332 research outputs found

    Analysis of continuous neuronal activity evoked by natural speech with computational corpus linguistics methods

    Get PDF
    In the field of neurobiology of language, neuroimaging studies are generally based on stimulation paradigms consisting of at least two different conditions. Designing those paradigms can be very time-consuming and this traditional approach is necessarily data-limited. In contrast, in computational and corpus linguistics, analyses are often based on large text corpora, which allow a vast variety of hypotheses to be tested by repeatedly re-evaluating the data set. Furthermore, text corpora also allow exploratory data analysis in order to generate new hypotheses. By drawing on the advantages of both fields, neuroimaging and computational corpus linguistics, we here present a unified approach combining continuous natural speech and MEG to generate a corpus of speech-evoked neuronal activity

    Evolutionary Comparison Provides Evidence for Pathogenicity of RMRP Mutations

    Get PDF
    Cartilage-hair hypoplasia (CHH) is a pleiotropic disease caused by recessive mutations in the RMRP gene that result in a wide spectrum of manifestations including short stature, sparse hair, metaphyseal dysplasia, anemia, immune deficiency, and increased incidence of cancer. Molecular diagnosis of CHH has implications for management, prognosis, follow-up, and genetic counseling of affected patients and their families. We report 20 novel mutations in 36 patients with CHH and describe the associated phenotypic spectrum. Given the high mutational heterogeneity (62 mutations reported to date), the high frequency of variations in the region (eight single nucleotide polymorphisms in and around RMRP), and the fact that RMRP is not translated into protein, prediction of mutation pathogenicity is difficult. We addressed this issue by a comparative genomic approach and aligned the genomic sequences of RMRP gene in the entire class of mammals. We found that putative pathogenic mutations are located in highly conserved nucleotides, whereas polymorphisms are located in non-conserved positions. We conclude that the abundance of variations in this small gene is remarkable and at odds with its high conservation through species; it is unclear whether these variations are caused by a high local mutation rate, a failure of repair mechanisms, or a relaxed selective pressure. The marked diversity of mutations in RMRP and the low homozygosity rate in our patient population indicate that CHH is more common than previously estimated, but may go unrecognized because of its variable clinical presentation. Thus, RMRP molecular testing may be indicated in individuals with isolated metaphyseal dysplasia, anemia, or immune dysregulation

    Rabl's model of the interphase chromosome arrangement tested in Chinise hamster cells by premature chromosome condensation and laser-UV-microbeam experiments

    Get PDF
    In 1885 Carl Rabl published his theory on the internal structure of the interphase nucleus. We have tested two predictions of this theory in fibroblasts grown in vitro from a female Chinese hamster, namely (1) the Rabl-orientation of interphase chromosomes and (2) the stability of the chromosome arrangement established in telophase throughout the subsequent interphase. Tests were carried out by premature chromosome condensation (PCC) and laser-UV-microirradiation of the interphase nucleus. Rabl-orientation of chromosomes was observed in G1 PCCs and G2 PCCs. The cell nucleus was microirradiated in G1 at one or two sites and pulse-labelled with 3H-thymidine for 2h. Cells were processed for autoradiography either immediately thereafter or after an additional growth period of 10 to 60h. Autoradiographs show unscheduled DNA synthesis (UDS) in the microirradiated nuclear part(s). The distribution of labelled chromatin was evaluated in autoradiographs from 1035 cells after microirradiation of a single nuclear site and from 253 cells after microirradiation of two sites. After 30 to 60h postincubation the labelled regions still appeared coherent although the average size of the labelled nuclear area fr increased from 14.2% (0h) to 26.5% (60h). The relative distance dr, i.e. the distance between two microirradiated sites divided by the diameter of the whole nucleus, showed a slight decrease with increasing incubation time. Nine metaphase figures were evaluated for UDS-label after microirradiation of the nuclear edge in G1. An average of 4.3 chromosomes per cell were labelled. Several chromosomes showed joint labelling of both distal chromosome arms including the telomeres, while the centromeric region was free from label. This label pattern is interpreted as the result of a V-shaped orientation of these particular chromosomes in the interphase nucleus with their telomeric regions close to each other at the nuclear edge. Our data support the tested predictions of the Rabl-model. Small time-dependent changes of the nuclear space occupied by single chromosomes and of their relative positions in the interphase nucleus seem possible, while the territorial organization of interphase chromosomes and their arrangement in general is maintained during interphase. The present limitations of the methods used for this study are discussed

    TRPV4 related skeletal dysplasias: a phenotypic spectrum highlighted byclinical, radiographic, and molecular studies in 21 new families

