric
matricesS ∈ RNc×Nx , A ∈ RNc×Ny andB ∈ RNs×Ny .

Mass conservation for each component is expressed in the form

c+ST x+AT y = T, s+BT y = W, (10)

whereTj is the total concentration of the mobile componentj, andW j is the total concentration of the fixed
componentj (T andW are vectors of sizeNc andNs respectively). In the case of ion exchange, the second
mass conservation equation is simplyBT y = W , andW is the Cationic Exchange Capacity of the porous matrix
(see Appelo and Postma [2]). As will be seen later, in the context of coupled transport and chemistry,Tj is
given by the transport model andW is constant. In a closed chemical system,Tj would be part of the data (total
concentration of the components).

Due to the wildly different orders of magnitude of the concentrations that are commonly encountered, the
chemical problem is reformulated by using as main unknowns the logarithms of the concentrations. This has
the added advantage that concentrations are automaticallypositive, and has become the standard way to solve
the problem [28]. An additional advantage has been pointed out by Samper et al. [41]: by taking the logarithms
of the concentrations as unknowns, the Jacobian of the nonlinear system is symmetric, and with a proper choice
of the component species, it can be shown to be diagonally dominant, and thus nonsingular. The symmetry can
also be seen on equation (16) below. Let logu be the vector with entries logui, whereui are the entries of vector
u. Equations (9) can then be rewritten as a linear system

logx = logKx +S logc

logy = logKy +A logc+B logs
(11)
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The nonlinear system of equations (10) and (11) forms what will be called thechemical problem. In the
sequel, it will be assumed that this problem always has a (positive) solution(c,s), for all feasible values of the
dataT andW . This is true in our simplified settings because the chemicalequilibrium problem is a consequence
of the minimization of the Gibbs free energy, which can be shown to be convex in the absence of minerals
(see [42]).

To solve the chemical problem, a variant of Newton’s method is used. As is well known, Newton’s method
is not always convergent, unless the initial point is sufficiently close to the solution. However, and this is
especially true in the context of a coupled code where the chemical problem will be solved repeatedly, it is
essential to ensure that the solver “never” fails. We have found that using a globalized version of Newton’s
method (using a line search, cf. [23]) was effective in making the algorithm converge from an arbitrary initial
guess. In order to get a smaller system, the secondary concentrations are eliminated, and the system to be
solved involves onlylc = logc ∈ RNc andls = logs ∈ RNs . Define the functionH : RNc+Ns → RNc+Ns by

H

(

lc
ls

)

=

(

exp(lc)+ST exp(logKx +Slc)+AT exp(logKy +Alc+Bls)
exp(ls)+BT exp(logKy +Alc+Bls),

)

(12)

where the notation exp(v) for a vectorv means the vector with elements exp(v j), then equations (10) and (11)
are equivalent to:

H

(

lc
ls

)

=

(

T
W

)

. (13)

This is the nonlinear system that to be solved forlc andls, givenT andW . The secondary concentrations can
then be computed from equation (11).

When solving the coupled problem, the distribution of the species between their mobile form and their
fixed form will be needed. The individual concentrations must still be solved for, but they are intermediate
quantities. Once the component concentrations have been computed as described in the previous paragraph,
one can compute for each species its mobile partC j and its fixed partFj by

C = c+ST x, F = AT y. (14)

Note that, by definition, the relationshipT = C +F holds.
In the formulation to be presented below, it will be convenient to represent the mapping from the vector

of total concentrations to the vector of fixed concentrations. This mapping, denoted byΨ, is defined by first
solving the chemical problem (13), then computingF by (14). More precisely

ψ : RNc → RNc

T 7→ ψ(T) = AT y,
(15)

where equation (13) is first solved forlc andls, theny is computed by (11).
It is important to keep in mind that computingΨ(T) means solving the chemical system (plus some simple

computations), as this will be the most expensive part when evaluating the residual of the coupled system (see
eq.(26) in section 3.2).

