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E. Ábrahám1, J. Abbott11, B. Becker2, A.M. Bigatti3, M. Brain10, B. Buchberger4,
A. Cimatti5, J.H. Davenport6, M. England7, P. Fontaine8,

S. Forrest9, A. Griggio5, D. Kroening10, W.M. Seiler11 and T. Sturm12

1RWTH Aachen University, Aachen, Germany; 2Albert-Ludwigs-Universität, Freiburg, Germany;
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Abstract

Symbolic Computation and Satisfiability Checking are viewed as individual research areas, but they
share common interests in the development, implementation and application of decision procedures for
arithmetic theories. Despite these commonalities, the two communities are currently only weakly con-
nected. We introduce a new project SC2 to build a joint community in this area, supported by a newly
accepted EU (H2020-FETOPEN-CSA) project of the same name. We aim to strengthen the connection
between these communities by creating common platforms, initiating interaction and exchange, identi-
fying common challenges, and developing a common roadmap. This abstract and accompanying poster
describes the motivation and aims for the project, and reports on the first activities.

1 Introduction

We describe a new project to bring together the communities of Symbolic Computation and Satisfiability
Checking into a new joint community, SC2. Both communities have long histories, as illustrated by the
tool development timeline in Figure 1, but traditionally they do not interact much even though they are
now individually addressing similar problems in non-linear algebra. In Section 2 we give an introduction
to Satisfiability Checking (a corresponding introduction to Symbolic Computation is omitted given the
audience for this abstract). We then discuss some of the challenges for the new SC2 community in Section 3
and the project actions planned to address them. The reader is referred to [2] for more details and full
references; and the SC2 website (http://www.sc-square.org) for new information as it occurs. The
accompanying poster is available at: http://www.sc-square.org/SC2-AnnouncementPoster.pdf.

2 Satisfiability Checking

The SAT Problem refers to checking the satisfiability of logical statements over the Booleans. Initial ideas
from Davis and Putnam in 1960 used resolution for quantifier elimination; Davis, Logemann and Loveland
pursued another line in 1962 with a combination of enumeration and Boolean constraint propagation
(BCP). A major improvement was achieved in 1999 by Marques-Silva and Sakallah by combining the
two approaches, leading to conflict-driven clause-learning and non-chronological backtracking. While the
SAT Problem is known to be NP-complete, SAT solvers have been developed which can handle inputs with
millions of Boolean variables. They are at the heart of industrial techniques for verification and security.
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Figure 1: History of Computer Algebra Systems and SAT/SMT solvers [1]

Driven by this success, big efforts were made to enrich propositional SAT-solving for different exis-
tentially quantified theories producing SAT-modulo-theories (SMT) solvers [3]. There exist techniques for
equality logic with uninterpreted functions, array theory, bit-vector arithmetic and quantifier-free linear
real and integer arithmetic; but the development for quantifier-free non-linear real and integer arithmetic
is still in its infancy. Progress here is required for applications in the automotive and avionic industries [4].

SMT solvers typically combine a SAT solver with one or more theory solvers as illustrated in Figure 2.
A formula in conjunctive normal form is abstracted to one of pure Boolean propositional logic by replacing
each theory constraint by a fresh proposition. The SAT solver tries to find solutions for this, consulting
the theory solver(s) to check the consistency of constraints. To be SMT-compliant the solvers should:

• work incrementally, i.e. accept additional constraints and re-check making use of previous results;
• support backtracking, i.e. the removal of previously added constraints;
• in case of unsatisfiability return an explanation, e.g. a small inconsistent subset of constraints.

Examples for solvers that are able to cope with linear arithmetic problems are Alt-Ergo, CVC4, iSAT3,
MathSAT, OpenSMT2, SMT-RAT, veriT, Yices2, and Z3. Far fewer tools exist for non-linear arithmetic: iSAT3

SAT solver

input formula in CNF

theory constraint set
(partial) SAT or

UNSAT + explanation

theory solver(s)

SAT or
UNSAT

solution or

unsatisfiable

Boolean abstraction

(partial) solution

Figure 2: The typical functioning of SMT solvers
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uses interval constraint propagation; MiniSmt tries to reduce problems to linear real arithmetic; Z3 uses an
adaptation of the cylindrical algebraic decomposition (CAD) method; while SMT-RAT uses solver modules for
CAD, virtual substitution, Gröbner bases, interval constraint propagation and branch-and-bound. Even
fewer SMT solvers are available for non-linear integer arithmetic (undecidable in general).

3 Challenges and Opportunities

SMT solving has its strength in efficient techniques for exploring Boolean structures, learning, combining
techniques, and developing dedicated heuristics. Symbolic Computation is strong in providing powerful
procedures for sets of arithmetic constraints, and has expertise in simplification and preprocessing.

To allow further exploitation by the Satisfiability Checking community, Symbolic Computation tools
must first be adapted to comply with SMT requirements (CAD, Gröbner bases and virtual substitution
are algorithms of particular interest). However, this is a challenge that requires the expertise of computer
algebra developers. Conversely, Symbolic Computation could profit from exploiting successful SMT ideas,
like dedicated data structures, sophisticated heuristics, effective learning techniques, and approaches for
instrumentality and explanation generation. Incremental CAD procedures now exist, as do prototypes
integrating CDCL-style learning techniques with virtual substitution for linear quantifier elimination.

We aim to create a new research community SC2 whose members will ultimately be well informed
about both fields, and thus able to combine knowledge and techniques to resolve problems (academic
and industrial) currently beyond the scope of either individually. To achieve this an EU Horizon 2020
Coordination and Support Action (712689) project started in July 2016. We plan the following actions:

Communication platforms: Like Symbolic Computation, Satisfiability Checking is supported by its
own conferences (e.g. CADE, IJCAR, SMT) and journals (e.g. JAR); while a role somewhat analogous to
SIGSAM is played by the SatLive Forum (http://www.satlive.org/). We have started to initiate joint
meetings: in 2015 a Dagstuhl Seminar1 was dedicated to SC2; at ACA 2016 and CASC 2016 there will be
SC2 topical sessions; and the first annual SC2 workshop will take place in affiliation with SYNASC 20162.

Research roadmap: The above platforms will initiate cross-community interactions. Our long-term
objective is to create a research roadmap of opportunities and challenges; identifying within the problems
currently faced in industry, points that can be expected to be solved by the SC2 community.

Standards We aim to create a standard problem specification language for the SC2 community, extending
the SMT-LIB language to handle features needed for Symbolic Computation. This could serve as a
communication protocol for platforms that mix tools; and will be used to develop a set of benchmarks.
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