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ABSTRACT
In the field of neurobiology of language, neuroimaging studies are generally based on stimulation
paradigms consisting of at least two different conditions. Designing those paradigms can be very
time-consuming and this traditional approach is necessarily data-limited. In contrast, in
computational and corpus linguistics, analyses are often based on large text corpora, which
allow a vast variety of hypotheses to be tested by repeatedly re-evaluating the data set.
Furthermore, text corpora also allow exploratory data analysis in order to generate new
hypotheses. By drawing on the advantages of both fields, neuroimaging and computational
corpus linguistics, we here present a unified approach combining continuous natural speech and
MEG to generate a corpus of speech-evoked neuronal activity.

ARTICLE HISTORY
Received 28 April 2020
Accepted 23 July 2020

KEYWORDS
MEG/EEG; neurobiology of
language; natural language
processing (NLP); naturalistic
continuous speech stimuli;
computational corpus
linguistics

Introduction

Contemporary linguistic research is characterised by a
great variety of methodological approaches. In particular,
in the fields of psycholinguistics and neurobiology of
language a vast number of different methods are
applied in order to investigate the neural and mental
processing principles of language acquisition, represen-
tation, comprehension and production (De Groot &
Hagoort, 2017). Besides functional magnetic resonance
imaging (fMRI) studies (Deniz et al., 2019; Huth et al.,
2016; Spitzer et al., 1998), electrophysiological measure-
ments, i.e. magnetoencephalography (MEG) (Hämäläi-
nen et al., 1993) and electroencephalography (EEG)
(Files, 2011; Millett, 2001), are widely used in neurolin-
guistics to investigate the neural and mental correlates
underlying language processing in the human brain
(Bambini et al., 2016; Lai et al., 2019; Pulvermüller &
Shtyrov, 2008; Pulvermüller et al., 2009; Schmidt-Snoek
et al., 2015; Tomasello et al., 2019).

However, most of the experimental studies on
language processing conducted so far have focused on

one aspect of linguistic information at a time. For
instance, neurocognitive studies have explored the
neural responses of words compared to pseudo words
(Craddock et al., 2015; Pulvermüller et al., 1994),
between different conceptual semantic categories
(Moseley et al., 2013), complex against simple grammati-
cal sentences (Friederici et al., 2006), or during pragmatic
processing of different communicative actions (Toma-
sello et al., 2019). Although, all these studies shed light
on the correlates of language processing in the human
brain, it is still not fully understood whether similar
brain responses during single words or sentence under-
standing also emerge during perception of natural
speech, similar to everyday experience. However,
recently a growing number of approaches address this
issue (Brodbeck et al., 2018; Broderick et al., 2018;
Deniz et al., 2019; Ding & Simon, 2012; Silbert et al., 2014).

Furthermore, traditional experimental designs typi-
cally consist of at least two different conditions studied
under carefully controlled circumstances (Bambini
et al., 2016; Lai et al., 2019; Schmidt-Snoek et al., 2015).
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The measured data are then pre-processed,
i.e. referenced, filtered, epoched and averaged, and
finally contrasted according to the different stimulation
conditions (De Groot & Hagoort, 2017). To obtain a
good signal to noise ratio (SNR) of the acquired brain
responses, each of these conditions must contain
dozens of different items or stimulus repetitions.

For instance, the evaluation of event-related poten-
tials (ERPs) from the EEG data, or, in the case of MEG,
event-related fields (ERFs), requires a relatively large
number of stimuli (40–120 trials) per condition to
achieve high SNR and ensure sufficient statistical
power. This is due to the fact that the signal of a
specific condition remains constant across multiple rep-
etitions while the noise signal which is assumed to be
randomly distributed, is reduced when large number of
time-locked stimuli are pooled together (Coles & Rugg,
1995; Handy, 2005; Luck, 2014; Pfurtscheller & Da Silva,
1999; Woodman, 2010).

However, creating a large number of stimuli to increase
SNR is associated with a serious drawback. It is well known
that repeated presentation of a stimulus causes a dimin-
ished neural activation, a phenomenon for which the
term repetition suppression has been coined (Arnaud
et al., 2013; Grill-Spector et al., 2006; Henson, 2003; Mayr-
hauser et al., 2014; Summerfield et al., 2008). In fMRI, rep-
etition suppression is observed as a reduced blood
oxygen-level-dependent (BOLD) response elicited by a
repeated stimulus, also called fMRI adaptation (Grill-
Spector & Malach, 2001); for a recent review, see also
(Segaert et al., 2013). The underlying neuronal mechan-
isms are still a matter of debate, and range from neuronal
fatigue (Grill-Spector et al., 2006), or neuronal sharpening
(Martens & Gruber, 2012), through neuronal facilitation
(Grill-Spector et al., 2006) as relatively automatic bottom-
up mechanisms, to predictive coding (Friston, 2005).
There, top-down backward influences from higher to
lower cortical layers modulate processing in case of a
correct prediction of the upcoming stimulus. Hence, rep-
etition suppression reflects a smaller prediction error for
expected stimuli, i.e. decreased activation for repeated
stimuli. Thus, in order to prevent repetition suppression,
it is necessary to design a certain number of different
stimuli from each condition to avoid repetition, which is
often very challenging or even impossible. One strategy
is to focus on single-item ERPs/ERFs, but in such cases it
is necessary to compensate by testing more participants
to obtain stable signals (Laszlo & Federmeier, 2011).

