232 research outputs found

    The First Space-Based Gravitational-Wave Detectors

    Get PDF
    Gravitational waves provide a laboratory for general relativity and a window to energetic astrophysical phenomena invisible with electromagnetic radiation. Several terrestrial detectors are currently under construction, and a space-based interferometer is envisioned for launch early next century to detect test-mass motions induced by waves of relatively short wavelength. Very-long-wavelength gravitational waves can be detected using the plasma in the early Universe as test masses; the motion induced in the plasma by a wave is imprinted onto the cosmic microwave background (CMB). While the signature of gravitational waves on the CMB temperature fluctuations is not unique, the polarization pattern can be used to unambiguously detect gravitational radiation. Thus, forthcoming CMB polarization experiments, such as MAP and Planck, will be the first space-based gravitational-wave detectors.Comment: 5 pages, 3 postscript figure

    Systematic review and meta-analysis of the diagnostic accuracy of ultrasonography for deep vein thrombosis

    Get PDF
    Background Ultrasound (US) has largely replaced contrast venography as the definitive diagnostic test for deep vein thrombosis (DVT). We aimed to derive a definitive estimate of the diagnostic accuracy of US for clinically suspected DVT and identify study-level factors that might predict accuracy. Methods We undertook a systematic review, meta-analysis and meta-regression of diagnostic cohort studies that compared US to contrast venography in patients with suspected DVT. We searched Medline, EMBASE, CINAHL, Web of Science, Cochrane Database of Systematic Reviews, Cochrane Controlled Trials Register, Database of Reviews of Effectiveness, the ACP Journal Club, and citation lists (1966 to April 2004). Random effects meta-analysis was used to derive pooled estimates of sensitivity and specificity. Random effects meta-regression was used to identify study-level covariates that predicted diagnostic performance. Results We identified 100 cohorts comparing US to venography in patients with suspected DVT. Overall sensitivity for proximal DVT (95% confidence interval) was 94.2% (93.2 to 95.0), for distal DVT was 63.5% (59.8 to 67.0), and specificity was 93.8% (93.1 to 94.4). Duplex US had pooled sensitivity of 96.5% (95.1 to 97.6) for proximal DVT, 71.2% (64.6 to 77.2) for distal DVT and specificity of 94.0% (92.8 to 95.1). Triplex US had pooled sensitivity of 96.4% (94.4 to 97.1%) for proximal DVT, 75.2% (67.7 to 81.6) for distal DVT and specificity of 94.3% (92.5 to 95.8). Compression US alone had pooled sensitivity of 93.8 % (92.0 to 95.3%) for proximal DVT, 56.8% (49.0 to 66.4) for distal DVT and specificity of 97.8% (97.0 to 98.4). Sensitivity was higher in more recently published studies and in cohorts with higher prevalence of DVT and more proximal DVT, and was lower in cohorts that reported interpretation by a radiologist. Specificity was higher in cohorts that excluded patients with previous DVT. No studies were identified that compared repeat US to venography in all patients. Repeat US appears to have a positive yield of 1.3%, with 89% of these being confirmed by venography. Conclusion Combined colour-doppler US techniques have optimal sensitivity, while compression US has optimal specificity for DVT. However, all estimates are subject to substantial unexplained heterogeneity. The role of repeat scanning is very uncertain and based upon limited data

    Stigma and Fear: the 'Psy Professional' in Cultural Artifacts

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record.The loss of reason called madness provokes perhaps the greatest human fear, for it is reason that dignifies humanity and separates us from beasts. The ‘psy professionals’ - those who prescribe and administer treatments for madness - are frequently portrayed in fiction, film, comics, computer games and entertainments, along with the mad themselves and the asylums that confine them. Overall, these depictions are malign: the reader/watcher/player is encouraged to fear the mad, the madhouse and the mad-doctor. Choosing to use less abrasive vocabulary to name the condition of madness makes no difference to the terror the condition arouses, for the content of many books and games aims to inspire fear. In spite of considerable efforts over many years, the stigma which attaches to mental illness remains firmly in place for patients, while psy professionals also carry their share of “some of the discredit of the stigmatized” (Goffman 1968, p 43) and join patients in a stigmatized group. Popular belief often equates the psy professions with madness (Walter, 1989). This paper explores ways in which the fear of madness, and the stigma which clings to sufferers and their professional carers, is perpetuated by a constant stream of popular cultural artifacts