    Get PDF
    Extent: 8p.Background: The TRPV4 gene encodes a calcium-permeable ion-channel that is widely expressed, responds to many different stimuli and participates in an extraordinarily wide range of physiologic processes. Autosomal dominant brachyolmia, spondylometaphyseal dysplasia Kozlowski type (SMDK) and metatropic dysplasia (MD) are currently considered three distinct skeletal dysplasias with some shared clinical features, including short stature, platyspondyly, and progressive scoliosis. Recently, TRPV4 mutations have been found in patients diagnosed with these skeletal phenotypes. Methods and Results: We critically analysed the clinical and radiographic data on 26 subjects from 21 families, all of whom had a clinical diagnosis of one of the conditions described above: 15 with MD; 9 with SMDK; and 2 with brachyolmia. We sequenced TRPV4 and identified 9 different mutations in 22 patients, 4 previously described, and 5 novel. There were 4 mutation-negative cases: one with MD and one with SMDK, both displaying atypical clinical and radiographic features for these diagnoses; and two with brachyolmia, who had isolated spine changes and no metaphyseal involvement. Conclusions: Our data suggest the TRPV4 skeletal dysplasias represent a continuum of severity with areas of phenotypic overlap, even within the same family. We propose that AD brachyolmia lies at the mildest end of this spectrum and, since all cases described with this diagnosis and TRPV4 mutations display metaphyseal changes, we suggest that it is not a distinct entity but represents the mildest phenotypic expression of SMDK.Elena Andreucci, Salim Aftimos, Melanie Alcausin, Eric Haan, Warwick Hunter, Peter Kannu, Bronwyn Kerr, George McGillivray, RJ McKinlay Gardner, Maria G Patricelli, David Sillence, Elizabeth Thompson, Margaret Zacharin, Andreas Zankl, Shireen R Lamandé and Ravi Savariraya

    Multicentric Carpotarsal Osteolysis Is Caused by Mutations Clustering in the Amino-Terminal Transcriptional Activation Domain of MAFB

    Get PDF
    (The American Journal of Human Genetics, 90, 494–501; March 9, 2012)\ud In the published version of this article, the amino acid alteration caused by c.161C>T should have been notated as\ud p.Ser54Leu and not p.Pro54Leu. The wild-type amino acid is incorrectly notated in the main text, in Table 2, and in\ud Figure 4. The authors regret this error. Additionally, The Journal regrets that this erratum, originally requested in 2012,\ud was not published in a timely fashion

    Identification of potential non-invasive biomarkers in diastrophic dysplasia.

    Get PDF
    Diastrophic dysplasia (DTD) is a recessive chondrodysplasia caused by pathogenic variants in the SLC26A2 gene encoding for a cell membrane sulfate/chloride antiporter crucial for sulfate uptake and glycosaminoglycan (GAG) sulfation. Research on a DTD animal model has suggested possible pharmacological treatment approaches. In view of future clinical trials, the identification of non-invasive biomarkers is crucial to assess the efficacy of treatments. Urinary GAG composition has been analyzed in several metabolic disorders including mucopolysaccharidoses. Moreover, the N-terminal fragment of collagen X, known as collagen X marker (CXM), is considered a real-time marker of endochondral ossification and growth velocity and was studied in individuals with achondroplasia and osteogenesis imperfecta. In this work, urinary GAG sulfation and blood CXM levels were investigated as potential biomarkers for individuals affected by DTD. Chondroitin sulfate disaccharide analysis was performed on GAGs isolated from urine by HPLC after GAG digestion with chondroitinase ABC and ACII, while CXM was assessed in dried blood spots. Results from DTD patients were compared with an age-matched control population. Undersulfation of urinary GAGs was observed in DTD patients with some relationship to the clinical severity and underlying SLC26A2 variants. Lower than normal CXM levels were observed in most patients, even if the marker did not show a clear pattern in our small patient cohort because CXM values are highly dependent on age, gender and growth velocity. In summary, both non-invasive biomarkers are promising assays targeting various aspects of the disorder including overall metabolism of sulfated GAGs and endochondral ossification

    Satisfiability Checking and Symbolic Computation

    Get PDF
    Symbolic Computation and Satisfiability Checking are viewed as individual research areas, but they share common interests in the development, implementation and application of decision procedures for arithmetic theories. Despite these commonalities, the two communities are currently only weakly connected. We introduce a new project SC-square to build a joint community in this area, supported by a newly accepted EU (H2020-FETOPEN-CSA) project of the same name. We aim to strengthen the connection between these communities by creating common platforms, initiating interaction and exchange, identifying common challenges, and developing a common roadmap. This abstract and accompanying poster describes the motivation and aims for the project, and reports on the first activities.Comment: 3 page Extended Abstract to accompany an ISSAC 2016 poster. Poster available at http://www.sc-square.org/SC2-AnnouncementPoster.pd

    “Excellence R Us”: university research and the fetishisation of excellence

    Get PDF
    The rhetoric of “excellence” is pervasive across the academy. It is used to refer to research outputs as well as researchers, theory and education, individuals and organisations, from art history to zoology. But does “excellence” actually mean anything? Does this pervasive narrative of “excellence” do any good? Drawing on a range of sources we interrogate “excellence” as a concept and find that it has no intrinsic meaning in academia. Rather it functions as a linguistic interchange mechanism. To investigate whether this linguistic function is useful we examine how the rhetoric of excellence combines with narratives of scarcity and competition to show that the hypercompetition that arises from the performance of “excellence” is completely at odds with the qualities of good research. We trace the roots of issues in reproducibility, fraud, and homophily to this rhetoric. But we also show that this rhetoric is an internal, and not primarily an external, imposition. We conclude by proposing an alternative rhetoric based on soundness and capacity-building. In the final analysis, it turns out that that “excellence” is not excellent. Used in its current unqualified form it is a pernicious and dangerous rhetoric that undermines the very foundations of good research and scholarship
    corecore