Here, we present an alternative approach to over-
come the aforementioned limitations of the electro-
physiological assessment of language processing and
to open up the possibility of investigating different
levels of linguistic information during natural speech

comprehension within a single experiment. In particular,
in the present study, we investigated brain responses eli-
cited during listening to the audio book edition of a
German-language novel by means of MEG measure-
ments (for similar approaches, see Huth et al., 2016;
Wehbe et al., 2014). Repetition suppression is not
expected to occur here, as the same linguistic utterance
is not repeatedly presented among a few stimuli types,
and if repetition happens, it does in different linguistic
contexts (i.e. it possibly occurs with different linguistic
units) and also more sparsely.

Other previously published papers describe the use of
continuously written stimuli in reading studies while
recording EEG/MEG (Barca et al., 2011; Cornelissen
et al., 2009; Dalal et al., 2009; Laine et al., 2000). Remark-
ably, it turned out that the representation of semantic
information across human cerebral cortex during listen-
ing versus reading is invariant to stimulus modality
(Deniz et al., 2019). Since listening to an audio book
during the 1-h measurement session seems to be less
strenuous for the participants than reading for the
same period of time, we chose acoustic stimulation
rather than visual stimulation.

Using computational corpus linguistics (CCL) (Sinclair,
2004; Souter & Atwell, 1993) applied to the analyses of
large text corpora, which usually consist of hundreds of
thousands or even billions of tokens (Aston & Burnard,
1998; Davies, 2010; Ide & Suderman, 2004; Michel et al.,
2011; Schäfer & Bildhauer, 2012; Trinkle et al., 2016),
offers the opportunity to test a vast number of hypoth-
eses by repeatedly re-analysing the data (Evert, 2005)
and to deploy modern machine learning techniques on
such datasets (Koskinen & Seppä, 2014). Furthermore,
text corpora also allow for exploratory data analyses in
order to generate new hypotheses (Leech, 2014). In our
approach, we can generate a large database of neuronal
activity in a single measurement session, corresponding
to the comprehension of several thousands of words of
continuous speech similarly to everyday language.
However, for later studies, the data set has to be split
into multiple parts (e.g. development/training/test or
training/validation/test) in analogy to standard
machine learning data sets as MNIST (50,000 training
images, 10,000 test images (Bottou et al., 1994)), as
hypothesis generation and checking for statistical signifi-
cance have to be done in two disjoint steps, in order to
prevent HARKing (hypothesising after the results are
known) (Kerr, 1998). In such cases, inferential statistical
analysis is not valid and applicable (Munafò et al.,
2017). Thus, this approach is only possible with a large
dataset.

Here, we provide the proof-of-principle of this
approach by calculating ERFs and normalised power
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spectra of word onsets and offsets overall as well as for
the group of content words (nouns, verbs, adjectives)
and for the group of function words (determiners, prepo-
sitions, conjunctions), which are known to differ seman-
tically to a substantial extent. Hence, greater activation
for content compared to function words can be
expected, as reported in previous studies (e.g. Diaz &
McCarthy, 2009; Pulvermüller et al., 1995).1 Furthermore,
we check for consistency of the data, by comparing intra-
individual differences of neural activity in different brain
regions and we perform non-parametric cluster permu-
tation tests to determine significant differences
between conditions.

Methods

Human participants

Participants were 15 (8 females and 7males) healthy right-
handed (augmented laterality index: m = 85.7, s = 10.4)
and monolingual native speakers of German aged 20–42
years. They had normal hearing and did not report any
history of neurological illness or drug abuse. They were
paid for their participation after signing an informed
consent form. Ethical permission for the study was
granted by the ethics board of the University Hospital
Erlangen (registration no. 161-18 B). For the question-
naire-based assessment and analysis of handedness, we
used the Edinburgh Inventory (Oldfield, 1971).

Speech stimuli and natural language text data

As natural language text data, we used the German novel
Gut gegen Nordwind by Daniel Glattauer (@ Deuticke im
Paul Zsolnay Verlag, Wien 2006) which was published
by Deuticke Verlag. As speech stimuli, we used the corre-
sponding audio book which was published by Hörbuch
Hamburg. Both the novel and the audio book are avail-
able in stores, and the respective publishers gave us per-
mission to use them for the present and future scientific
studies.

Book and audio book consist of a total number of
40,460 tokens (number of words) and 6117 types
(number of unique words). The distribution of single
word classes and bi-gram word class combinations
occurring in the (audio) book were analysed and com-
pared to a number of German reference corpora (Gold-
hahn et al., 2012), and in addition, other German
novels, by applying part-of-speech (POS) tagging (Jurafsky
& Martin, 2014; Màrquez & Rodríguez, 1998; Ratnaparkhi,
1996) as implemented in the python library spaCy
(Explosion, 2017). The similarities or dissimilarities,
respectively, of all distributions are visualised using

multi-dimensional scaling (MDS) (Cox & Cox, 2008;
Kruskal, 1964, 1978; Torgerson, 1952).

The total duration of the audio book is approximately
4.5 h. For our study, we only used the first 40 min of the
audio book, divided into 10 parts of approximately 4 min
(m = 245 s, s = 39 s). This corresponds to approximately
6000 words, or 800 sentences, respectively, of spoken
language, where each sentence consists on average of
7.5 words and has a mean duration of 3 s.

In order to avoid cutting the text in the middle of a
sentence or even in the middle of a word, we manually
cut at paragraph boundaries, which resulted in more
meaningful interruptions of the text. For the present
study, only the first three sections (roughly 12 min of
continuous speech) of the recordings and the corre-
sponding measurements were analysed.