    Suppression of Penning discharges between the KATRIN spectrometers

    Get PDF
    The KArlsruhe TRItium Neutrino experiment (KATRIN) aims to determine the effective electron (anti)-neutrino mass with a sensitivity of 0.2eV/c2^{2} by precisely measuring the endpoint region of the tritium β-decay spectrum. It uses a tandem of electrostatic spectrometers working as magnetic adiabatic collimation combined with an electrostatic (MAC-E) filters. In the space between the pre-spectrometer and the main spectrometer, creating a Penning trap is unavoidable when the superconducting magnet between the two spectrometers, biased at their respective nominal potentials, is energized. The electrons accumulated in this trap can lead to discharges, which create additional background electrons and endanger the spectrometer and detector section downstream. To counteract this problem, “electron catchers” were installed in the beamline inside the magnet bore between the two spectrometers. These catchers can be moved across the magnetic-flux tube and intercept on a sub-ms time scale the stored electrons along their magnetron motion paths. In this paper, we report on the design and the successful commissioning of the electron catchers and present results on their efficiency in reducing the experimental background

    Symbolic Object Code Analysis

    Get PDF
    Current software model checkers quickly reach their limit when being applied to verifying pointer safety properties in source code that includes function pointers and inlined assembly. This paper introduces an alternative technique for checking pointer safety violations, called Symbolic Object Code Analysis (SOCA), which is based on bounded symbolic execution, incorporates path-sensitive slicing, and employs the SMT solver Yices as its execution and verification engine. Extensive experimental results of a prototypic SOCA Verifier, using the Verisec suite and almost 10,000 Linux device driver functions as benchmarks, show that SOCA performs competitively to current source-code model checkers and that it also scales well when applied to real operating systems code and pointer safety issues. SOCA effectively explores semantic niches of software that current software verifiers do not reach

    Genetic contributions to self-reported tiredness

    Get PDF
    Self-reported tiredness and low energy, often called fatigue, are associated with poorer physical and mental health. Twin studies have indicated that this has a heritability between 6 and 50%. In the UK Biobank sample (N=108 976), we carried out a genome-wide association study (GWAS) of responses to the question, ‘Over the last two weeks, how often have you felt tired or had little energy?’ Univariate GCTA-GREML found that the proportion of variance explained by all common single-nucleotide polymorphisms for this tiredness question was 8.4% (s.e.=0.6%). GWAS identified one genome-wide significant hit (Affymetrix id 1:64178756_C_T; P=1.36 × 10−11). Linkage disequilibrium score regression and polygenic profile score analyses were used to test for shared genetic aetiology between tiredness and up to 29 physical and mental health traits from GWAS consortia. Significant genetic correlations were identified between tiredness and body mass index (BMI), C-reactive protein, high-density lipoprotein (HDL) cholesterol, forced expiratory volume, grip strength, HbA1c, longevity, obesity, self-rated health, smoking status, triglycerides, type 2 diabetes, waist–hip ratio, attention deficit hyperactivity disorder, bipolar disorder, major depressive disorder, neuroticism, schizophrenia and verbal-numerical reasoning (absolute rg effect sizes between 0.02 and 0.78). Significant associations were identified between tiredness phenotypic scores and polygenic profile scores for BMI, HDL cholesterol, low-density lipoprotein cholesterol, coronary artery disease, C-reactive protein, HbA1c, height, obesity, smoking status, triglycerides, type 2 diabetes, waist–hip ratio, childhood cognitive ability, neuroticism, bipolar disorder, major depressive disorder and schizophrenia (standardised β’s had absolute values<0.03). These results suggest that tiredness is a partly heritable, heterogeneous and complex phenomenon that is phenotypically and genetically associated with affective, cognitive, personality and physiological processes

    Improved Upper Limit on the Neutrino Mass from a Direct Kinematic Method by KATRIN

    Get PDF
    We report on the neutrino mass measurement result from the first four-week science run of the Karlsruhe Tritium Neutrino experiment KATRIN in spring 2019. Beta-decay electrons from a high-purity gaseous molecular tritium source are energy analyzed by a high-resolution MAC-E filter. A fit of the integrated electron spectrum over a narrow interval around the kinematic end point at 18.57 keV gives an effective neutrino mass square value of (1.01.1+0.9)eV2(−1.0^{+0.9}_{−1.1}) eV^2. From this, we derive an upper limit of 1.1 eV (90% confidence level) on the absolute mass scale of neutrinos. This value coincides with the KATRIN sensitivity. It improves upon previous mass limits from kinematic measurements by almost a factor of 2 and provides model-independent input to cosmological studies of structure formation
    corecore