As this will be useful later on, the computation of the Jacobian ofΨ is outlined here. AssumeΨ(T) itself
has been computed, so that the nonlinear system (13) has beensolved. First, the Jacobian matrix ofH should
also be computed as part of the solution process. This is almost certainly needed for solving the chemical
problem, if Newton’s method is used. Differentiating equation (12) leads to:

H ′

(

lc
ls

)

=

(

diag(exp(lc)) 0
0 diag(exp(ls))

)

+

(

ST AT

0 BT

)(

diag(x) 0
0 diag(y)

)(

S 0
A B

)

, (16)

where diag(v) is the diagonal matrix with vectorv along the diagonal. Then, by an application of the implicit
function theorem (see for instance [35]), and by differentiating equation (11), there comes

ψ′(T ) = AT diag(y)
(

A B
)

(

H ′

(

lc
ls

))−1(
I
0

)

. (17)
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It should be stressed that the Jacobian ofH is needed to computed the Jacobian ofΨ (inverting it is
straightforward, as this will usually be a small matrix). This may prove problematic in practice for several
reasons. First, the chemical solver may not give access to the Jacobian, even if it is used internally. This
is a limitation to the “black-box” approach. Second, for more realistic chemical models, including non-ideal
chemistry, and taking minerals into account, computing theJacobian may be much more difficult than the fairly
simple computation outlined above. As a last resort, one could compute the Jacobian by finite differences, but
it will be argued in section 3.2 that, for this particular problem, the analytical computation is more efficient.

2.3 Coupled transport and chemistry

The starting point for the coupled model is the following setof equations for the total, mobile and fixed con-
centrations of each component















φ
∂C j

∂t
+φ

∂Fj

∂t
+L(C j) = 0 j = 1, . . . ,Nc

∂W j

∂t
= 0, j = 1, . . . ,Ns

(18)

These equations can be derived from the individual conservation equations by standard algebraic manipula-
tions, see for instance Yeh and Tripathi [47]. It is the formulation given in the benchmark definition [6], see
also [37], [11]. The second equation is obvious, asW j was taken as a constant (at each point in space).

Taking into account the relationTj = C j +Fj, j = 1, . . . ,Nc noted above, the first equation of the system is
equivalent to

φ
∂Tj

∂t
+L(C j) = 0 j = 1, . . . ,Nc, (19)

whereTj is the total concentration,C j the total mobile concentration, andFj the total fixed concentration for
componentj.

From now on,L will denote the discretized transport operator, as defined in equation (6). Each unknown
concentration depends on both the grid point index, and the chemical species index. We will use a notation
inspired from Matlab. For a concentrationui j , wherei ∈ [1,Ng] represents the spatial index andj ∈ [1,Nc]
represents the chemical index, we shall denote by

– u:, j the column vector of concentrations of speciesj at all grid points;
– ui,: the row vector of concentrations of all chemical species in grid cell xi.

The unknowns will be numbered first by chemical species, thenby grid points. Thus all the unknowns for a
single grid point are numbered contiguously.

The coupled problem is obtained by putting together equation (19) above with the definition of the chemical
solution operatorψ, defined in eq. (15) (the subscript T denotes transposition):



















M
∂C:, j

∂t
+M

∂F:, j

∂t
+L(C:, j) = g:, j j = 1, . . . ,Nc

Ti j = Ci j +Fi j, i = 1, . . . ,Ng, j = 1, . . . ,Nc

Fi,: = ψ(T T
i,: )

T , i = 1, . . . ,Ng

(20)

This system is then discretized in time to obtain the fully discrete coupled nonlinear system. In this work
we restrict to a simple backward Euler scheme with constant step–size, noting that other more sophisticated,
strategies are obviously possible (in particular, an adaptive step-size is essential for efficiency). Denoting time
indexes by a superscript, the following system is obtained























M
Cn+1

:, j −Cn
:, j

∆t
+M

Fn+1
:, j −Fn

:, j

∆t
+L(Cn+1

:, j ) = g:, j j = 1, . . . ,Nc

T n+1
i j = Cn+1

i j +Fn+1
i j i = 1, . . . ,Ng, j = 1, . . . ,Nc

Fn+1
i,: = ψ((T n+1

i,: )T )T i = 1, . . . ,Ng

(21)



8

This is the system to be solved at each time step.

3 Formulation and coupling algorithms

The formulation of reactive transport seen above gives riseto a large system of nonlinear equations. For com-
plex problems, its solution will require a large amount of computer time, which makes it important to choose
an appropriate method. In this section, several formulations and approaches that have appeared in the literature
will be reviewed.