Stimulation protocol

The continuous speech from the audio book was pre-
sented in 10 subsequent parts (cf. above) at a sensory
level of approximately 30–60 dB SPL. The actual loudness
varied from participant to participant. It was chosen indi-
vidually to ensure good intelligibility during the entire
measurement but also to prevent it from being unplea-
sant. Simultaneously with auditory stimulation, a
fixation cross at the centre of the screen was presented
all the time to minimise artefacts from eye movements.
After each audio book part, three multiple-choice ques-
tions on the content of the previously presented part
were presented on the screen in order to test the partici-
pants’ attention. Participants had to answer the ques-
tions by pressing previously defined keys on a MEG-
compatible keyboard. MEG recording was stopped
during the question blocks, since these short breaks
were also used to allow participants to move and make
themselves comfortable again. Furthermore, stimulation
was interrupted for a short break of approximately 5 min
after audio book parts number 4 and 7. The total dur-
ation of the protocol is approximately 1 h. The complete
stimulation protocol is shown in Figure 1.

Generation of trigger pulses with forced
alignment

In order to automatically create trigger pulses for both,
the synchronisation of the speech stream with the MEG
recordings, and to mark the boundaries of words, pho-
nemes, and silence for further segmentation of the con-
tinuous data streams, forced alignment (Katsamanis et al.,
2011; Moreno et al., 1998; Yuan & Liberman, 2009) was
applied to the text and recording. For this study, we
used the free web service WebMAUS (Kisler et al., 2017;
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Schiel, 1999). It takes a wave file containing the speech
signal, and a corresponding text file as input and gives
three files as output: the time tags of word boundaries,
a phonetic transcription of the text file, and the time
tags of phone boundaries. Even though forced align-
ment is a fast and reliable method for the automatic pho-
netic transcription of continuous speech, we carried out
random manual inspections in order to ensure that the
method actually worked correctly. Although forced align-
ment is not 100% reliable, manual spot checks found no
errors in our alignment. Of course, the high-quality
recording of an audio book is among the best possible
inputs for such software.

For simplicity, we only used the time tags of word
boundaries in this study. However, a more fine grained
analysis on the level of speech sounds could easily be
performed retrospectively, since the time tags of begin-
ning and ending of a given word correspond to the
beginning of the word’s first phone and the ending of
the word’s last phone, respectively. Thus, the two lists
containing the time tags of the word and phoneme
boundaries can easily be aligned with each other.

Speech presentation and synchronisation with
MEG

The speech signal was presented using a custom-made
setup (Figure 2). It consists of a stimulation computer
connected to an external USB sound device (Asus
Xonar MKII, 7.1 channels) providing five analogue
outputs. The first and second analogue outputs are con-
nected to an audio amplifier (AIWA, XA-003), where the
first output is connected in parallel to an analogue
input channel of the MEG data logger in order to
enable an exact alignment of the presented stimuli and
the recorded MEG signals (cf. Figure 2(a)). In addition,

the third analogue output of the sound device is used
to feed the trigger pulses derived from forced alignment
into the MEG recording system via another analogue
input channel. In doing so, our setup prevents temporal
jittering of the presented signal caused by multi-thread-
ing of the stimulation PC’s operating system, for instance.
For an overview of the wiring scheme of all devices, see
Figure 2(a).

The speech sound was transmitted into the magneti-
cally shielded MEG chamber to the participants’ ears via a
custom-made device consisting of two loudspeakers
(Pioneer, TS-G1020F) which are coupled to silicone
funnels each connected to a flexible tube of ≈2m
length and with an inner diameter of ≈2 cm (Figure 2
(b)). These tubes are led through a small hole in the mag-
netically shielded chamber to prevent artefacts pro-
duced by interfering magnetic fields generated by the
loudspeakers (Figure 2(c)). We carried out calibration
tests to ensure that the acoustical distortions caused
by the tube system do not affect speech intelligibility.
Furthermore, due to the length of the tubes and the
speed of sound, there is a constant time delay from the
generation of sound to the arrival of the sound at the
participant of ≈6ms, which we took into account for
the alignment described below.

The stimulation software is implemented using the
programming language Python 3.6, together with
Python’s sound device library, the PsychoPy library
(Peirce, 2007, 2009) for the stimulation protocol, and
the NumPy library for basic mathematical and numerical
operations.

Magnetoencephalography and data processing

MEG data (248 magnetometers, 4D Neuroimaging, San
Diego, CA, USA) were recorded (1017.25 Hz sampling

Figure 1. Stimulation protocol. The total duration of the protocol was approximately 1 h. The audio book was presented in 10 sub-
sequent parts with an average duration of 4 min. After each part, three multiple-choice questions on the content of the previous
part of the audio book were presented. After audio book parts number 4 and 7, stimulation was interrupted for a short break of approxi-
mately 5 min.
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rate, filtering: 0.1–200 Hz analogue band pass, supine
position, eyes open) during speech stimulation. Pos-
itions of five landmarks (nasion, LPA, RPA, Cz, inion)
were acquired using an integrated digitiser (Polhemus,
Colchester, Vermont, Canada). MEG data were cor-
rected for environmental noise using a calibrated
linear weighting of 23 reference sensors (manufac-
turers algorithm, 4D Neuroimaging, San Diego, CA,
USA).

