316 research outputs found

    Whole-field density measurements by digital image correlation

    Get PDF
    A novel application of Synthetic Schlieren in a laboratory set-up yields a quantitative measurement of the density field of two-dimensional, stratified or homogeneous, transparent fluids in a laboratory set-up using a single camera. This application obtains local values of the density without the need for tomographic reconstruction algorithms that require images taken from different directions through the fluid nor does the application require regularization. This is achieved by placing the camera at a large oblique angle with respect to the experimental set-up. This step is motivated by a fallacy observed when applying ray tracing in a classical configuration, in which the camera’s optical axis is perpendicular to the flat surface of a fluid container. The application is illustrated by the optical determination of static density fields of linearly and nonlinearly stratified fluids, as well as of multi-layered fluids. The application is validated by comparing with density profiles obtained from probe measurements of conductivity and temperature. Our application yields similar density and density gradient profiles as the probe while also providing a whole-field measurement without disturbing the fluid, and allowing the determination of dynamical density fields

    EROS Variable Stars : Discovery of Beat Cepheids in the Small Magellanic Cloud and the effect of metallicity on pulsation

    Get PDF
    We report the discovery of eleven beat Cepheids in the Small Magellanic Cloud, using data obtained by the EROS microlensing survey. Four stars are beating in the fundamental and first overtone mode (F/1OT), seven are beating in the first and second overtone (1OT/2OT). The SMC F/1OT ratio is systematically higher than the LMC F/1OT, while the 1OT/2OT period ratio in the SMC Cepheids is the same as the LMC one.Comment: 4 pages, Latex file with 4 .ps figures. accepted for publication in A A Letter

    Miniaturization optimized weapon killing power during the social stress of late pre-contact North America (AD 600-1600)

    Get PDF
    Before Europeans arrived to Eastern North America, prehistoric, indigenous peoples experienced a number of changes that culminated in the development of sedentary, maize agricultural lifeways of varying complexity. Inherent to these lifeways were several triggers of social stress including population nucleation and increase, intergroup conflict (warfare), and increased territoriality. Here, we examine whether this period of social stress co-varied with deadlier weaponry, specifically, the design of the most commonly found prehistoric archery component in late pre-contact North America: triangular stone arrow tips (TSAT). The examination of modern metal or carbon projectiles, arrows, and arrowheads has demonstrated that smaller arrow tips penetrate deeper into a target than do larger ones. We first experimentally confirm that this relationship applies to arrow tips made from stone hafted onto shafts made from wood. We then statistically assess a large sample (n = 742) of late pre-contact TSAT and show that these specimens are extraordinarily small. Thus, by miniaturizing their arrow tips, prehistoric people in Eastern North America optimized their projectile weaponry for maximum penetration and killing power in warfare and hunting. Finally, we verify that these functional advantages were selected across environmental and cultural boundaries. Thus, while we cannot and should not rule out stochastic, production economizing, or non-adaptive cultural processes as an explanation for TSAT, overall our results are consistent with the hypothesis that broad, socially stressful demographic changes in late pre-contact Eastern North America resulted in the miniaturization–and augmented lethality–of stone tools across the region

    The effect of metallicity on the Cepheid distance scale and its implications for the Hubble constant (H0H_0) determination

    Full text link
    Recent HST determinations of the expansion's rate of the Universe (the Hubble constant, H_0) assumed that the Cepheid Period-Luminosity relation at V and I are independent of metallicity (Freedman, et al., 1996, Saha et al., 1996, Tanvir et al., 1995). The three groups obtain different vales for H_0. We note that most of this discrepancy stems from the asumption (by both groups) that the Period-Luminosity relation is independent of metallicity. We come to this conclusion as a result of our study of the Period-Luminosity relation of 481 Cepheids with 3 millions two colour measurements in the Large Magellanic Cloud and the Small Magellanic Cloud obtained as a by-product of the EROS microlensing survey. We find that the derived interstellar absorption corrections are particularly sensitive to the metallicity and when our result is applied to recent estimates based on HST Cepheids observations it makes the low-H_0 values higher and the high-H_0 value lower, bringing those discrepant estimates into agrement around H070km/sMpc1H_0 \approx 70 km/s Mpc^{-1}.Comment: 4 pages, Latex, with 2 .ps accepted for publication astronomy and astrophysics Letter

    Galactic Bulge Microlensing Optical Depth from EROS-2

    Full text link
    We present a new EROS-2 measurement of the microlensing optical depth toward the Galactic Bulge. Light curves of 5.6×1065.6\times 10^{6} clump-giant stars distributed over 66deg266 \deg^2 of the Bulge were monitored during seven Bulge seasons. 120 events were found with apparent amplifications greater than 1.6 and Einstein radius crossing times in the range 5 {\rm d}. This is the largest existing sample of clump-giant events and the first to include northern Galactic fields. In the Galactic latitude range 1.4\degr<|b|<7.0\degr, we find τ/106=(1.62±0.23)exp[a(b3deg)]\tau/10^{-6}=(1.62 \pm 0.23)\exp[-a(|b|-3 {\rm deg})] with a=(0.43±0.16)deg1a=(0.43 \pm0.16)\deg^{-1}. These results are in good agreement with our previous measurement, with recent measurements of the MACHO and OGLE-II groups, and with predictions of Bulge models.Comment: accepted A&A, minor revision

