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Abstract

Before Europeans arrived to Eastern North America, prehistoric, indigenous peoples experi-

enced a number of changes that culminated in the development of sedentary, maize agricul-

tural lifeways of varying complexity. Inherent to these lifeways were several triggers of

social stress including population nucleation and increase, intergroup conflict (warfare), and

increased territoriality. Here, we examine whether this period of social stress co-varied with

deadlier weaponry, specifically, the design of the most commonly found prehistoric archery

component in late pre-contact North America: triangular stone arrow tips (TSAT). The exam-

ination of modern metal or carbon projectiles, arrows, and arrowheads has demonstrated

that smaller arrow tips penetrate deeper into a target than do larger ones. We first experi-

mentally confirm that this relationship applies to arrow tips made from stone hafted onto

shafts made from wood. We then statistically assess a large sample (n = 742) of late pre-

contact TSAT and show that these specimens are extraordinarily small. Thus, by miniaturiz-

ing their arrow tips, prehistoric people in Eastern North America optimized their projectile

weaponry for maximum penetration and killing power in warfare and hunting. Finally, we ver-

ify that these functional advantages were selected across environmental and cultural bound-

aries. Thus, while we cannot and should not rule out stochastic, production economizing, or

non-adaptive cultural processes as an explanation for TSAT, overall our results are consis-

tent with the hypothesis that broad, socially stressful demographic changes in late pre-con-

tact Eastern North America resulted in the miniaturization–and augmented lethality–of stone

tools across the region.
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Introduction

The archaeological record for the late first millennium AD reveals that native societies across

the North American midcontinent and northeast initiated a suite of cultural changes that cul-

minated in the development of sedentary, maize agricultural lifeways of varying complexity.

Among the most important elements of this culture change were increased population nucle-

ation, intergroup conflict (warfare), the adoption of the bow and arrow, and increased territo-

riality [1,2]. This process climaxed with the development of Mississippian chiefdoms as early

as AD 1050 in the American Bottom [3] and tribal-level peer-polities after about AD 1300 [4–

6]. Increased population and territoriality is revealed in changing site distributions marked by

the clustering of habitation sites in resource-rich river valleys and diminishing use of upland

habitats [7]. By AD 1300, the remains of maize, squash, and eventually the common bean

(Phaseolus) become ubiquitous in midden deposits of living sites and point to agriculture as an

integral part of most subsistence systems [1,8]. The intensification of inter-group conflict is

seen in the construction of wooden palisade and moat defenses around tribal villages and Mis-

sissippian towns, as well as direct evidence of traumatic injuries on skeletal remains and

embedded unnotched arrow points in human bones and thoracic areas of skeletons [9].

Particular elements of this new era, such as intensified warfare and the pervasive fear of vio-

lence, undoubtedly put all of these populations under varying degrees of social stress. In addi-

tion, increased conflict due to the nucleation of village settlements and reduction of free (i.e.,

safe) mobility beyond the settlement likely increased pressure on local populations to success-

fully exploit the main prey species, white-tailed deer [10]. Deer are the most common mammal

remains found at late pre-contact sites [11–16]

The warfare and hunting that occurred during AD 600–1600 of the North American mid-

continent and northeast would have involved the use of small, triangular stone arrow tips

(TSAT) [12, 17–19]. The profuse frequency and density of these TSAT is exceptional in the

North American archaeological record, and serves as a valuable case for understanding the

global phenomenon of “lithic miniaturization” that occurs during the late Pleistocene and

throughout the Holocene (Fig 1) [20]. Hafted onto arrow shafts, prehistoric archers would

have shot TSAT, often referred to as ‘‘Levanna points” or ‘‘Madison points” [21,22], via the

bow and arrow [23–25].

Recent analyses of large samples of TSAT from the Eaton site (AD 1550 [12,18]) and Blain

Village (AD 1280–1320, S1 Appendix of S1 Table) support the hypothesis that TSAT were

designed with both warfare and hunting in mind. With respect to warfare, the high length-to-

width ratios and low thickness-to-length ratios of TSAT would have facilitated breakage upon

impact [26,27], potentially causing more damage to enemy combatants [28,29]. With respect

to hunting, by constraining TSAT cross-sectional area [30] to less than 275 mm2 –no more

than 50 mm in basal width and 11 mm in thickness–prehistoric hunters could have success-

fully shot between a deer’s ribs to penetrate its thoracic cavity, puncturing the lungs and caus-

ing internal bleeding and collapse of the animal [12; 31]. To clarify, 275 mm2 = 50 mm x 11

mm; 50 mm is reported by Engelbrecht ([12]:763), who states “the distance between ribs on a

deer depend on its age and sex, but for an adult deer, the ribs would be roughly 2.5 cm and 5

cm apart”; 11 mm is also reported by Engelbrecht ([12]:763), citing Guthrie’s [31] experiments,

the latter finding points under 10 mm or 11 mm in thickness “more often passed between the

ribs and penetrated the thorax” than did thicker points.