Further processing was performed using the Python
library MNE (Gramfort et al., 2013, 2014). Data were digi-
tally filtered offline (1–10 Hz bandpass for ERF analyses;
50 Hz notch on for power spectra analysis) and down-
sampled to a sampling rate of 1000 Hz. MEG sensor pos-
itions were co-registered to the ICBM-152 standard head
model (Fuchs et al., 2002) and atlas 19–21 (Evans et al.,
2012), as individual MRI data sets for the participants
were not available. Furthermore, recordings were cor-
rected for eye blinks and electrocardiography artefacts
based on signal space projection of averaged artefact
patterns, as implemented in MNE (Gramfort et al., 2013,
2014).

Additionally, we performed an independent com-
ponent analysis (ICA) and deleted the first two indepen-
dent components of the data, to further improve data

quality. However, it appears that this processing step
does not affect the observed differences of neural
responses to function and content words (Figures 8
and S8).

Trials with amplitudes higher than 2 · 10−12 T would
have been rejected, as they were supposed to arise
from artefacts. However, none of the trials fit this con-
dition, and hence no trail was rejected.

For this study, we restricted our analyses to sensor
space, and did not perform source localisation in
analogy to other ERF studies (Hauk et al., 2006; Højlund
et al., 2019; Shtyrov & Pulvermüller, 2007).

Alignment, segmentation and tagging

Since we have both, the original audio book wave file
together with the time tags of word boundaries from
forced alignment (Figure 3(a)), and the corresponding
recordings of two analogue auxiliary channels of the
MEG (Figure 3(b)), all 248 MEG recording channels
could easily be aligned offline with the speech stream
(Figure 3(c)). Subsequently, the continuous multi-
channel MEG recordings were segmented using the
time tags as boundaries and labelled with the corre-
sponding types, in our case individual words (Figure 4).

Figure 2. Setup configuration. (a) Wiring scheme of the different devices. (b) The speech sound is transmitted into the magnetically
shielded chamber via a custom-made construction consisting of two loudspeakers (1) which are coupled to silicone funnels and (2) each
connected to a flexible tube. (c) Through a small whole in the magnetically shielded chamber (1), speech sound is transmitted via the
two flexible tubes (2).
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Note that, in principle, the process of segmentation can
also be performed at different levels of granularity. For
instance, using the time tags of phone boundaries
would result in a more fine-grained segmentation,

whereas grouping several words together to n-grams
with appropriate labels to larger linguistic units (i.e. col-
locations, phrases, clauses, sentences) would result in a
more coarse-grained segmentation.

Figure 3. Alignment of speech stream and MEG signal. (a) Sample audio book wave file together with time tags of word boundaries
from forced alignment. (b) Corresponding recordings of two analogue auxiliary channels of the MEG. (c) Alignment of data streams from
a and b, together with one sample MEG channel.

Figure 4. Segmentation of speech stream and MEG signal. After alignment, the continuous wave file (top panel) and multi-channel MEG
recordings (bottom panel) are segmented using the time tags from forced alignment as boundaries and labelled with the correspond-
ing types, i.e. words.

6 A. SCHILLING ET AL.



For the analysis of function and content words, we
additionally applied POS tagging (Jurafsky & Martin,
2014; Màrquez & Rodríguez, 1998; Ratnaparkhi, 1996)
using spaCy (Explosion, 2017) to assign word classes
(e.g. nouns, verbs, adjectives, conjunctions, determiners,
prepositions) to the individual words. According to
Ortmann et al. (2019), spaCy’s accuracy for POS tagging
of German texts is 92.5%. This value could be
confirmed by two German native speakers who cross-
checked a random sample of sentences that have been
POS tagged using spaCy. However, the most frequent
errors observed in spaCy are confusions of nouns and
proper names, adverbs and adverbial adjectives, and of
different verb forms (Ortmann et al., 2019). Since all
these word classes belong to the domain of content
words, these confusions are irrelevant for the classifi-
cation in function and content words analysed in this
study. So that the accuracy for this distinction is expected
to be much higher.

Event-related fields

In order to provide the proof-of-principle of our
approach, we analysed event-related fields (ERF)
evoked by word onsets (Figure 7). Since the continuous
MEG signals of all 248 channels are already segmented
according to word boundaries, we can compute ERFs
of word onsets for each channel by simply averaging
the pre-processed signals over the word tokens in our
database. Here, we included only those words that
follow a short pause, instead of using all words occurring
in the data set. Thus, there is a short period of silence,
ranging from approximately 50 ms to 1.5 s, before the
actual word onsets which improves signal quality, yet
with the drawback that only a fraction of all tokens can
be used. However, there were still 291 remaining
events, baseline corrected, within the first three parts
of the audio book, corresponding to approx. 12 min of
continuous speech, that fit this condition.

In addition, we also analysed ERFs evoked by prototypi-
cal contentwords (nouns, verbs, adjectives) and compared
them with ERFs evoked by function words (determiners,
prepositions, conjunctions) (Figure 8). Again, we included
only those words that follow a short interval of silence,
instead of using all words occurring in the data set.
Within the first three parts of the audio book, this resulted
in 81 remaining events for the content word condition and
106 events for the function word condition.2

Permutation test

We performed intra-individual permutation tests (Maris &
Oostenveld, 2007) to estimate the p-value for the ERF

comparison between content and function words.
Thus, the ERF was cut into four subsequent time
frames, each with a duration of 250ms, and the root-
mean-square amplitude (RMS) was calculated (Figure 8
(e)):

RMS =
����������������
1/N
( )∑N

i=0 v
2
i

√
, with the signal values within

a 250 ms interval vi , the total number of values within
a 250ms interval N = fs · 250 ms, and the sampling rate
fs = 1000 Hz.

