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Föhringer Ring 6, 80805 München, Germany
cTheory Group, CERN,

1211 Geneva 23, Switzerland

E-mail: rolf.kappl@ph.tum.de, michael.ratz@ph.tum.de,

christian.staudt@ph.tum.de

Abstract: We discuss, using the Hilbert basis method, how to efficiently construct a

complete basis for D-flat directions in supersymmetric Abelian and non-Abelian gauge

theories. We extend the method to discrete (R and non-R) symmetries. This facilitates

the construction of a basis of all superpotential terms in a theory with given symmetries.

Keywords: Supersymmetric gauge theory, Superstrings and Heterotic Strings, Discrete

and Finite Symmetries

ArXiv ePrint: 1108.2154

Open Access doi:10.1007/JHEP10(2011)027

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81739059?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:rolf.kappl@ph.tum.de
mailto:michael.ratz@ph.tum.de
mailto:christian.staudt@ph.tum.de
http://arxiv.org/abs/1108.2154
http://dx.doi.org/10.1007/JHEP10(2011)027


J
H
E
P
1
0
(
2
0
1
1
)
0
2
7

Contents

1 Introduction 1

2 Review of Hilbert bases for continuous gauge symmetries 2

2.1 Warm-up example: a single U(1) 2

2.2 Generalization to L U(1) factors 3

2.3 Non-Abelian symmetries 3

3 Discrete symmetries 3

3.1 Discrete non-R symmetries 3

3.1.1 Warm-up example 3

3.1.2 R 4

3.2 Discrete R symmetries 4

3.2.1 Warm-up example 4

3.2.2 Multiple discrete R symmetriesMultiple discrete R symmetries 5

4 Putting all together 6

4.1 Charge matrix for U(1)L symmetry with discrete R and non-R symmetries 6

4.2 A stringy example 6

5 Applications and speculations 7

6 Conclusions 8

A Gauge invariant monomials for SU(N) 8

A.1 Consecutive basis building 8

A.2 Cartan subalgebras 9

1 Introduction

Holomorphic gauge invariant monomials play an important role in the understanding of

supersymmetric theories and phenomenological applications. They represent D-flat direc-

tions in supersymmetric gauge theories [1] and constitute possible superpotential terms.

However, in somewhat complex theories the explicit constructions of these monomials can

be quite cumbersome in practice. For instance, already the construction of all gauge invari-

ant monomials for the minimal supersymmetric extension of the standard model (MSSM)

is rather involved [2] (see also [3] for the discussion in stringy extensions of the MSSM).
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In [4] it was shown how to construct the so-called Hilbert basis for holomorphic gauge

invariant monomials M , which are known to be in one-to-one correspondence with the

D-flat directions. The Hilbert basis allows us to write every monomial M in the form

M =

H
∏

i=1

M
ηi

i with ηi ∈ N0 . (1.1)

Here H is the number of independent basis monomials Mi which can only be determined

algorithmically.

The purpose of this note is to extend the notion of the Hilbert basis such as to include

discrete R and non-R symmetries as well. In section 2 we start by reviewing the Hilbert

basis method for continuous gauge symmetries. Section 3 is devoted to the extension to

discrete symmetries. The general case is discussed in section 4. In section 5 we comment

on potential applications, and finally, section 6 contains our conclusions.

2 Review of Hilbert bases for continuous gauge symmetries

Let us briefly review the Hilbert basis method for (continuous) gauge symmetries [4]. We

start by looking at a theory with a single U(1) factor and then extend the discussion to L

different U(1) factors.

