726 research outputs found

    Interference of multi-mode photon echoes generated in spatially separated solid-state atomic ensembles

    Full text link
    High-visibility interference of photon echoes generated in spatially separated solid-state atomic ensembles is demonstrated. The solid state ensembles were LiNbO3_3 waveguides doped with Erbium ions absorbing at 1.53 ÎĽ\mum. Bright coherent states of light in several temporal modes (up to 3) are stored and retrieved from the optical memories using two-pulse photon echoes. The stored and retrieved optical pulses, when combined at a beam splitter, show almost perfect interference, which demonstrates both phase preserving storage and indistinguishability of photon echoes from separate optical memories. By measuring interference fringes for different storage times, we also show explicitly that the visibility is not limited by atomic decoherence. These results are relevant for novel quantum repeaters architectures with photon echo based multimode quantum memories

    Interference of Spontaneous Emission of Light from two Solid-State Atomic Ensembles

    Full text link
    We report an interference experiment of spontaneous emission of light from two distant solid-state ensembles of atoms that are coherently excited by a short laser pulse. The ensembles are Erbium ions doped into two LiNbO3 crystals with channel waveguides, which are placed in the two arms of a Mach-Zehnder interferometer. The light that is spontaneously emitted after the excitation pulse shows first-order interference. By a strong collective enhancement of the emission, the atoms behave as ideal two-level quantum systems and no which-path information is left in the atomic ensembles after emission of a photon. This results in a high fringe visibility of 95%, which implies that the observed spontaneous emission is highly coherent

    The Hilbert basis method for D-flat directions and the superpotential

    Get PDF
    We discuss, using the Hilbert basis method, how to efficiently construct a complete basis for D-flat directions in supersymmetric Abelian and non-Abelian gauge theories. We extend the method to discrete (R and non-R) symmetries. This facilitates the construction of a basis of all superpotential terms in a theory with given symmetries.Comment: 11 pages; a related mathematica code can be found at http://einrichtungen.ph.tum.de/T30e/codes/NonAbelianHilbert

    Origin of atomic clusters during ion sputtering

    Get PDF
    Previous studies have shown that the size distributions of small clusters ( n<=40 n = number of atoms/cluster) generated by sputtering obey an inverse power law with an exponent between -8 and -4. Here we report electron microscopy studies of the size distributions of larger clusters ( n>=500) sputtered by high-energy ion impacts. These new measurements also yield an inverse power law, but one with an exponent of -2 and one independent of sputtering yield, indicating that the large clusters are produced when shock waves, generated by subsurface displacement cascades, ablate the surface

    Spectroscopic investigations of a Ti:Tm:LiNbO3 waveguide for photon-echo quantum memory

    Full text link
    We report the fabrication and characterization of a Ti4+^{4+}:Tm3+^{3+}:LiNbO3_3 optical waveguide in view of photon-echo quantum memory applications. In particular, we investigated room- and cryogenic-temperature properties via absorption, spectral hole burning, photon echo, and Stark spectroscopy. We found radiative lifetimes of 82 μ\mus and 2.4 ms for the 3^3H4_4 and 3^3F4_4 levels, respectively, and a 44% branching ratio from the 3^3H4_{4} to the 3^3F4_4 level. We also measured an optical coherence time of 1.6 μ\mus for the 3^3H6↔3_6\leftrightarrow{}^3H4_4, 795 nm wavelength transition, and investigated the limitation of spectral diffusion to spectral hole burning. Upon application of magnetic fields of a few hundred Gauss, we observed persistent spectral holes with lifetimes up to seconds. Furthermore, we measured a linear Stark shift of 25 kHz⋅\cdotcm/V. Our results are promising for integrated, electro-optical, waveguide quantum memory for photons.Comment: 11 pages, 14 figure

    Direct neutron capture of 48Ca at kT = 52 keV

    Full text link
    The neutron capture cross section of 48Ca was measured relative to the known gold cross section at kT = 52 keV using the fast cyclic activation technique. The experiment was performed at the Van-de-Graaff accelerator, Universitaet Tuebingen. The new experimental result is in good agreement with a calculation using the direct capture model. The 1/v behaviour of the capture cross section at thermonuclear energies is confirmed, and the adopted reaction rate which is based on several previous experimental investigations remains unchanged.Comment: 9 pages (uses Revtex), 2 postscript figures, accepted for publication as Brief Report in Phys. Rev.

    Structure effects in Ne-20+Pb-208 quasi-elastic scattering

    Get PDF
    Preliminary results of an analysis of experiments devoted to a study of the sensitivity of the 20Ne + 208Pb quasi-elastic angular distributions at two near-barrier energies and the previously measured corresponding barrier distribution to the value of the nuclear quadrupole deformation length of 20Ne are reported
    • …
    corecore