Beyond the cross-sectional threshold of 275 mm2, however, little is known as to what extent

people selected for TSAT size during the late pre-contact period. Did social stress during this

period potentially influence the size of their chief weaponry? The examination of modern

metal or carbon projectiles, arrows, and arrowheads by bow hunters and academic researchers
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has demonstrated that smaller cross-sectional areas penetrate deeper into a target than do

larger ones [32–36] (S1 Appendix). Do TSAT behave in a similar manner? And if so, did

archers under social stress select for smaller, more deeply penetrating stone arrowheads? To

answer these questions, we conducted archaeological experiments using replica TSAT, fol-

lowed by analyses of a large sample (n = 742) of late pre-contact TSAT across several different

environmental zones (Fig 2). If archers during the late pre-contact period selected for smaller,

more deeply penetrating arrow tips, then we can make two predictions. First, replica TSAT

should behave similarly to modern arrow tips, showing an inverse relationship between size

and penetration under the cross-sectional threshold of 275 mm2. Second, the archaeological

sample should be significantly skewed towards the smaller values of the 0 to 275 mm2 cross-

Fig 1. Triangular stone arrow tips (TSAT) (Blain Village, Ross County, Ohio, U.S.A.).

https://doi.org/10.1371/journal.pone.0230348.g001
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Fig 2. Distribution of the archaeological TSAT sample (n = 742) and physiographic regions across Ohio, U.S.A. This map was created in ArcGIS.

https://doi.org/10.1371/journal.pone.0230348.g002
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sectional range with a central tendency significantly smaller than 68.75 mm2, which is the

first-quartile value between 0 and 275 mm2.

Materials and methods

Production of experimental TSAT

M.I.E. knapped thirty-five flaked stone arrowheads using Texas Georgetown Chert (S1 Data)

(Fig 3). This Edwards Formation chert is an excellent, flaw-free stone comparable to many

high quality cherts across North America, including Ohio. There is no evidence to our knowl-

edge that North American pre-contact knappers used any other toolstone (e.g. obsidian,

quartzite, etc.) for their stone points beyond chert. First, M.I.E. knapped flakes from chert nod-

ules via hard-hammer direct percussion. Second, he produced preforms using soft-hammer

direct percussion. Finally, he finished the triangular arrowheads using pressure flaking. The

experimental arrowheads ranged in cross section (width � thickness/2) from 25 to 138 mm2

with a mean of 67 mm2 and a median of 69 mm2 and were normally distributed (skew-

ness = 0.90; Shapiro-Wilk test W = 0.94, p = 0.07) (S1 Data). The masses of the points ranged

from 1 g to 18 g with a mean of 6 g and a median of 5 g.

TSAT hafting

M.W. hafted all arrowheads in an identical fashion to 105, 5/16” diameter Port Orford cedar

shafting (prefletched) (Fig 3). He also used additional materials such as synthetic polyurethane

sinew, “Ferr-L-Tite” hot-melt adhesive, and nitrocellulose lacquer for a finish coat to increase

haft durability. The hafting process, which involved six steps, required the utilization of several

hand tools including files/rasps, a small knife, sand papers of varying grit, and a small “Sterno”

heat pot. The first step required tapering the shafts to accommodate the thickness, width, and

length of the projectile to be hafted. The second step involved cutting the socket in which the

base of the projectile was to be seated. The third step involved trimming and heat-treating the

socket area, followed by dry-fitting the projectile and balancing it via hand-spinning. The

fourth step involved fixing the projectile in the socket. This step required simultaneously heat-

ing the shaft, the projectile, and the hot-melt adhesive. The process of fitting and balancing

was repeated, and, with the application of the adhesive, M.W. firmly fixed the projectile and

trimmed and smoothed any excess adhesive. After letting the adhesive set, cool, and cure, M.