2.1 Warm-up example: a single U(1)

Consider a U(1) gauge theory and fields φ(f) (1 ≤ f ≤ F ) with charges q(f). A monomial

M =
(

φ(1)
)n1

· · ·
(

φ(F )
)nF

(2.1)

is gauge invariant if

q(1) n1 + · · · + q(F ) nF = 0 . (2.2a)

This condition may be recast as

qT · n = 0 , (2.2b)

qT = (q(1), . . . , q(F )) and nT = (n1, . . . , nF ). That is, the vector n has to be orthogonal to

the charge vector q. The requirement that M be holomorphic amounts to demanding that

ni ∈ N0. The solutions are the intersection of the hyperplane perpendicular to q and the

lattice points in NF
0 . The so-called Hilbert basis

H =
{

h(1), . . . h(H)
}

, (2.3)

is a complete set of vectors h(i) with the property that each solution n of (2.2) can be

written as

n =

H
∑

i=1

ηi h
(i) with ηi ∈ N0 . (2.4)

Every element h(i) of the Hilbert basis is in one-to-one correspondence with a gauge invari-

ant monomial

Mi =
(

φ(1)
)h

(i)
1

· · ·
(

φ(F )
)h

(i)
F

(2.5)

such that every gauge invariant monomial is given by (1.1).
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2.2 Generalization to L U(1) factors

In the case of L U(1) factors the condition (2.2) can be rewritten as

Q · n = 0, n ∈ NF
0 (2.6)

with the charge matrix

Q =









q
(1)
1 · · · q

(F )
1

...
...

q
(1)
L · · · q

(F )
L









, (2.7)

where q
(f)
ℓ denotes the ℓth U(1) charge of the f th field φ(f).

An important fact about the above problem is that it is well-known in the mathematical

literature [5–7]. There are efficient algorithms such as the ones provided by [8, 9], allowing

us to compute the Hilbert basis for a given matrix Q very efficiently.

2.3 Non-Abelian symmetries

In the case of a non-Abelian symmetry G, gauge invariance of a monomial composed of

G representations r
(i) is equivalent to gauge invariance w.r.t. the r U(1) factors generated

by the Cartan generators of G. That is, the Hilbert basis method allows us immediately

to construct G invariant monomials. Some of the resulting monomials are zero and others

are redundant. Examples for vanishing monomials include the baryons of SU(Nc) theories,

εα1α2···αNc φ
(i1)
α1 φ

(i2)
α2 · · · φ

(iNc
)

αNc
, which vanish if, say, i1 = i2. In order to construct only

non-vanishing and inequivalent monomials, there are various methods available. One of

them is ‘consecutive basis building’ and the other is to systematically remove redundant

monomials from the outcome of the Hilbert basis construction. Both methods are briefly

reviewed in appendix A. A mathematica package allowing for an automatized computation

of the independent monomials can be found at [10].

3 Discrete symmetries

In what follows, we generalize the Hilbert basis method such as to applicable to discrete

symmetries also. This allows us, in particular, to identify a complete basis for allowed

superpotential terms.

3.1 Discrete non-R symmetries

We now discuss how to construct the Hilbert basis for discrete non-R symmetries. We

illustrate our method by a simple example, which we then generalize.

3.1.1 Warm-up example

We start by a single ZM symmetry under which the φ(f) have charges p(f). The requirement

of ZM invariance of the monomial (2.1) translates into

p(1) n1 + · · · + p(F ) nF = 0 mod M . (3.1)
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Without loss of generality we can assume that all discrete charges p(f) are non-negative.

Equation (3.1) is equivalent to

(

−M,p(1), . . . p(F )
)

·













m

n1
...

nF













= 0 with m ∈ N0 (3.2)

and nf ∈ N0, as before. One can now compute the Hilbert basis for the above problem.

The basis monomials are then given by

Mi =
(

φ(1)
)h

(i)
2

· · ·
(

φ(F )
)h

(i)
F+1

(3.3)

after truncation of the first element h
(i)
1 which represents not a field φ(f) but m.

3.1.2 Multiple discrete non-R symmetries

The extension to ZM1 × · · · × ZMK
is straightforward. We assume that ZM1 × · · · × ZMK

is already the smallest irreducible symmetry of a possible larger discrete group (cf. [11]).