10,000 different random permutations of content
word and function word labels were generated. For
each of these samples the four RMS amplitudes for the
different time frames were calculated based on the base-
line corrected3 single trials, resulting in a distribution of
amplitudes for each time frame (Figure 8(f)). The ampli-
tude values corresponding to the true labelling are com-
pared with amplitudes derived from random
permutations in order to estimate the statistical signifi-
cance, i.e. the p-values for content and function words
pcon and p fun, respectively, in Figure 8(f).

Normalised power spectra

Using Fourier transformation, we also analysed the aver-
aged normalised power spectra (alpha, beta and gamma
frequency range) for words in contrast to pauses and for
function and content words. The frequency bands were
defined as follows : a:8−12 Hz, b:12−30 Hz, g:30−45
Hz. The epoch length for this analysis was 400ms for
both, short periods of silence and word onsets. Further-
more, we projected the resulting values to the corre-
sponding spatial position of the sensors. This was done
by the usage of the plot_psd_topomap function of the
MNE library with Python interface (Gramfort et al., 2013,
2014).

Results

The general idea of our approach was to perform MEG
measurements of participants listening to an audio
book. By synchronising the continuous speech stream
with the ongoing multi-channel neuronal activity and
subsequently automatically segmenting the data
streams according to word boundaries derived from
forced alignment, we generated a database of annotated
speech evoked neuronal activity. This corpus may then
be analysed offline by applying the full range of
methods from statistics, natural language processing,
and computational corpus linguistics. In order to demon-
strate the feasibility of our approach, we restricted our
analyses to sensor space and did not perform any kind
of source localisation (cf. Methods). More specifically,
we calculate averaged ERFs for word onsets, and
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normalised power spectra for onsets of both, words and
short pauses. In addition, we compare averaged ERFs for
content and function words, and the corresponding nor-
malised power spectra and discuss the results in the light
of existing studies.

Distribution of word classes

We analysed the distributions of word classes and word
class combinations in the audio book and compared
them with five different German corpora (German
mixed 10k, 30k, and 100k; German news 30k; German
Wikipedia 30k) taken from the Leipzig Corpora Collection
(Goldhahn et al., 2012), and in addition with a number of
other German novels. A sample of the resulting distrib-
tuions is provided in Figure 5. It turns out that Gut
gegen Nordwind seems to have a very typical word
class distribution (Figure 5(a,b)), especially in comparison
to other German novels (Figure 5(c–h)). In contrast, in the
German mixed corpus, there seem to be an under rep-
resentation of pronouns (Figure 5(i,j)) compared to all
analysed novels. Using multi-dimensional scaling
(MDS), we visualise the mutual (dis-)similarities
between all word class distributions (Figure 6(a)), and dis-
tributions of word class combinations (Figure 6(b)). We
find that Gut gegen Nordwind is closer, i.e. more similar,
to the German novels than to the German corpora. The
five corpora seem to cluster apart from the novels. In par-
ticular, the distributions of the German mixed corpora of
three different sizes (10k, 30k, 100k words) are almost
indistinguishable, and hence the corresponding MDS
projections are overlapping. Furthermore, it remarkably
turns out, that different novels from the same author
are closer, i.e. more similar in terms of word class and
word class combination distributions, than novels from
different authors.

Event-related fields of word onsets

For a first proof of concept and to determine clear neu-
rophysiological brain responses from continuous
speech, we analysed event-related fields (ERFs) for
word onsets (irrespective of their word classes) from
different topographical sides.

Figure 7(a) shows one example of the resulting ERFs
averaged over the aforementioned 291 events corre-
sponding to word onsets for one participant (subject 2
of 15) and parts number 1 to 3 of the audio book and
Figure 7(b) shows a projection of the spatial distribution
of the ERF amplitudes at 350 ms after word onset. The
largest amplitudes occur in channels located at temporal
and frontal areas of the left hemisphere known to be
associated with language processing (Friederici &

Gierhan, 2013). The ERFs of those channels with the
largest ERF amplitudes are shown in Figure 7(c). Further-
more, we see a clear N400 component for the word onset
condition, indicating language associated processing (cf.
Broderick et al., 2018; Friederici et al., 1993; Hagoort &
Brown, 2000; Kutas & Federmeier, 2011; Lau et al.,
2009; Strauß et al., 2013).

In order to exclude random effects, we compare these
channels with the corresponding channels located at the
right hemisphere – where we expect less activation due
to the asymmetric lateralisation of speech in the brain –
(Figure 7(d)), and with some occipital channels (Figure 7
(e)). In both cases, the resulting ERF amplitudes are
clearly smaller than those of the left temporal and
frontal channels (Figure 7(c)). In addition, we calculate
control ERFs for the same channels shown in Figure 7
(c), but instead of word boundaries we used randomly
chosen time tags for segmentation. Also in this control
condition, the resulting ERF amplitudes are smaller
than those for the word onset condition (Figure 7(f)).
This result, in particular, demonstrates that even
though there are no or only relatively short inter-stimulus
intervals, leading to overlapping effects of late and early
responses of subsequent words, there is still enough
signal left in the individual trials.

Finally, we evaluated the re-test reliability of our
results using three-fold sub-sampling by separately aver-
aging only over events belonging to the same part of the
the audio book (Figures S1–S3). Again, the largest ERF
amplitudes were found in the same channels as before
and all results show very similar patterns to those
shown in Figure 7. In addition, we provide exemplary
results of two further participants in the Supplements
section (Figures S4 and S5).