Thanks to the relationshipT =C+F , it is easy to eliminate one of the 3 variables, and this leadsto different
formulations for the coupled problem, depending on which variables are kept in the transport equation. We
keep the system continuous in time, as it makes the notation somewhat lighter, but the same manipulations can
obviously be done at the discrete level too.

According to Saaltink et al. [37], see also Salignac [40], one can derive three main formulations from the
system given in (20):

– formulation (TC) whereT is the principal variable ,C the transported variable

M
∂T: j

∂t
+L(C: j) = g:, j (22)

This is the formulation used by Erhel et al. in [9, 11], as it lends itself best to a DAE type algorithm. It is
not convenient for our purpose, as the transport equation then involves bothT andC, and is thus not easily
used with an existing transport solver.

– formulation (TT) whereT is the principal variable ,T transported variable

M
∂T: j

∂t
+L(T: j)+L(F: j) = g:, j (23)

This seems to be the least satisfactory formulation, as the transport operates on the fixed species, and for
this reason it will not be considered further.

– formulation (CC) whereC is the principal variable ,C transported variable

M
∂C: j

∂t
+M

∂F: j

∂t
+L(C: j) = g:, j (24)

This is formulation 4 in Saaltink et al. [37], and is the formulation chosen below. It has been reported that
this formulation is the least suitable for use in an operatorsplit algorithm, becauseC andF are used at
different time levels (to compute the data for the chemical problem). When this formulation is used in a
global method this should not matter as much, as the iterations are ran to convergence, and both values
should eventually get close to their limits.

Formulation (CC) will be used in the rest of the paper, because it takes the form of a standard transport
operator, with a source term coming from the chemical part. Its structure is closely related to the system
describing single species transport with sorption, as seenfor instance in [16], or [21], with the main differences
that the unknown is a vector of concentration, and mostly that what plays the role of the sorption isotherm is
the implicitly defined functionΨ introduced in (15).

3.1 Review of former approaches

At each time step, the system given by (21) (one transport equation for each component and one chemical
system for each grid point) forms a large nonlinear system, whose size is the number of components times
the number of grid points. This system has traditionally been solved by a sequential two-steps approach, as
reviewed below (cf. [47]). However, this method suffers from several defects: it may severely restrict the step
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size to ensure convergence, and if used non-iteratively it is only first order in time, which may introduce
additional errors (cf. [4]). Due to its quadratic convergence rate, Newton’s method would be an ideal candidate
for solving the system. On the other hand, a practical difficulty has to be reckoned with: Newton’s method
requires the solution of a linear system with the Jacobian matrix at each iteration step. In realistic situations, it
will not be possible to store, much less factor, the Jacobianmatrix. As will be seen in section 3.2, this difficulty
can be overcome by resorting to an iterative method for solving the linear system.

3.1.1 Sequential approach

The sequential approach consists of separately solving thechemical equations and the transport equations. The
method has been used in numerous papers: see for instance [47], and also [21], [29], [37], [4] or [30]¡. At
each iteration, a transport equation for each component is solved first, with a source term given by the (change
in) fixed concentration at the previous iteration. This total mobile concentrations will be added to a total fixed
concentration computed in the previous iteration, to obtain the total used as data for solving a chemical problem
at each grid point. These steps are then iterated until convergence.

In the geochemical literature, this is known as an operator splitting approach (usually called Standard
Iterative Approach, or SIA), but it is more properly a block Gauss-Seidel methods on the coupled system, as
each subsystem is solved alternatively. The method is quiteappealing, as it is easy to implement starting from
separate transport and chemistry codes, and can provide good accuracy if implemented carefully, as shown
in the references above). As will be seen below, theses advantages can be retained in the Newton–Krylov
framework.

The Standard Non-Iterative Approach (SNIA) is the case where only one iteration of the method is carried
out at each time step. In that case, splitting errors can become important, and the method is not really suitable
for difficult problems.

The SIA approach does not suffer from splitting errors if thetolerance is small enough, but it may require
a small time step to obtain convergence in the case of stiff problems. The main drawback of the method is thus
that the size of the time step is used to control convergence,and not based on the physical character of the
solution.

3.1.2 Direct Substitution Approach

As computing power increased, it was recognized that the operator splitting methods of the previous sections
could not satisfactorily handle difficult problems, and more tightly coupled method came to more widespread
use.