We define the charge matrix

C = (−M | P ) , (3.4)

where

M = diag (M1, . . . ,MK) (3.5)

and

P =









p
(1)
1 . . . p

(F )
1

...
...

p
(1)
K . . . p

(F )
K









(3.6)

with p
(f)
k denoting the ZMk

charge of φ(f). We can again assume that all charges p
(f)
k are

non-negative.

3.2 Discrete R symmetries

Let us now turn to discrete R symmetries. We start by discussing a single ZRN and then

generalize the setting to more than one discrete R symmetry.

3.2.1 Warm-up example

We start by a single ZRN symmetry under which the φ(f) have charges r(f), which, again,

can all be chosen non-negative. The requirement of ZRN invariance of the monomial (2.1)

translates into

r(1) n1 + · · · + r(F ) nF = 2 mod N . (3.7)

– 4 –
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Here we have adopted the convention that the superpotential has R charge 2. The above

equation is equivalent to

(

−2,−N, p(1), . . . p(F )
)

·

















ℓ

m

n1
...

nF

















= 0 with ℓ = 1 , (3.8)

m ∈ N0 and nf ∈ N0, as before. One can now compute the solution of the above problem.

First, one identifies a basis of all vectors orthogonal to
(

−2,−N, p(1), . . . p(F )
)T

. To deal

with the restriction ℓ = 1 we identify two subsets of the Hilbert basis. One, where the

first entry equals zero, which we call the homogeneous solution space. And one where the

first entry equals one, which we call the inhomogeneous solution space. If a homogeneous

solution is labeled by n
(h)
hom ∈ H and a inhomogeneous solution by n

(i)
inhom ∈ H we find

the general solution to (3.8) to be

n = n
(i)
inhom +

H0
∑

h=1

ηh n
(h)
hom (3.9)

with fixed i and ηh ∈ N0. That is, there are H1 branches of solutions, where H1 denotes

the number of inhomogeneous solutions. Each branch consists of H0 solutions with H0

denoting the number of homogeneous solutions. We can find all monomials spanning the

superpotential by truncating the vectors n accordingly.

To see what that means in practice, consider a setting with a ZR4 symmetry and fields

ψ and φ with R charges rψ = 1 and rφ = 0. The generalized charge matrix for this example

reads

C = (−2,−4, 1, 0) , (3.10)

where the last two entries are the R charges of ψ and φ. There is only one vector or-

thogonal to C with first component equal to 1, namely (1, 0, 2, 0)T , such that the unique

inhomogeneous solution is given by ninhom = (1, 0, 2, 0)T . Similarly, we obtain two vectors

orthogonal to C with vanishing first component, namely (0, 1, 4, 0)T and (0, 0, 0, 1)T . The

entries of the vectors represent the exponents of the fields in the corresponding monomials.

We hence have found that all allowed superpotential terms are of the form

M = ψ2 ψ4η1 φη2 (3.11)

with ηi ∈ N0. Of course, one could have obtained the result without the Hilbert basis

method; however, for more complex systems this method is highly advantageous.

3.2.2 Multiple discrete R symmetries

Let us extend the discussion to ZRN1
× · · · × ZRNJ

. Define the charge matrix

C =







-2
...

-2

−N R






, (3.12)
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with

N = diag (N1, . . . , NJ) (3.13)

and

R =









r
(1)
1 · · · r

(F )
1

...
...

r
(1)
J · · · r

(F )
J









. (3.14)

Here r
(f)
j denotes the jth R charge of the f th field. We compute the kernel of the matrix

C. The last F components of the kernel vectors with the first entry equal to 1 or 0 (before

truncation) define the inhomogeneous or homogeneous solutions, respectively. The general

solution will again be of the form (3.9). As before, the identification of the (last F ) entries

of the vectors with the exponents will then give us the desired invariant monomials, i.e.

allowed superpotential terms.

