301 research outputs found

    Elevation in blood flow and shear rate prevents hyperglycemia-induced endothelial dysfunction in healthy subjects and those with type 2 diabetes

    Get PDF
    Hyperglycemia, commonly present after a meal, causes transient impairment in endothelial function. We examined whether increases in blood flow (BF) protect against the hyperglycemia- mediated decrease in endothelial function in healthy subjects and patients with type 2 diabetes mellitus (T2DM). Ten healthy subjects and 10 age- and sex-matched T2DM patients underwent simultaneous bilateral assessment of brachial artery endothelial function by means of flow- mediated dilation (FMD), using high-resolution echo-Doppler. FMD was examined before and 60, 120 and 150 minutes after a 75-gr oral glucose challenge. We unilaterally manipulated BF by heating one arm between minute 30 and 60. Oral glucose administration caused a statistically significant, transient increase in blood glucose in both groups (P<0.001). Forearm skin temperature, brachial artery BF and shear rate significantly increased in the heated arm (P<0.001), and to a greater extent compared to the non-heated arm in both groups (interaction- effect, P<0.001). The glucose load caused a transient decrease in FMD% (P<0.05), whilst heating significantly prevented the decline (interaction-effect: P<0.01). Also when correcting for changes in diameter and shear rate, we found that the hyperglycemia-induced decrease in FMD can be prevented by local heating (P<0.05). These effects on FMD were observed in both groups. Our data indicate that non-metabolically driven elevation in BF and shear rate can similarly prevent the hyperglycemia-induced decline in conduit artery endothelial function in healthy volunteers and in patients with type 2 diabetes. Additional research is warranted to confirm that other interventions increasing BF and shear rate equally protect the endothelium when challenged by hyperglycemia

    Cytokine responses to repeated, prolonged walking in lean versus overweight/obese individuals.

    Get PDF
    OBJECTIVES: Obesity is characterized by a pro-inflammatory state, which plays a role in the pathogenesis of metabolic and cardiovascular disease. An exercise bout causes a transient increase in pro-inflammatory cytokines, whilst training has anti-inflammatory effects. No previous study examined whether the exercise-induced increase in pro-inflammatory cytokines is altered with repeated prolonged exercise bouts and whether this response differs between lean and overweight/obese individuals. DESIGN: Lean (n=25, BMI 22.9±1.5kg/m2) and age-/sex-matched overweight/obese (n=25; BMI 27.9±2.4kg/m2) individuals performed walking exercise for 30, 40 or 50km per day on four consecutive days (distances similar between groups). METHODS: Circulating cytokines (IL-6, IL-10, TNF-α, IL-1β and IL-8) were examined at baseline and <30min after the finish of each exercise day. RESULTS: At baseline, no differences in circulating cytokines were present between groups. In response to prolonged exercise, all cytokines increased on day 1 (IL-1β: P=0.02; other cytokines: P<0.001). IL-6 remained significantly elevated during the 4 exercise days, when compared to baseline. IL-10, TNF-α, IL-1β and IL-8 returned to baseline values from exercise day 2 (IL-10, IL-1β, IL-8) or exercise day 3 (TNF-α) onward. No significant differences were found between groups for all cytokines, except IL-8 (Time*Group Interaction P=0.02). CONCLUSIONS: These data suggest the presence of early adaptive mechanisms in response to repeated prolonged walking, demonstrated by attenuated exercise-induced elevations in cytokines on consecutive days that occur similar in lean and overweight/obese individuals

    Ground deformation analysis at Campi Flegrei (Southern Italy) by CGPS and tide-gauge network