Event-related fields of content and function words

As a further validity test of the present study, we ana-
lysed and compared the brain responses of different
word classes. As an example, the resulting ERFs averaged
over the respective events (content words: n = 81, func-
tion words: n = 106) for one participant (subject 2 of 15)
and parts number 1 to 3 of the audio book are shown in
Figure 8(a,c) and a projection of the spatial distribution of
the ERF amplitudes at 550ms after word onset is pro-
vided in Figure 8(b,d). Again, we see a clear N400 com-
ponent for both conditions, indicating language
associated processing (cf. Broderick et al., 2018; Friederici
et al., 1993; Hagoort & Brown, 2000; Kutas & Federmeier,
2011; Lau et al., 2009; Strauß et al., 2013).

Furthermore, we found that content words (Figure 8
(a,b) elicited greater activation than function words
(Figure 8(c,d)), especially in temporal and frontal areas
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of the left hemisphere. Since content parts of speech
have been shown to differ semantically from function
parts of speech (Kemmerer, 2014; Pulvermüller, 2003),
these findings are in line with previous studies (Diaz &
McCarthy, 2009).

In addition, we compared the two conditions for the
channel yielding the largest ERF amplitude and per-
formed a permutation test (Maris & Oostenveld, 2007)
independently for four subsequent time frames each
with a duration of 250ms (Figure 8(e,f)). We found that

Figure 5. Distributions of word classes and bi-gram word classes. (a,c,e,g,i) Distribution of word classes according to POS tagging.
Adjectives (ADJ), adverbs (ADV), nouns (NOUN), proper nouns (PROPN), verbs (VERB), adpositions (ADP), auxiliary verbs (AUX), deter-
miners (DET), particles (PART), pronouns (PRON), subordinating conjunctions (SCONJ). (b,d,f,h,j) Distribution of word classes of 2-word
sequences. Rows: word class of first word. Columns: word class of second word.
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the averaged ERFs for the two conditions (content and
function words, intra-individual) are significantly (p <
0.05) different within the first (0 –250ms) and third
(500 –750ms), but not within the second (250 –500ms)
and fourth (750 –1000ms) time frame (Figure 8(f)).
These results are consistent across all subjects (cf. e.g.
Figures S6 and S7 for two further subjects), and are in
line with previously reported results (Keurs et al., 1995).

Averaged normalised power spectra

In our analysis of the averaged normalised power
spectra, we were unable to find significant differences
between the conditions of word onset and of silence
onset (Figure 9) and neither between content words
and function words (Figure 10). See discussion section
for possible reasons.

Discussion

In this study, we presented an approach where we
combine electrophysiological assessment of neuronal
activity with computational corpus linguistics, in order
to create a corpus as defined in Jurafsky and Martin
(2014) of continuous speech-evoked neuronal activity.
We demonstrated that using an audio book as natural
speech stimulus, and simultaneously performing MEG
measurements led to a relatively large number of analy-
sable events (word onsets: n=291, silence onsets: n = 187,
content words: n = 81, function words: n = 106), yet
within a relatively short measurement time of 15min.
We further provided the proof-of-principle that, in con-
trast to common study designs, even though our stimu-
lus trials were not presented in isolation, i.e. with
appropriate inter-stimulus intervals of a few seconds,
averaging over all respective events of a certain con-
dition results in ERFs in left temporal and frontal chan-
nels with increased amplitudes compared to those of

several control channels (e.g. at right hemisphere or at
occipital lobe). The same is true with respect to compari-
son with control conditions (e.g. random trigger times).
These results are well in line with previously published
findings (Friederici & Gierhan, 2013).

Furthermore, we analysed ERFs for different cat-
egories of words. Although, a frequently investigated
and contrasted pair of word classes is that of nouns
and verbs (Damasio & Tranel, 1993; Preissl et al., 1995;
Pulvermüller et al., 1999, 1996; Tsigka et al., 2014; Vig-
liocco et al., 2011), for the present study, we opted for
the distinction between function words, defined as
determiners, prepositions and conjunctions, and
content words, defined as nouns, verbs and adjectives.
These lexical categories are also frequently used in neu-
roimaging studies on the neurobiology of language (Bell
et al., 2009; Bird et al., 2002; Diaz & McCarthy, 2009; Keurs
et al., 1995; Mohr et al., 1994; Pulvermüller et al., 2009). In
addition, they differ greatly in the semantic domain, and
cover more fully the the totality of the words than the
categories of nouns and verbs, since nouns and verbs
are both included in the content word category. We
found a clear N400 component (cf. Figure 8) especially
in left hemispheric frontal regions for both function
and content words and a positive component from
400-700 ms which is in line with Brennan et al.’s
findings (Brennan & Pylkkänen, 2012, 2017). Additionally,
we found that content words elicit greater activation
than function words, especially in temporal and frontal
areas of the left hemisphere. Due to their substantial
semantic differences (Kemmerer, 2014; Pulvermüller,
2003), this finding is in line with previous studies (Diaz
& McCarthy, 2009).