4 Putting all together

4.1 Charge matrix for U(1)L symmetry with discrete R and non-R symmetries

We consider now the general U(1)L×ZM1 ×· · ·×ZMK
×ZRN1

×· · ·×ZRNJ
case. The charge

matrix is

C =

















-2
...

-2

−N 0 R

0 0 −M P

0 0 0 Q

















(4.1)

with Q, P , R, N and M defined in equations (2.7), (3.6), (3.14), (3.13) and (3.5), respec-

tively. We compute the kernel of C, and, again, we decompose these vectors in those with

first components equal to 1 or 0. From those we obtain the inhomogeneous or homogeneous

solutions, respectively, by projecting on the last F components. As before, the general so-

lution is of the form (3.9), and identifying the entries of the vectors with the exponents

will then give us the desired invariant monomials, i.e. allowed superpotential terms.

4.2 A stringy example

We base our example on the Z2×Z2 orbifold discussed in [4]. We consider the ZR4 vacuum

discussed there and construct the superpotential for the standard model singlets with R

charges 0 or 2. At the orbifold point, the symmetry seen by these fields is of the type

Gsymm = U(1)L × (Z2)
6 × (ZR4 )3 (4.2)

with L = 8. Here we have already eliminated the non-Abelian symmetries by forming

SU(N) gauge invariant monomials (cf. our discussion in 2.3). The discrete symmetries

follow from the space-group selection rules and H-momentum conservation [12] (for the

rules in this specific geometry see [13]), and are partially redundant, e.g. there are in
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fact only two independent ZR4 factors. These symmetries and selection rules constrain

the holomorphic correlators of the theory [12, 14], which can also partially come from the

Kähler potential in an appropriate description (cf. the discussion in [15, section 4]). In what

follows we will not distinguish between such correlators and allowed superpotential terms.

In the vacuum discussed in [4], there is a residual ZR4 symmetry, which forbids the

superpotential at the perturbative level. If we switch on an additional field with R charge

2 we will break the ZR4 and obtain a non-zero superpotential in the vacuum. We will switch

on the additional field φ̄1. That is, the fields

φ̃(i) = {φ̄1, φ1, φ2, φ3, φ4, φ5, φ6, φ7, φ8, φ9, φ10, φ11, φ12, φ13, φ14,

x1, x2, x3, x4, x5, x̄1, x̄3, x̄4, x̄5, y3, y4, y5, y6}
(4.3)

will now acquire vacuum expectation values (VEVs). The Hilbert basis contains 15408

elements for this choice. The superpotential starts at lowest order with 4 Hilbert

basis elements

W = (x4x̄4 + x5x̄5 + φ9φ13 + φ10φ14) φ̄1 + · · · . (4.4)

We also considered the appearance of the proton decay operator QQQℓ. The Hilbert basis

involving QQQℓ consists of 4284 elements where we focus only on first generation quarks

and leptons. The lowest order QQQℓ operator occurs at order 11 in the field VEVs. An

example is given by

W ⊃ Q1Q2Q2 ℓ1 φ̄1 x1 x2 x3 x4 x̄3 φ2 φ4 φ9 φ
2
12 . (4.5)

These examples show that the Hilbert basis method is powerful enough to handle very

complex examples with many fields.

5 Applications and speculations

Defining the subsets Hinhom = {M
(1)
inhom, . . . ,M

(H1)
inhom} and Hhom = {M

(1)
hom, . . . ,M

(H0)
hom }

which are constructed from n
(i)
inhom and n

(h)
hom, the full superpotential to all orders is

W =

H1
∑

i=1

∑

n1,...,nH0

λ
(i)
n1···nH0

M
(i)
inhom

(

M
(1)
hom

)η1
· · ·

(

M
(H0)
hom

)ηH0
. (5.1)

We can further speculate that the structure of the superpotential is

Wstructure =

H1
∑

i=1
λi M

(i)
inhom

1 −
H0
∑

h=1

κh M
(h)
hom

. (5.2)

However, the relations between the couplings implied by Wstructure will in general be incor-

rect. Yet Wstructure can be used quickly to answer certain questions such as at which order

some combination of fields appears first. Such questions arise in (generalized) Froggatt-

Nielsen model building [16] with many symmetries and where the order in which a given

– 7 –
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term appears is a measure for the suppression of the corresponding effective coupling. An-

other, very similar application concerns the identification of approximate continuous R and

non-R symmetries, where one is interested in the lowest order terms that explicitly break

such symmetries [17, 18]. Given (5.2) one immediately reads off the lowest order at which

perturbative superpotential terms arise.