    Smoothed particle hydrodynamics (SPH) model for coupled analysis of a damaged ship with internal sloshing in beam seas

    Get PDF
    The flooding of a damaged ship in waves is a complex process, often coupled with the internal and external liquid motion together with the ship hull motion. Paramount to the operation safety, in order to improve the prediction accuracy of ship motion during the flooding process, the strip theory is applied to study the dynamic response of the damaged ship in beam seas; a smoothed particle hydrodynamics (SPH) model is developed to consider the coupling effects of various factors including internal sloshing of intact cabins and damaged cabins and external waves. The numerical wave tank with a perfectly matched layer absorbing boundary condition is established and validated by the experimental results. The detailed sensitivity study is carried out focusing on the effects of damaged opening sizes, the relative position of opening, and the incident wave and the liquid loading conditions on the dynamic response of the damaged ship in regular beam waves. It is observed that the flooding process was slowed down and interrupted by the water exchanges at the damaged opening due to the dynamic motion. Compared with the opening facing the incident wave, the back one endangered the ship pronouncedly with large amplitude and frequency roll motion. It is also revealed that the liquid tank in the damaged ship imposes a significant influence on its rolling response. It is further demonstrated that the present SPH model is capable of handling the nonlinear phenomenon in a flooding process of a damaged ship

    Observational Limits on Machos in the Galactic Halo

    Get PDF
    We present final results from the first phase of the EROS search for gravitational microlensing of stars in the Magellanic Clouds by unseen deflectors (machos: MAssive Compact Halo Objects). The search is sensitive to events with time scales between 15 minutes and 200 days corresponding to deflector masses in the range 1.e-7 to a few solar masses. Two events were observed that are compatible with microlensing by objects of mass of about 0.1 Mo. By comparing the results with the expected number of events for various models of the Galaxy, we conclude that machos in the mass range [1.e-7, 0.02] Mo make up less than 20% (95% C.L.) of the Halo dark matter.Comment: 4 pages, 3 Postscript figures, to be published in Astronomy & Astrophysic

    New Magellanic Cloud R Coronae Borealis and DY Per type stars from the EROS-2 database: the connection between RCBs, DYPers and ordinary carbon stars

    Full text link
    R Coronae Borealis stars (RCB) are a rare type of evolved carbon-rich supergiant stars that are increasingly thought to result from the merger of two white dwarfs, called the Double degenerate scenario. This scenario is also studied as a source, at higher mass, of type Ia Supernovae (SnIa) explosions. Therefore a better understanding of RCBs composition would help to constrain simulations of such events. We searched for and studied RCB stars in the EROS Magellanic Clouds database. We also extended our research to DY Per type stars (DYPers) that are expected to be cooler RCBs (T~3500 K) and much more numerous than their hotter counterparts. The light curves of ~70 millions stars have been analysed to search for the main signature of RCBs and DYPers: a large drop in luminosity. Follow-up optical spectroscopy was used to confirm each photometric candidate found. We have discovered and confirmed 6 new Magellanic Cloud RCB stars and 7 new DYPers, but also listed new candidates: 3 RCBs and 14 DYPers. We estimated a range of Magellanic RCB shell temperatures between 360 and 600 K. We confirm the wide range of absolute luminosity known for RCB stars, M_V~-5.2 to -2.6. Our study further shows that mid-infrared surveys are ideal to search for RCB stars, since they have thinner and cooler circumstellar shells than classical post-AGB stars. In addition, by increasing the number of known DYPers by ~400%, we have been able to shed light on the similarities in the spectral energy distribution between DYPers and ordinary carbon stars. We also observed that DYPer circumstellar shells are fainter and hotter than those of RCBs. This suggests that DYPers may simply be ordinary carbon stars with ejection events, but more abundance analysis is necessary to give a status on a possible evolutionnary connexion between RCBs and DYPers.Comment: 22 pages, 38 figures, Accepted for publication in A&

    The EROS2 search for microlensing events towards the spiral arms: the complete seven season results

    Get PDF
    The EROS-2 project has been designed to search for microlensing events towards any dense stellar field. The densest parts of the Galactic spiral arms have been monitored to maximize the microlensing signal expected from the stars of the Galactic disk and bulge. 12.9 million stars have been monitored during 7 seasons towards 4 directions in the Galactic plane, away from the Galactic center. A total of 27 microlensing event candidates have been found. Estimates of the optical depths from the 22 best events are provided. A first order interpretation shows that simple Galactic models with a standard disk and an elongated bulge are in agreement with our observations. We find that the average microlensing optical depth towards the complete EROS-cataloged stars of the spiral arms is τˉ=0.51±.13×106\bar{\tau} =0.51\pm .13\times 10^{-6}, a number that is stable when the selection criteria are moderately varied. As the EROS catalog is almost complete up to IC=18.5I_C=18.5, the optical depth estimated for the sub-sample of bright target stars with IC<18.5I_C<18.5 (τˉ=0.39±>.11×106\bar{\tau}=0.39\pm >.11\times 10^{-6}) is easier to interpret. The set of microlensing events that we have observed is consistent with a simple Galactic model. A more precise interpretation would require either a better knowledge of the distance distribution of the target stars, or a simulation based on a Galactic model. For this purpose, we define and discuss the concept of optical depth for a given catalog or for a limiting magnitude.Comment: 22 pages submitted to Astronomy & Astrophysic
    corecore