With respect to the average normalised power
spectra, it was found that presentation of speech
stimuli was associated with an increase in broadband
gamma and a decrease in alpha over auditory cortex,
while alpha power was increased in domain unspecific

Figure 6. MDS projection of word class distributions. (a) MDS projection of distributions of single word classes. (b) MDS projection of
distributions of bi-gram word classes combinations.
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cortical areas (Archila-Meléndez et al., 2018; Müller &
Weisz, 2012; Weisz et al., 2011). One reason could be
that, since we analysed only very short periods of
silence, i.e. between two words, our two conditions of
word onset and silence onset can be considered basi-
cally, at a larger time scale, to be the same condition,
i.e. continuous speech stimulation. This may explain

why we found no differences in frequency power here.
Even though it has been proposed that in human
language networks linguistic information of different
types is transferred in different oscillatory bands – in par-
ticular attention is assumed to correlate with an increase
in gamma and a decrease in alpha band power (Bastiaan-
sen & Hagoort, 2006) – the role of different spectral

Figure 7. Event–related fields for word onset. Shown are exemplary data of book parts number 1–3 of 10 from subject 2 of 15. (a)
Summary of ERFs of all 248 recording channels averaged over 291 trials. (b) Spatial distribution of ERF amplitudes at 350 ms after
word onset. (c) The largest amplitudes occur in channels located at temporal and frontal areas of the left hemisphere. (d) The corre-
sponding channels at the right hemisphere show clearly smaller ERF amplitudes. (e) The same is true for occipital channels. (f) Same
channels as in c, but averaged over randomly chosen triggers instead of word onset triggers. Also in this control condition, the resulting
amplitudes are smaller than those for the word onset condition.
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bands in mediating cognitive processes is still not fully
understood. Therefore, it remains unclear, whether
these findings extend to content and function words.
Whether our approach is too insensitive to see differ-
ences here remains to be seen and further studies
should look more closely at this issue.

As mentioned above, in contrast to traditional
studies that are limited to testing only a small number
of stimuli or word categories, the present approach

opens the possibility to explore the neuronal correlates
underlying different word meaning information across a
large range of semantic categories (Huth et al., 2016),
and syntactic structures (Kaan & Swaab, 2002). This is
because the ongoing natural speech used here contains
both, a large number of words from different semantic
domains (Wehbe et al., 2014) and a large number of
sentences at all levels of linguistic complexity (Bates,
1999).

Figure 8. Event-related fields for function and content words. Shown are exemplary data of book parts number 1–3 of 10 from subject 2
of 15. (a) Averaged ERFs for content words (n = 81 trials) with largest amplitudes. (b) Spatial distribution of ERF amplitudes at 550 ms
after word onset for content words. (c) Averaged ERFs for function words (n = 106 trials) with largest amplitudes. (d) Spatial distribution
of ERF amplitudes at 550 ms after word onset for function words. (e) ERF with the largest amplitude for content words and function
words, together with ERFs derived from permutation test. (f) Distribution of ERF amplitudes derived from permutation test within four
subsequent time frames: 0–250 ms (upper left), 250–500 ms (upper right), 500–750 ms (lower left) and 750–1000 ms (lower right).
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On the other hand, one may argue that stimulation
with ongoing natural speech has, compared to tra-
ditional approaches, the drawback that there are virtually
no inter-stimulus intervals between the single words.
This, of course, introduces a mixture of effects at
different temporal scales, e.g. early responses to the
actual word are confounded with late responses of the
previous word. However, all these effects may be

averaged out, as demonstrated by other studies (Brod-
beck et al., 2018; Broderick et al., 2018; Deniz et al.,
2019; Ding & Simon, 2012; Silbert et al., 2014) and also
by our results.

In a follow-up study, it will have to be validated
whether our approach also works for linguistic units of
different complexity other than single words. For
instance, smaller linguistic units such as phonemes and

Figure 10. Normalised power spectra for content and function words. Shown are exemplary data of book parts number 1–3 of 10 from
subject 2 of 15. (a–c) Power spectra for content words. (d–f) Power spectra for function words. a,d: Alpha frequency range. (b,e) Beta
frequency range. (c,f) Gamma frequency range.

Figure 9. Normalised power spectra for words and silence. Shown are exemplary data of book parts number 1–3 of 10 from subject 2 of
15. (a–c) Power spectra for word offset, i.e. silence. (d–f) Power spectra for word onsets. (a,d) Alpha frequency range. (b,e) Beta fre-
quency range. (c,f) Gamma frequency range.
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morphemes, but also larger linguistic units like colloca-
tions, phrases, clauses, sentences, or even beyond,
could be investigated. For instance, we might be able
to determine what neural correlates of the different
association measures used in research on collocation
look like (see Evert et al., 2017 for an overview and
further references). Furthermore, more abstract linguistic
phenomena need to be analysed, e.g. argument struc-
ture constructions (Goldberg, 1995, 2003, 2006) or
valency (Herbst, 2011, 2014; Herbst & Schüller, 2008).
Finally, our speech-evoked neural data may also be
grouped, averaged, and subsequently contrasted
according to male and female voice, looking at gender-
specific differences (see e.g. Özçalışkan & Goldin-
Meadow, 2010; Proverbio et al., 2014).

Also, analyses based on source space need to be
tested, as well as more sophisticated analyses taking
advantage of the multi-dimensionality of the data, such
as, for instance, multi-dimensional cluster statistics
(Krauss, Metzner, et al., 2018; Krauss, Schilling, et al.,
2018). In addition, state-of-the-art deep learning
approaches may be used as a tool for analysing brain
data, e.g. for creating so-called embeddings of the raw
data (Krauss et al., 2020). Moreover, as proposed by Krie-
geskorte and Douglas (2018), our neural corpus can serve
to test (Schilling et al., 2018) computational models of
brain function (Krauss et al., 2017, 2016; Krauss, Tziridis,
et al., 2018; Schilling, Tziridis, et al., 2020), in particular
models based on neural networks (Krauss, Prebeck,
et al., 2019; Krauss, Schuster, et al., 2019; Krauss, Zankl,
et al., 2019) and machine learning architectures (Gerum
et al., 2020; Schilling, Gerum, et al., 2020), in order to
iteratively increase biological and cognitive fidelity (Krie-
geskorte & Douglas, 2018).