Whether or not the relations between the coefficients implied by (5.2) can be obtained

in some interesting setting needs still to be explored. However, it is tempting to speculate

that in certain highly symmetric string compactifications, such as orbifolds, the superpo-

tential (and holomorphic terms in the Kähler potential) will be some known function of

the building blocks. It will be interesting to study this question in more detail.

6 Conclusions

We have described a simple method that allows us, given the symmetries of the theory, to

construct the building blocks of the D-flat directions and the superpotential. This basis is

given by the basis of non-negative integer solutions n of the simple matrix equation C ·n = 0,

which has been extensively studied in the mathematical literature. Publicly available

codes allow us then to compute the basis very efficiently. We have discussed a specific

example, based on a Z2 × Z2 orbifold model, in which we computed the superpotential

basis for certain singlet fields. The successful construction of this basis demonstrates that

our methods can be used to efficiently compute the superpotential to all orders even in

rather complex systems.

Acknowledgments

We thank Raymond Hemmecke and Jonas Schmidt for interesting discussions, and Patrick

Vaudrevange for valuable comments. This research was supported by the DFG cluster

of excellence Origin and Structure of the Universe and the Graduiertenkolleg “Particle

Physics at the Energy Frontier of New Phenomena” by Deutsche Forschungsgemeinschaft

(DFG). We would like to thank the CERN theory group, where some of this work has been

carried out, for hospitality and support.

A Gauge invariant monomials for SU(N)

We review the construction of gauge invariant monomials for SU(N) with matter fields φi
and φj .

A.1 Consecutive basis building

Let us consider a general example of L SU(Ni) gauge groups, SU(N1) × · · · × SU(NL). In

order to construct the Hilbert basis H we proceed as follows: in a first step, we construct a

basis H1 of SU(N1) singlets, consisting of elementary SU(N1) singlets and SU(N1) invariant

monomials. As is well known, the latter will be given by the ‘mesons’ and ‘baryons’, which

– 8 –



J
H
E
P
1
0
(
2
0
1
1
)
0
2
7

in SU(3) would look like,

(φiφj) ≡ φαi φ
α̇

j δαα̇ , (φiφjφk) ≡ φαi φ
β
j φ

γ
kεαβγ , (φiφjφk) ≡ φ

α̇

i φ
β̇

j φ
γ̇

kεα̇β̇γ̇ . (A.1)

These monomials will transform as singlets under SU(N1) and together with the singlet

fields they build the basis H1.

We now use H1 to build the basis H1,2, which will be the basis of SU(N1) × SU(N2)

singlets. Obviously, H1,2 will contain terms of H1 which are already SU(N2) singlets

and also monomials which are constructed in a similar way as in (A.1). The only dif-

ference is that terms in H1 can have more than one SU(N2) index, i.e. they can furnish

higher representations.

From here on the course of action is always the same: we use the previous basis H1,...,k

to build H1,...,k,k+1, the basis of SU(N1) × · · · × SU(Nk) × SU(Nk+1) singlets until we

eventually find the basis H ≡ H1,...,L of monomials invariant under the full gauge group.

One can find an explicit example of this method for SU(3) × SU(2) × U(1) in [2].

A.2 Cartan subalgebras

Alternatively, one can construct the monomials for non-Abelian symmetry groups by using

the Hilbert basis method for the U(1)L symmetry defined by the Cartan subalgebras.