The Direct Substitution Approach method consists in solving for the individual concentrations of the com-
ponents, that issubstituting equations (10)–(11) in equation (1) (this can be done explicitly, as in Hammond et
al. [17], or implicitly, as in Kräutle et al. [25, 26], or Saaltink et al. [37]). It is also possible to reformulate the
problem as a differential algebraic system (DAE), and to take advantage of the high quality software available
for such problems, as in Erhel et al. [11], [10] or [8] . A high performance parallel implementation is described
by Hammond et al. [17], using a Jacobian–Free Newton–Krylovmethod (see section 3.2).

The main advantages of this approach are to avoid the errors caused by the separation of operators, and to
allow fast convergence independently of the time step, but its principal drawback is the need to form and to
store the Jacobian matrix especially for a large problem. Moreover, sometimes it may be difficult to calculate
the exact derivatives for geochemical processes especially when precipitation phenomena or kinetic reactions
are taken into account.

The size of the system can be made smaller by means of a reduction method, cf Kräutle et al. [25, 26],
and [18]. The reduction method makes a change of variables inthe chemical system, so that a set of decoupled
transport equation is first solved, leaving a smaller nonlinear system, that is still solved with Newton’s method.
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3.2 A Newton–Krylov based fully coupled method

As was already mentioned in the previous section, Hammond etal. [17] have used a Newton–Krylov method
for solving the system obtained from the DSA approach. Substituting the chemical equations in the transport
operator is the most straightforward way of formulating thecoupled problem, but leads to a system where
chemistry and transport terms are mixed, and makes it virtually impossible to separate the transport and chem-
istry modules. However, this separation is seen as one of theimportant advantages of the operator splitting
approaches.

By coupling the formulation given in section 2.3 with the Newton–Krylov framework, a strongly coupled
method that can be implemented by keeping transport and chemistry separate is obtained. Thus, the chemical
equations are not directly substituted in the transport equation, but the functionΨ introduced previously in (15)
is used to represent the effect of chemistry. Different formulations could be adopted depending on the choice
of unknowns (refer back to section 3). In this work, both the total mobile and fixed concentrations, and also the
total concentrations (though they could easily be eliminated) are chosen as main unknowns.

Even though this method may be more expensive than the methods based on DSA, its main advantage is to
make it possible to treat chemistry as a black–box, even in the Newton–Krylov context. This may be important,
as chemical simulators are becoming increasingly sophisticated.

Recall (equation (21)) that the nonlinear system to be solved at each time step is
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the nonlinear problem to be solved at each time step isG(Z) = 0, whereZ denotes the vector





Cn+1

T n+1

Fn+1



.

Recall that at each step of the “pure” form of Newton’s methodfor solvingG(Z) = 0, one should compute
the Jacobian matrixJ = G′(Zk), solve the linear system (usually by Gaussian elimination)

J δZ = −G(Zk) (27)

and then setZk+1 = Zk + δZ. In practice, one should use some form of globalization procedure in order to
ensure convergence from an arbitrary starting point. If a line search is used, the last step should be replaced by
Zk+1 = δZ +λZk, whereλ is determined by the line search procedure.

The main drawback of the method for large scale problems is again the need to form, and then factor, the
Jacobian matrix. For coupled problem such as the one studiedin this paper, there is the additional difficulty of
simply computing the Jacobian: the numerical methods for transport and chemistry are quite different, and it is
even possible that the simulation codes have been written bydifferent groups.

The Newton–Krylov method (see [23], [24] and [17], to which our work is closely related), is a variant of
Newton’s method where the linear system that arises at each step of Newton’s method is solved by aniterative
method (of Krylov type). The main advantage of this type of method is that the full Jacobian is not needed, one
just needs to be able to compute the product of the Jacobian with a vector. As this is a directional derivative,
this leads to the Jacobian free methods, where this product is approximated by finite differences. However, for
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some problems, it may be possible to compute the needed directional derivative exactly. As will be seen below,
this is the case for our coupled problem, provided the Jacobian of the chemical problem can be computed. This
is both cheaper and more accurate.