W. completed the fifth step: applying the sinew wraps. The sinew wrap consisted of a simple

“loop-and-tail” whip knot. After wrapping, M.W. trimmed the tails, and mildly reheated the

entire projectile for the purpose of minor readjustments and smoothing. Lastly, the sixth step

involved the application of a nitrocellulose lacquer coat, simulating hide glue, to improve over-

all projectile durability.

The finished hafted projectiles ranged from 27 g to 44 g with a mean of 32 g and a median

of 31 g (S1 Data).

Experimental procedure

Our experiment here closely replicates the practices described in other ballistics studies con-

ducted at the Kent State University Experimental Archaeology Laboratory [37–42]. This labo-

ratory is a controlled experimental indoor setting used in order to systematically evaluate

projectile performance. We used a compound bow mounted on a bow-tuning machine, the

Spot-Hogg “Hooter Shooter”. The compound bow used in this experiment was the Microbur-

ner MX model produced by PSE (Precision Shooting Equipment), Inc., with a draw weight of

29 lbs.
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Fig 3. An example of an experimental TSAT (specimen #33).

https://doi.org/10.1371/journal.pone.0230348.g003
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We fired at a stationary target. The distance between the target and bow was approximately

2.75 meters, thus allowing sufficient room for the specimens to travel once fired without losing

speed or dropping. To protect participants and observers from any airborne debris during the

experiment, a safety wall separated the target from the rest of the laboratory. We fired the

hafted projectile specimens into blocks of moist clay containing crystalline silica, which has

been used as an ethical substitute for meat and tissue in other studies [37, 39, 43–45]. Key et al.

([39]:2–42) write,

“High-speed video analyses and depth of penetration tests suggest that, dynamically, clay

can be used as a suitable substitute for meat during experimental archaeology tests with stone

points, but not for modern composite arrows. That is, for studies concerned with the perfor-

mance of reasonably large projectile tips (such as those often observed in the Palaeolithic

archaeological record), clay may be used as reliable proxy for meat.”

Given that our experiment used stone points hafted onto wooden shafts, rather than field

tips hafted onto composite shafts, clay in this case is a satisfactory target for relative compari-

sons and for potential penetration depths on animals or human targets. It is also noteworthy

that Karger et al.’s [46] experimental results caused them to question the use of gelatin for

arrow wounds. Thus, much more testing is required to establish the similarity and differences

of meat, clay, and gelatin; this topic should be a focus for experimental archaeologists in future

years.

The clay was terracotta low-fire earthenware clay, commonly referred to as “potter’s clay”

[42]. The clay comes packaged in rectangular 11.34 kg (25 lb) blocks covered in thin, clear plas-

tic with measurements of 14 cm wide x 15.5 cm deep x 28 cm long. We placed the clay blocks

on the wooden target three wide, two deep, and standing vertically, with one additional block

lying horizontally on top of the middle block [42].

To measure velocity, we used a Gamma Master Model Shooting Chonograph throughout

the experiment. The device is able to measure velocities from approximately 9.14 meters per

second (mps) to up to 2133.6 meters per second (mps). The Chrony readings on occasion

result in “error” if there is a change in sunlight, cloud cover, or some other minor variable. As

a result, we recorded 31 of 35 possible stone point velocity readings (S1 Data). The recorded

impact energies ranged from 11.2 J to 29.1 J, with a mean of 16.3 J and median of 15 J (S1

Data). The range is due to Chrony reading measurement error; the inter-quartile range (14.0 J

to 16.1 J) illustrates that the impact energies are approximately the same regardless of point

mass (S1 Data), which is expected given all projectiles were pulled to the same draw length.

With respect to target penetrability, each arrowhead was shot into a clay target once. We

recorded penetration depth into the clay target for each shot. We measured this variable by

marking the shaft with a pen at the location at which the shaft was first exposed in the clay tar-

get [42]. Once we removed a specimen from the target, a tape measure was used to measure

from the pen mark on the shaft to the tip of the point (S1 Data).