Due to the corpus-like features of our data, all
additional analyses mentioned may be performed on
the existing database, and without the need for design-
ing new stimulation paradigms, or carrying out
additional measurements.

However, in order to avoid statistical errors due to
HARKing (Kerr, 1998; Munafò et al., 2017) – defined as
generating scientific statements exclusively based on
the analysis of huge data sets without previous hypoth-
eses – and to guarantee consistency of the data, it is
necessary to apply e.g. re-sampling techniques such as
sub-sampling as shown above and described in detail
in Schilling et al. (2019). Furthermore, the approach pre-
sented here allows us to apply the well-established
machine learning practice of data set splitting, i.e. to
split the dataset into multiple parts before the beginning
of the evaluation, where the one part is used for gener-
ating new hypotheses, and another part for sub-
sequently testing these hypotheses (or split again into

training and testing data). However, since we recorded
a whole story, possible order effects should be taken
into account for dataset splitting. Hence, instead of split-
ting the data set according to the chronological order,
e.g. using the first parts of the audio book as training,
and the subsequent parts as test dataset, it should
better be split randomly.

To conclude, there are two major reasons why we
think the study of the neurobiology of language can
benefit tremendously from the introduction of corpus-
linguistic methodology.

The first is that we can base our research on naturally
occurring language, which should make them more eco-
logically valid than the more artificial stimuli used in care-
fully balanced and controlled experiments. Of course,
even though audio books are frequently used in similar
studies (Brodbeck et al., 2018; Broderick et al., 2018;
Deniz et al., 2019; Ding & Simon, 2012; Silbert et al.,
2014), one may also discuss whether audio books actu-
ally can be considered natural speech. One could argue
that the fact that highly trained professional speakers
and actors are usually employed to read audio books,
who may use specific intonational patterns to paint a
more vivid image of the situation, may lead to unnatur-
alness and thus possibly to unusual arousal patterns in
the hearer. However, this argument is flawed. People
spend large portions of their days listening to language
produced by such professional speakers for radio, televi-
sion news and drama, online videos, and podcasts. While
probably not predominant for most people, it corre-
sponds to a perfectly normal, everyday type of language
experience. Even if we expect deviations from spoken
interaction in such stimuli, we could even exploit this
to study brain responses to creative language use (see
Uhrig, 2018, 2020 and the sources cited there for linguis-
tic studies of creativity). Of course, further studies using
recordings of everyday dialogues between untrained
subjects, e.g. describing what they have done during
the day, should be designed to obtain a more compre-
hensive picture and more robust results, because, as Krie-
geskorte and Douglas pointed out that “as we engage all
aspects of the human mind, our tasks will need to simulate
natural environments” (Kriegeskorte & Douglas, 2018).
Still, purely receptive task such as the one used in this
study is one type of natural environment, and one that
can be studied without too much interference compared
to, say, spontaneous interaction.

The second reason is the fact that measurements can
be re-used if they form part of a large corpus of neuroi-
maging results. Let us look at a few numbers: In the
present study, we stimulated 15 participants with 40
min of audio each. Test time spent in the MEG was 60
min due to the questions and pauses mentioned
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above. With 30 min of preparation, we used the MEG lab
for a total of 22.5 h during experimentation. In that
period of time, we gathered measurements for roughly
6000 words perceived by 15 participants, totalling
90,000 sets of brain responses to words. These corre-
spond to roughly 35 GB of measurements (4 bytes per
value, 1000 per second, 248 channels, 40 min per partici-
pant, 15 participants). For this study, we only looked at a
tiny fraction of the data (words preceded by a short
pause of at least 50 ms in the first 12 min) and already
managed to confirm certain patterns found by previous
studies with a strict experimental design. If we assume
that pauses are equally distributed across the corpus,
we can expect to find roughly 1000 such events, with
15 participants for each, i.e. 15,000 data points alone
for words preceded by silence. Having these plus all
the other words in their immediate linguistics contexts
without pauses opens many more avenues for interest-
ing research question at no added laboratory costs.
Once we start looking at all words, we expect that the
noise introduced through not being able to control for
a variety of factors will be counterbalanced by the
sheer size of data sets constructed using the method-
ology presented.

By that, we agree with the view of Hamilton and Huth
that “natural stimuli offer many advantages over sim-
plified, controlled stimuli for studying how language is pro-
cessed by the brain”, and that “the downsides of using
natural language stimuli can be mitigated using modern
statistical and computational techniques” (Hamilton &
Huth, 2020).

Notes

1. We follow the categorisation of these studies and thus
only include the content and function word classes
listed above in our study.

2. The numbers do not add up to the total of 291 words
because only the word classes listed in the introduction
were included in the analysis of content and function
words.

3. Following the suggestions published by Alday, instead
of traditional baseline correction, we performed
strong high-pass filtering with a cutoff frequency of
0.1 Hz, since traditional baseline correction eventually
reduces signal-to-noise ratio and seems, therefore, to
be statistically unnecessary or even undesirable
(Alday, 2019).
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