The main contribution of this paper is to show that the formulation given above lends itself to an implemen-
tation of Newton’s method that allows to keep the two codes separate. This is in keeping with thte philosophy set
forth in the review paper by Keyes and Knoll [24] that a Newton-Krylov solver can often be made by wrapping
a classical split-step solver. This is what is being done here, as the formulation to which the Newton-Krylov
method is applied is the one used for operator splitting. Additionally, it will be shown below that the Jacobian
may even be formed in block form, provided the individual codes provide their Jacobians (this is obviously
easier for transport than for chemistry), and this obviously carries over to the Jacobian–vector product.

At this point, it is appropriate to add a few comments on the size of the problems envisioned. The examples
used in this work are small scale, one dimensional, problems. They can hardly be called large. On the other
hand, we believe they are representative of the problems that will be encountered in more realistic applications.
For such problems, in 2 or 3 space dimensions, involving tensor hundreds of thousands of grid points and
several tens of chemical species, the nonlinear system willindeed be very large, and a method like that of
Hammond et al. [17], or like the method presented in this section will be necessary.

A Krylov subspace method (see for instance [23]) is used to approximately solve the linear system in
equation (27). The linear iterates are drawn from the Krylovsubspace,K j = span{r0,Jr0,J2r0, . . . ,J j−1r0}. In
the GMRES method (see [36]), the iterates are defined to minimize the residual‖JδZ j +G(Z)‖2 overK j. Other
methods, such as Bi-CGSTAB [45] or QMR [15] could be used as well.

As the linear system is not solved exactly, the convergence theory for Newron’s method does not apply
directly. However, the theory has been extended by Dembo et al. [7] to the class of Inexact Newton meth-
ods, of which the Newton–Krylov methods are representatives. The main consequences of this analysis are
summarized below.

An important issue in such methods is the stopping criterionfor the inner linear iteration. A stopping
criterion of the form

‖JδZ +G(Zk)‖ ≤ ηk‖G(Zk)‖ (28)

in this context, as the initial iterate is usually 0. The choice of theforcing term ηk should strike a balance
between two conflicting goals:

– Keep the (local) convergence of Newton’s methods;
– Avoid over-solving, that is taking too many linear iterations when still far away from the nonlinear solution.

The first goal will tend to require a small value forηk, while the second one obviously tends to makeηk larger.
It has been shown (see theorem 6.1.4 in [23]) that providedηk is bounded away from 1, the inexact Newton’s
method will converge, and that superlinear convergence obtains if ηk goes to zero faster than‖G(Zk)‖. Based
on this result, the strategy proposed by Kelley in [23] (after the choice in [12]) computesηk as

ηk = γ‖G(Zk)‖
2/‖G(Zk−1)‖

2, (29)

whereγ ∈ [0,1] is a parameter (the value suggested in [23] isγ = 0.9). Safeguards are added to this choice in
order to preventηk to become too close to 1, or too small. It is also necessary to globalize the algorithm, and
this can be done using a line search, just as in the “classical” Newton’s method.

The other main practical advantage of the Newton–Krylov methods is that they do not require forming the
Jacobian matrix. All that is needed is the ability to computethe product of the Jacobian matrix by an arbitrary
vector, in order to enlarge the Krylov subspace. This matrix–vector product can be interpreted as a directional
derivative. This means that, for complex functionsG it may not be necessary to compute the Jacobian, at the
cost of one extra evaluation of the function itself. It turnsout, however, that in our case, this trade-off is not
advantageous. Indeed, it is well known that the most expensive part of the evaluation ofG is the solution of
the chemical problem at each grid point. On the other hand, itwas shown above that computing the Jacobian
of ψ is actually cheaper than computingψ itself (onceψ has already been computed), as it only involves the
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solution of a linear system (see equation (17)), whereas computingψ itself requires the solution of a nonlinear
system.

It will now be shown how the method can be implemented, given modules for transport and chemistry.
The first ingredient needed is the computation of the residual, that is evaluating the functionG defined

in (26). Given a vectorZ =
(

C
T
F

)

, Z is first split into its three components, and each sub-vectoris regarded as a

Ng ×Nc matrix, as in section 2.3. ThenG(Z) is computed by block:

– For the transport block, the transport operator is applied to each speciesC:, j, with a source term given by

−M
F:, j −Fn

:, j

∆t
, for j = 1, . . . ,Nc (Fn denotesF at the previous time step);

– The second block is the trivial computationT −C−F ;
– The third block is the solution of the chemical problem at each grid point:F:,i −Ψ(Ti,:), for i = 1, . . . ,Ng.