Archaeological sample

Once the experiments were complete and the relationship between point size and penetration

depth was modeled, we analyzed a large sample (n = 742) of archaeological TSAT. These speci-

mens represent every TSAT previously curated in the Department of Anthropology at Kent

State University that possessed the necessary measurements–basal width and thickness–to cal-

culate cross-sectional area. As of August 2019 these specimens, with the exception of Blain and

Kramer, are curated by the state repository, the Ohio History Connection. The points come

from a variety of sites across Ohio (S1 Data), which themselves are located in different envi-

ronments across the state (Fig 2). These locations formed three clusters: a southern cluster,
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represented by sites from the Allegheny Plateau and Till Plains; a mid-state cluster, represented

by sites from the Allegheny Plateau and glaciated Allegheny Plateau; and a northern cluster,

represented by sites from the glaciated Allegheny Plateau, the Till Plains, and the Huron-Lake

Erie Plains. The point sample also occurs across archaeological cultural boundaries and

ceramic traditions, such as Fort Ancient, Clover, Eastwall/McFate, Whittlesey, and Sandusky

[47–50].

No permits were required for the described study, which complied with all relevant regula-

tions. All specimens are curated at the Ohio History Connection or Kent State University.

Results

Experimental modeling

We modeled the relationship between TSAT cross-sectional area and penetration depth using

a series of nonlinear and linear best-fit lines. We used minimal Akaike’s Information Criterion

(AIC) score to determine the best fit. An exponential decay model had the lowest AIC (18858)

and had a negative decay rate of -0.034. The exponential decay model indicates that TSAT

with cross-sections between about 70 and 25 mm2 demonstrate the greatest increases in pene-

tration depth, with smaller cross sections exhibiting exponential increases in penetration

depth (Fig 4A). The TSAT cross section and penetration depth relationship can also be mod-

eled by log-transforming both variables and using an ordinary least squares linear fit (Fig 4B).

The linear fit is significant and explains approximately 69% of the variation in the data (r2 =

0.69; slope = -0.54, y-intercept = 7.34). This model indicates a sublinear allometric relationship

with penetration depth decreasing at a rate of approximately 1/2 with that of cross section

area. In other words, TSAT penetration depths decrease faster as cross section area increases.

Archaeological analyses

All archaeological specimens in our sample were under 275 mm2 in cross-sectional area,

except for one. They ranged from 14 to 383 mm2 with a mean of 52.5 mm2. The distribution of

Fig 4. Models of point cross-sectional area and penetration depth: Exponential decay model (a); Ordinary least squares fit of the logarithmically-transformed data (b).

https://doi.org/10.1371/journal.pone.0230348.g004
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cross section area measurements of the archaeological samples does not conform to an under-

lying normal distribution (Shapiro-Wilk test W = 0.77, p<0.000) as it displays significant kur-

tosis (21.5) the peak occurring at a median of 43.4 mm2 (Fig 5). This sample median was

significantly smaller than 68.75 mm2, which is the first-quartile value between 0 and 275 mm2

(Wilcoxon test: W< 0.000, z = 14.997, p<0.000). If the sample is divided into three clusters of

points, each located in a different environmental zone, the clusters cross sectional areas do not

differ from each other (Kruskal-Wallis test H = 0.39, p = 0.82) (Fig 6).

Discussion

When taken together, these experimental and archaeological results are consistent with the

hypothesis that prehistoric archers during the North American late pre-contact period selected

TSAT sizes that maximized penetration, and that this selection occurred across environmental

and cultural boundaries. Similar to modern metal arrow tips, our experiments using replica

TSAT confirmed the inverse relationship between size and penetration. Our archaeological

analyses subsequently demonstrated that rather than produce a variety of TSAT sizes that

Fig 5. Histogram of point cross-sectional area.

https://doi.org/10.1371/journal.pone.0230348.g005
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simply complied with the 275 mm2 threshold necessary to effectively dispatch deer, prehistoric

people appear to have significantly winnowed their TSAT to an adaptive peak far beyond this

threshold [51,52]. When the size analyses presented here are considered alongside previously

published TSAT shape analyses, the latter suggesting that TSAT were designed to break on

impact to increase wound trauma [12,17], and analyses of TSAT archaeological context [18], a

strong case can be made that people during the late pre-contact period were concerned with

ensuring the kill of both prey and enemy combatants alike. The selection of such extreme reli-

ability and performance in weaponry can be cogently linked to the social stress of the period,

caused by increased population size, territoriality, and warfare.