For this strategy, we split all fields in their tensor components and assign them a charge

according to the Cartan charges. Let us consider some fields from [2] to explain this

procedure. Assume, we have an SU(3) × SU(2) gauge group. SU(3) has rank 2 and its

Cartan subalgebra can be taken to be the one generated by the two diagonal Gell-Mann

matrices, λ3 and λ8, whereas SU(2) has rank 1, hence we use the diagonal Pauli matrix σ3.

Let us assume we have three fields, Q(3,2), u(3,1) and ℓ(1,2). Q has six tensor

components Qαi, where α = 1, 2, 3 is the SU(3) index and i = 1, 2 the SU(2) index. Now

we can assign charges to each component under the respective gauge groups, using the

eigenvalues of the generators of the Cartan subalgebras, which is particularly easy when

using the diagonal matrices λ3, λ8 and σ3. Therefore, Q2 ≡ Qα=2,i=1 will be assigned

the charges

q
Q2
1 = − 1 , q

Q2
2 = 1 , q

Q2
3 = 1 . (A.2)

Another example is uα̇, which is an SU(2) singlet and an SU(3) anti-triplet, thus

carrying zero charge under the SU(2) gauge group and opposite SU(3) charges. Taking the

component u2 ≡ uα̇=2̇, we get

qu2
1 = 1 , qu2

2 = −1 , qu2
3 = 0 . (A.3)

In this way we can split each field into its components (six for Q, three for u and two for

ℓ) and build a 3 × 11 charge matrix Q, which in our example will look like

Q =







1 −1 0 1 −1 0 −1 1 0 0 0

1 1 −2 1 1 −2 −1 −1 2 0 0

1 1 1 −1 −1 −1 0 0 0 1 −1






. (A.4)
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Using algorithms like [8, 9], we can now find the Hilbert basis of all solutions for the

charge matrix Q, the same way as before in equation (2.7). Solutions would for example

be Q11Q21Q32 ℓ2, u1̇u2̇u3̇, Q11u1̇ℓ2 or many more.

In order to associate these solutions to proper gauge invariant monomials, we define a

prescription of how to translate such expressions to objects in which the (generalized) color

indices are contracted appropriately. An increasing series will be contracted with the total

antisymmetric Levi-Civita tensor, indices which have the same value but are dotted and

undotted will be contracted with the Kronecker delta. Using this procedure, our examples

would look like

Q11Q21Q32 ℓ2 ⇐⇒ QαaQβbQγc ℓd εαβγ εac εbd , (A.5a)

where we had to contract antisymmetrically several times,

u1̇ u2̇ u3̇ ⇐⇒ uα̇ uβ̇ uγ̇ ε
α̇β̇γ̇

, (A.5b)

which is very similar to the one above and

Q11 u1̇ ℓ2 ⇐⇒ Qαa uα̇ ℓb δαα̇ εab , (A.5c)

where we were able to see when to use the Kronecker delta.

A caveat of this procedure is that we will end up with many monomials occurring more

than once, e.g. (A.5b) will appear six times. Therefore, we have to remove the redundant

ones. Furthermore, one has the possibility to end up with monomials which will vanish due

to antisymmetric contraction. Take (A.5b) again: if u were a field with only one generation,

the monomial would clearly vanish. This means that one has to check the Hilbert basis

for zero-valued monomials and remove them, which will leave the basis nonetheless intact,

since the contribution of these monomials would be zero in any case.

We see that all these caveats are manageable. Furthermore, this procedure has a big

advantage compared to the method described in the previous subsection A.1. Using the

Cartan subalgebras allows us to quickly and fully automated build monomials for several

SU(N) and U(1) gauge groups, which would get very tedious (in certain cases impossible),

especially for N > 3, more than three gauge groups or too many fields. We have created a

mathematica package ourselves, based on [8, 9], which automatizes this procedure [10].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution Noncommercial License which permits any noncommercial use, distribution,

and reproduction in any medium, provided the original author(s) and source are credited.
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