This shows that the first block will only need transport related quantities, whereas the third block will only call
chemistry related ones. Actually, these are the same computations that would be needed for implementing a
operator splitting method.

As far as the Jacobian matrix–vector product is concerned, and using the computation in section 2.2, the

action of the Jacobian on a vectorv =
( vc

vT
vF

)

(that is the directional derivative ofG in the direction of the vector

v) can be computed as

J





vC

vT

vF
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(

(M +∆tL)vC :, j +MvF :, j
)

j∈[1,Nc ]

−vC + vT − vF
(

vF i,: − vT i,:(ψ′(T T
i,: ))

T
)

i∈[1,nx ]









. (30)

Even though it is not used as such in this work, it is valuable to examine the structure of the Jacobian. As
the previous computation shows, the Jacobian also has a natural block structure. Recall that the unknowns are
numbered by species at each point in space. Then the block corresponding to the action ofL can be written
using the Kronecker product (see for instance [19]) asA = (M +∆tL)⊗ I. Then the Jacobian matrix is

J =





A 0 M
−I I −I
0 −ψ′(T T ) I



 , (31)

whereψ′(T) = diag(ψ′(T T
1,:), . . . ,ψ

′(T T
Ng,:) is the Jacobian ofψ, and for eachi = 1, . . . ,Ng, ψ′(T T

i,: ) is a small
Nc by Nc block. The structure of the Jacobian is illustrated on figure1, for the caseNg = 10, Nc = 3. It is a
3×3 block matrix, each bock being of sizeNg ×Nc. We can clearly see the different parts of the Jacobian:
the transport part in the upper left corner has 3 diagonals corresponding to the Kronecker product structure
(remember thatL is tridiagonal), and the chemistry part at the bottom has 10 3×3 blocks.

It would in principle possible to compute and store the Jacobian matrix according to equation (31) as a
sparse matrix, and to compute the matrix–vector product using a general purpose routine. The advantage of the
method given in equation (30) is that the structure of the Jacobian is fully exploited, which leads to a much
more economical computation.

4 Numerical results

4.1 Ion exchange

The following example of advective transport in the presence of cation exchanger is adopted as a first test case
comparison of both approaches. The example is used in the documentation of PHREEQC-2 [33] as Example 11.
The one-dimensional simulation problem describes a columnexperiment where the chemical composition of
the effluent from a column containing a cation exchanger is simulated. Initially, the column contains a sodium-
potassium-nitrate solution in equilibrium with the cationexchanger. The column is then flushed with three
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Fig. 1: The block structure of the Jacobian matrix

pore volumes of calcium chloride solution, so that an equilibrium state with calcium and chloride is reached.
Calcium, potassium, and sodium react to equilibrium with the exchanger at all times. The flow and transport
parameters used for this example are presented in Table 1, and the initial and injected concentrations are listed
in Table 2. The Cationic Exchange Capacity for the exchangeris 1.1mmol/l.

Darcy velocity 2.7810−6 m/s
Diffusion coefficient 5.5610−9 m2/s
Length of column 0.08 m
Mesh size 0.0002 m
Duration of experiment 1 day
Time step 720 s

Table 1: Physical parameters

Component Cinit Cinflow

Ca 0 0.610−3

Cl 0 1.210−3

K 2.010−4 0

Na 1.010−3 0

Table 2: Initial and injected concentrations
The chemical reactions for this example are:

Na+ +X−
⇋ NaX

K+ +X−
⇋ KX

1
2

Ca2+ +X−
⇋

1
2

CaX2

with NaX, KX and CaX2 are (sorbed) complexes, andX indicates exchange site with charge -1

4.1.1 Comparison with Phreeqc

Figure 2 shows elution curves, that is the evolution of the concentration of the various species at the end
of the column, as a function of time. The sorbed potassium andsodium ions are successively replaced by
calcium. Because potassium exchanges more strongly than sodium (as indicated by a larger value of log K in
the exchange reaction), sodium is released first, followed by potassium. Finally when all of concentration has
been released, the concentration of calcium increases to its steady-state value, the potassium is displaced from
the exchanger and the concentration in solution increases to balance the Cl− concentration.