Fig 6. Box plot of point cross-sectional areas by geographic cluster.

https://doi.org/10.1371/journal.pone.0230348.g006
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The case for an adaptive evolutionary change must always remain an inference. Here,

because our experimental data show a clear functional advantage for smaller points, our

archaeological data demonstrates a tendency for smaller points, and the stressful context these

archaeological data are from can be directly linked to a plausible human adaptive response

[53–55], we infer that smaller point sizes were selected for improved penetration. However, as

we have suggested elsewhere ([17]:79), while the morphology and functional properties of

TSAT appear to be consistent with an intended design involving hunting and warfare, it is

important to acknowledge that point size may be instead only incidental, the result of these

items interacting with a complex, multi-component weapon system. For example, their size

may be conducive to hafting to a narrow, aerodynamic arrow shaft ([17]:79). Or, we fully

acknowledge that the emergence of TSAT during the North American pre-contact area could

potentially be the product stochastic processes such as stylistic drift or copying error [e.g. 56–

61], production economizing behavior, or perhaps even general social preference for different

point forms. Future research should focus on acquiring additional lines of evidence to support

the adaptive TSAT hypothesis ([17]:80). Following Bebber et al ([17]:79), none of this is to say

that TSAT would not have provided benefits to pre-contact hunting and warfare, “only that

the ultimate source of these benefits is difficult to pin down.”

The emergence of small stone tools during North America’s first millennium AD, however,

is not unique in the archaeological record. Indeed, lithic “miniaturization” is one the archaeo-

logical record’s most pervasive and variable technological features [20]. As such, our study has

potential to shed light on a global technological phenomenon that occurred repeatedly during

the Late Pleistocene and Holocene. Several factors likely influenced toolmakers’ decisions to

miniaturize toolkits including efforts to exploit raw materials more efficiently, to produce

interchangeable parts and composite tools, to reduce a wider range of rock types, and to

increase the aerodynamic and ballistic properties of smaller and lighter armatures. However,

on a relatively broader level, lithic miniaturization and the functional benefits it provides has

been usually linked to three hypotheses: the emergence of modern cognition; increased mobil-

ity; and demographic shifts related to increased territoriality, population size increase, and

inter-group conflict [20, 62–64]. Of these three hypotheses, in recent years the demographic

hypothesis has seen a substantial increase in support.

Tryon and Faith [65], for example, hypothesize that increasing site occupation intensity at

Nasera rockshelter in Tanzania ~40 ka, through processes connected with wider population

pressure, resulted in decreased access to raw materials and increased reliance on local rocks.

These demographic processes placed greater pressure on humans to conserve raw material by

using increasingly miniaturized lithic reduction strategies. Similarly, Eren et al. [66] argue that

increased lithic miniaturization structured around bipolar reduction may relate to population

pressure and the demands placed on local resources at Mumba rockshelter in Tanzania. Both

models link demographic shifts to resource scarcity and greater lithic miniaturization. Marean

[67] argues that southern African Late Pleistocene populations’ consistent use of marine

resources resulted in reduced mobility, larger group size, population packing, smaller territories,

and increased reliance on composite technologies built from miniaturized lithic components.

Drawing on data from the Indian subcontinent, Petraglia et al. [68] maintain that decreased

ecological productivity ~ 35–28 ka led to population packing in ecological refugia and shifts

towards miniaturized technological systems designed to hunt key resources in shrinking favor-

able ecological zones [cf. 69]. Finally, Mackay et al. [70] similarly hypothesize that population

coalescence events between ~130–12 ka in southernmost Africa drove periods of increased lithic

miniaturization (which they link indirectly to changes in subsistence procurement strategies).

We find similar support in our New World case study here that demographic processes of

fragmentation of interacting metapopulations likely led to lithic miniaturization. This is
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important because it can be difficult to completely discount other factors such as raw material

scarcity or increased mobility that may have contributed to the production of small stone tools

in earlier periods in the Old World. Significantly, however, we can rule out both of these fac-

tors in the late pre-contact of the North American midcontinent and northeast, leaving only

demography as the predominant causal factor. Raw material scarcity can be discounted as a

factor because North American late pre-contact groups had access to a range of rocks from

which to make tools. Increased mobility can likewise be discounted as a factor because during

the late pre-contact period mobility decreases as a result of sedentism and isolation of social

group [47, 71]. Instead, our case study shows how, like in India and southern Africa, humans

responded to increased demographic pressures by downscaling lithic production. In order to

adapt to and survive demographic changes in a socially stressful period of increased territorial-

ity and warfare, rather than “going big” North American late pre-contact toolmakers and

archers “went small”. They selected for an extreme level of lithic miniaturization that provided

a vital functional advantage: ensuring the killing of prey and enemy combatants alike.
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