5 research outputs found

    Early-type galaxies with core collapse supernovae

    Full text link
    It is widely accepted that the progenitors of core collapse SNe are young massive stars and therefore their host galaxies are mostly spiral or irregular galaxies dominated by a young stellar population. Surprisingly, among morphologically classified hosts of core collapse SNe, we find 22 cases where the host has been classified as an Elliptical or S0 galaxy. To clarify this apparent contradiction, we carry out a detailed morphological study and an extensive literature search for additional information on the sample objects. Our results are as follows: 1. Of 22 "early type" objects, 17 are in fact misclassified spiral galaxies, one is a misclassified irregular, and one is a misclassified ring galaxy. 2. Of the 3 objects maintaining the early type classification, one (NGC2768) is a suspected merger remnant, another (NGC4589) is definitely a merger, and the third (NGC2274) is in close interaction. The presence of some amount of young stellar population in these galaxies is therefore not unexpected. These results confirm the presence of a limited, but significant, number of core collapse SNe in galaxies generally classified of early type. In all cases, anyway, there are independent indicators of the presence in host galaxies of recent star formation due to merging or gravitational interaction.Comment: 12 pages, 1 figure, 1 table, accepted for publication in A&

    Ultraluminous Infrared Galaxies

    Full text link
    Ever since their discovery in the 1970's, UltraLuminous InfraRed Galaxies (ULIRGs; classically Lir>10^12Lsun) have fascinated astronomers with their immense luminosities, and frustrated them due to their singularly opaque nature, almost in equal measure. Over the last decade, however, comprehensive observations from the X-ray through to the radio have produced a consensus picture of local ULIRGs, showing that they are mergers between gas rich galaxies, where the interaction triggers some combination of dust-enshrouded starburst and AGN activity, with the starburst usually dominating. Very recent results have thrown ULIRGs even further to the fore. Originally they were thought of as little more than a local oddity, but the latest IR surveys have shown that ULIRGs are vastly more numerous at high redshift, and tantalizing suggestions of physical differences between high and low redshift ULIRGs hint at differences in their formation modes and local environment. In this review we look at recent progress on understanding the physics and evolution of local ULIRGs, the contribution of high redshift ULIRGs to the cosmic infrared background and the global history of star formation, and the role of ULIRGs as diagnostics of the formation of massive galaxies and large-scale structures.Comment: Review article, published in "Astrophysics Update 2 - topical and timely reviews on astronomy and astrophysics". Ed. John W. Mason. Springer/Praxis books. ISBN: 3-540-30312-X. 53 pages, 5 figures. Higher quality figures available on reques

    The saturation states of compact and diffuse components of OH megamaser galaxies

    No full text
    A sample of 9 OH megamaser galaxies detected in the soft X-ray domain was compiled. Using available OH and X-ray data a striking correlation was found between the X-ray luminosity and the width of the OH line. This correlation may indicate that the X-ray heating of a molecular gas may increase the collisional excitation of the maser emission. However, this result should be considered as a tentative one because of the insufficient number of galaxies. An analysis of the saturation states of compact and diffuse components of OH emission was performed. The results of the analysis support the assumption that both the compact and diffuse OH maser emissions in the megamaser galaxies are saturated. The diffuse component might show unsaturated masing under certain conditions, such as the appropriate relation between the intensities of compact and diffuse components and a relevant number of the IR photons to pump the maser emission

    The cold gas properties of Markarian galaxies

    No full text
    A sample of 61 Markarian galaxies detected in the CO line was compiled. Using available HI, H2, optical and radio continuum data, the analysis of the gas kinematics and the star formation properties for this sample of galaxies was performed. The main conclusion can be summarized as follows: (1) The HI and CO line widths are well correlated. Interaction between galaxies has no influence on the CO line broadening. A rapidly rotating nuclear disk in the galaxy might lead to the CO line broadening with less influence on the HI line. (2) The atomic and molecular gas surface densities are well correlated with the blue, FIR and radio continuum surface brightness; however, the correlation for molecular component is stronger. (3) In general, the galaxies with UV-excess (Markarian galaxies) do not differ in their star formation properties from the non-UV galaxies
    corecore