Both the sequential method and the global method described in section 3.2 have been applied to the test case
described in section 4.1. Both the computational demands and the accuracy of the solutions will be compared.
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Fig. 2: Elution curves (concentrations at the end of the column) versus time, for the problem of section 4.1.
Left: global method, right: PhreeqC reference.

As can be seen on figure 2, the results obtained are close to those computed by PhreeqC. One can still see
differences both in the location and amplitude of the peak inpotassium concnetration, and in the region where
the three curves cross. These results are also comparable tothose obtained by Xu et al. [46].

4.1.2 Performance of the method

The CPU times for the iterative splitting, non iterative splitting and global approaches are compared on figure 3.
The CPU time required for each method is plotted versus the number of the nodes of the grid. As expected, it
can be seen that the non-iterative method requires much lessCPU time than the iterative methods. On the other
hand, the global approach described in the paper requires less time than the iterative splitting, at least for the
simple chemical system considered here.

Fig. 3: Computing time for 3 methods applied to the ion exchange of section 4.1

For a single time step, the iterative splitting approach requires between 20 and 27 iterations on the average.
The number of fixed point iterations increase with the numberof the nodes in the grid. On the other hand, the
number of Newton iterations for the Newton–Krylov method isless than 6, independently of the number of
nodes. The number of Krylov iteration for each Newton step, however, does increase with the number of nodes.
We go back to this issue in subsection 4.2.1.
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4.2 The 1D “easy” MoMaS Benchmark

The global and the splitting approaches will now be applied to the 1D easy GDR Momas Benchmark, as
described in the introductory paper to this special issue [6], see also the original description in [5]. Let us just
recall that the model is a one-dimensional column, made of 2 different media: the part in the middle is less
conductive but more reactive than the surrounding medium. The chemical system has 5 components (4 mobile
components and a fixed component), and 7 secondary species. The equilibrium constants vary over 50 orders
of magnitude, and the stoichiometric coefficients can be as large as 4, making the problem highly non-linear.

First, results showing the evolution of the component species at various times, and using several spatial
and temporal resolutions are shown on figure 4a. The left figure is at timet = 10, the right one att = 50. As
expected, the concentrations remain almost constant in themiddle (reactive) region. Meshes with 220, 440, 660
and 880 points have been used, and in each case the time step ischosen as 0.9 times the limit fixed by the CFL
condition. For these early times, the dependence on the meshis not very strong. Elution curves (concentrations

(a) t = 10 (b) t = 50

Fig. 4: Concentration of all components at timest = 10 andt = 50, for various mesh resolutions

at the end of the column as functions of time) are shown on figure 5, first fort going from 0 to 400 (figure 5a),
then fort going from 4900 to 5300 (figure 5b). The elution curves show that the correct limiting behavior is
reached before the leaching phase begins.

The output results required in the benchmark definition are included. Most were obtained with a 220 points
mesh, which may not be sufficient, as will be seen below. It hasnot yet been possible to obtain results with a
finer mesh resolution for significantly longer times.

Figures 6a, figures 6b and 6c (elution curve for the total dissolved concentration of component X3,a nd
species C1) show an oscillations pattern that has been observed by other groups working on the benchmark.
These oscillations have been convincingly explained by V. Lagneau [27] as being due to the interaction of
the very rapid chemistry and the discrete nature of the grid.They are a discretization artifact, but appear
independently of the method. They can be reduced by using a more refined grid.

Figures 7a and 7b show the influence on the mesh, by showing theconcentration over a small spatial
region, for timet = 10 . The concentrations are computed with 4 meshes of increasing resolution. The peaks
in the solution are not resolved satisfactorily for the coarser mesh, with 220 points, but 660 (and better 880)
points give the correct location and amplitude. Even if the method as it is currently implemented cannot yet be
considered as robust, its ability to locate these solution features with reasonably coarse meshes was seen as one
of its strong points. Unfortunately, this may still not be enough to eliminate the oscillations shown on figure 6.
This issue is currently being worked on, part of the difficulty being that increasing the mesh resolution may not
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(a) t = 0 to t = 400 (b) t = 4900 tot = 5300

Fig. 5: Concentration of the components X1 and X4 at the end ofthe column (x = 2.1) as a function of time

(a) Total dissolved concentration C3 (b) Component X3 (c) Species C1

Fig. 6: Elution curve (concentrations atx = 2.1 as as function of time)

be sufficient. As the nonlinear problem becomes more difficult, it may be necessary to increase the maximum
number of iterations allowed to make sure the Newton–Krylovmethod has converged.