    Get PDF
    Campi Flegrei caldera is located 15 km west of the city of Naples, within the central-southern sector of a large graben called Campanian Plain. It is an active volcanic area marked by a quasi-circular caldera depression, formed by a huge ignimbritic eruption occurred about 37000 years ago. This caldera was generated by several collapses produced by strong explosive eruptions (the last eruption, occurred in 1538, built an about 130 m spatter cone called Mt. Nuovo). Campi Flegrei area periodically experiences significant deformation episodes, with uplift phenomena up to more than 3.5 m in 15 years (from 1970 to 1984), which caused during 1983-84 the temporary evacuation of about 40000 people from the ancient part of Pozzuoli town. The deformation field obtainable by CGPS and tidegauge stations plays an important role for the modelling and interpretation of volcanic phenomena, as well as for forecasting purposes. The structural complexity of the Campi Flegrei area, together with the evidence of a strong interaction between magmatic chamber and shallow geothermal system, calls for a detailed characterization of the substructure and of magma-water interaction processes. The incoming experiment of deep drilling, down to about 4 km, will give detailed structural and physical constraints able to resolve the intrinsic ambiguities of geophysical data and in particular geodetic ones. In this poster we describe the recent ground deformations at Campi Flegrei area by means of GPS technique and tide gauge stations, discussing the possible interpretations also in light of further constraints likely coming from the next CFDDP (Campi Flegrei Deep Drilling) deep drilling experiment

    Results from the CERN pilot CLOUD experiment

    Get PDF
    During a 4-week run in October–November 2006, a pilot experiment was performed at the CERN Proton Synchrotron in preparation for the Cosmics Leaving OUtdoor Droplets (CLOUD) experiment, whose aim is to study the possible influence of cosmic rays on clouds. The purpose of the pilot experiment was firstly to carry out exploratory measurements of the effect of ionising particle radiation on aerosol formation from trace H2SO4 vapour and secondly to provide technical input for the CLOUD design. A total of 44 nucleation bursts were produced and recorded, with formation rates of particles above the 3 nm detection threshold of between 0.1 and 100 cm -3 s -1, and growth rates between 2 and 37 nm h -1. The corresponding H2O concentrations were typically around 106 cm -3 or less. The experimentally-measured formation rates and htwosofour concentrations are comparable to those found in the atmosphere, supporting the idea that sulphuric acid is involved in the nucleation of atmospheric aerosols. However, sulphuric acid alone is not able to explain the observed rapid growth rates, which suggests the presence of additional trace vapours in the aerosol chamber, whose identity is unknown. By analysing the charged fraction, a few of the aerosol bursts appear to have a contribution from ion-induced nucleation and ion-ion recombination to form neutral clusters. Some indications were also found for the accelerator beam timing and intensity to influence the aerosol particle formation rate at the highest experimental SO2 concentrations of 6 ppb, although none was found at lower concentrations. Overall, the exploratory measurements provide suggestive evidence for ion-induced nucleation or ion-ion recombination as sources of aerosol particles. However in order to quantify the conditions under which ion processes become significant, improvements are needed in controlling the experimental variables and in the reproducibility of the experiments. Finally, concerning technical aspects, the most important lessons for the CLOUD design include the stringent requirement of internal cleanliness of the aerosol chamber, as well as maintenance of extremely stable temperatures (variations below 0.1 °C

    Microorganisms from aphid honeydew attract and enhance the efficacy of natural enemies

    Get PDF
    Aphids are one of the most serious pests of crops worldwide, causing major yield and economic losses. To control aphids, natural enemies could be an option but their efficacy is sometimes limited by their dispersal in natural environment. Here we report the first isolation of a bacterium from the pea aphid Acyrthosiphon pisum honeydew, Staphylococcus sciuri, which acts as a kairomone enhancing the efficiency of aphid natural enemies. Our findings represent the first case of a host-associated bacterium driving prey location and ovipositional preference for the natural enemy. We show that this bacterium has a key role in tritrophic interactions because it is the direct source of volatiles used to locate prey. Some specific semiochemicals produced by S. sciuri were also identified as significant attractants and ovipositional stimulants. The use of this host-associated bacterium could certainly provide a novel approach to control aphids in field and greenhouse systems
    corecore