4.2.1 Performance of the method

The benchmark was intended to be a difficult test for numerical methods, and this is indeed the case. On the
average, more than 20 Newton iterations are required at eachtime step, and between 15 and 40 conjugate
gradient steps are needed at each nonlinear iterations.

Figure 8 shows a typical time step: the solid curve shows the cumulative number of conjugate gradient
(alternatively, the number of matrix vector products), andthe dots represent the nonlinear iterations.

Statistics for a single time step are gathered in table 3, forthree different mesh resolutions (220, 440 and
660 points). They give the number of non-linear iterations (NNI) for a (typical) time step, and the total number
of linear iterations (NLI) accummulated over the whole Newton iteration. The number of nonlinear iterations
depends only weakly on the mesh resolution, whereas the number if linear iterations increases with the mesh
resolution.



17

(a) Species X1,t = 10

(b) Component S,t = 10

Fig. 7: Concentration profiles

Mesh 220 Mesh 440 Mesh 660
NNI NLI NNI NLI NNI NLI
25 494 18 551 25 636

Table 3: Statistics on Newton and GNRES iterations, for one time step (NNI= Number of NonLinear Iterations,
NLI= Number of Linear Iterations).

Table 3 shows that the solver spends a large proportion of itstime in the linear solver, despite the adaptive
choice of the forcing parameter (equation (29)). Moreover,the number of linear iterations for each nonlinear
iteration also increases with the mesh resolution. Actually, this is expected, as the solution of the linearized
problem includes the solution of the transport operator, wich has an elliptic-like structure, so that its condi-
tion number grows like the square of the number of grid points. This problem could be alleviated by using a
suitable preconditioner that would make the number of iterations independent of the mesh resolution (a do-
main decomposition preconditioner could be used as in [1]).As noticed by Hammond et al. [17], designed a
matrix-free preconditioner (so as to be compatible with theNewton-Krylov framework) is a challenge. Natural
choices would exploit the block structure of the Jacobian, the simpler ones being based on block-Jacobi, or
block Gauss-Seidel. Operator-splitting as a preconditioner has also been proposed in [17]. These possibilities
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are currently being explored, exploiting the block structure of the Jacobian, and the results will be reported in
a forthcoming paper [44].

5 Conclusions– Perspectives

In this paper, it was shown that a global method for coupling transport with chemistry based on the Newton-
Krylov technology can be implemented while keeping the transport and chemical solvers separated. The results
shown are promising: it is possible to solve efficiently geochemical problems using the method, although there
remains several issues that need to be addressed.

– The first is to run test cases on more demanding configurations, where the method can be expected to show
its full potential. This includes the other MoMaS test cases, with a more complex chemistry model, and
also an implementation of the method in 2 and 3 dimensions.

– It will then certainly be necessary to explore the question of how to precondition the Jacobian, in order to
reduce the number of Krylov iterations. An natural avenue isto reuse the operator splitting methods, as
proposed by [17]. A similar study is being carried out for a related, but simpler model, see [44].

– The results reported above used a fixed time step, which was clearly insufficient for the large interval of
integration. To successfully solve difficult problems likethe benchmark above, it will clearly be necessary
to use adaptive time stepping.

– A more difficult problem will be to take into account precipitation–dissolution phenomena in the chemical
model. As the models are non-differentiable, this makes it more difficult to employ Newton’s method.

As was apparent from the numerical experiments, the method also shows some limitations. The most seri-
ous is its high cost, as each evaluation of the residual involves the solution of a chemical problem at each grid
point. The fact that the method has two levels of nonlinear iterations means that it may not be as robust as other
global methods based on a single level of iterations. Finding a good preconditioner may not be a limitation, but
most strategies will involve solving more transport problems, which will also incur a high cost.
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41. Samper J, Xu T, Yang C (2009) A sequential partly iterative approach for multicomponent reactive trans-

port with CORE2D. Computational Geosciences 13:301–316, DOI 10.1007/s10596-008-9119-5, URL
http://dx.doi.org/10.1007/s10596-008-9119-5

42. Shapiro NZ, Shapley LS (1965) Mass action laws and the Gibbs free energy function. J SOC Indust Appl
Math 13(2):353–375
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