217 research outputs found

    DISCUSSION PAPER: REFLECTIONS ON TECHNOLOGY IN LEXICOGRAPHY

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74810/1/j.1749-6632.1973.tb49508.x.pd

    Rapid and slow: Varying magma ascent rates as a mechanism for Vulcanian explosions

    Get PDF
    Vulcanian explosions are one of the most common types of volcanic activity observed at silicic volcanoes. Magma ascent rates are often invoked as being the fundamental control on their explosivity, yet this factor is poorly constrained for low magnitude end-member Vulcanian explosions, which are particularly poorly understood, partly due to the rarity of ash samples and low gas fluxes. We describe ash generated by small Vulcanian explosions at Volcán de Colima in 2013, where we document for the first time marked differences in the vesicularity, crystal characteristics (volume fraction, size and shape) and glass compositions in juvenile material from discrete events. We interpret these variations as representing differing ascent styles and speeds of magma pulses within the conduit. Heterogeneous degassing during ascent leads to fast ascending, gas-rich magma pulses together with slow ascending gas-poor magma pulses within the same conduit. This inferred heterogeneity is complemented by SO2 flux data, which show transient episodes of both open and closed system degassing, indicating efficient shallow fracture sealing mechanisms, which allows for gas overpressure to generate small Vulcanian explosions

    Geochemistry and mineralogy of the phonolite lava lake, Erebus volcano, Antarctica: 1972–2004 and comparison with older lavas

    Get PDF
    Author Posting. © Elsevier B.V., 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Journal of Volcanology and Geothermal Research 177 (2008): 589-605, doi:10.1016/j.jvolgeores.2007.11.025.Mount Erebus, Antarctica, is a large (3794 m) alkaline open-conduit stratovolcano that hosts a vigorously convecting and persistently degassing lake of anorthoclase phonolite magma. The composition of the lake was investigated by analyzing glass and mineral compositions in lava bombs erupted between 1972 and 2004. Matrix glass, titanomagnetite, olivine, clinopyroxene, and fluor-apatite compositions are invariant and show that the magmatic temperature (~1000°C) and oxygen fugacity (ΔlogFMQ = -0.9) have been stable. Large temperature variations at the lake surface (ca. 400 - 500°C) are not reflected in mineral compositions. Anorthoclase phenocrysts up to 10 cm in length feature a restricted compositional range (An10.3-22.9Ab62.8-68.1Or11.4-27.2) with complex textural and compositional zoning. Anorthoclase textures and compositions indicate crystallization occurs at low degrees of effective undercooling. We propose shallow water exsolution causes crystallization to occur and shallow convection repeats this process multiple times, yielding extremely large anorthoclase crystals. Minor variations in eruptive activity from 1972 to 2004 are decoupled from magma compositions. The variations probably relate to changes in conduit geometry within the volcano and/or variable input of CO2-rich volatiles into the upper-level magma chamber from deeper in the system. Eleven bulk samples of phonolite lava from the summit plateau that range in age from 0 ± 4 ka to 17 ± 8 ka were analyzed for major and trace elements. Small compositional variations are controlled by anorthoclase content. The lavas are indistinguishable from modern bulk lava bomb compositions and demonstrate that Erebus volcano has been erupting lava and tephra from the summit region with the same bulk composition for ~17 ka.The work at Erebus volcano and the continued operation of the Mount Erebus Volcano Observatory is supported by grants (OPP-0229305, ANT-0538414) from the Office of Polar Programs, National Science Foundation

    The human capital transition and the role of policy

    Get PDF
    Along with information and communication technology, infrastructure, and the innovation system, human capital is a key pillar of the knowledge economy with its scope for increasing returns. With this in mind, the purpose of this chapter is to investigate how industrialized economies managed to achieve the transition from low to high levels of human capital. The first phase of the human capital transition was the result of the interaction of supply and demand, triggered by technological change and boosted by the demands for (immaterial) services. The second phase of the human capital transition (i.e., mass education) resulted from enforced legislation and major public investment. The state’s aim to influence children’s beliefs appears to have been a key driver in public investment. Nevertheless, the roles governments played differed according to the developmental status and inherent socioeconomic and political characteristics of their countries. These features of the human capital transition highlight the importance of understanding governments’ incentives and roles in transitions

    Reading Comprehension and Reading Comprehension Difficulties

    Get PDF

    The Evolution of the Silver Hills Volcanic Center, and Revised 40Ar/39Ar Geochronology of Montserrat, Lesser Antilles, With Implications for Island Arc Volcanism

    Get PDF
    Studying the older volcanic centers on Montserrat, Centre Hills and Silver Hills, may reveal how volcanic activity can change over long time periods (≥1 Myr), and whether the recent activity at the Soufrière Hills is typical of volcanism throughout Montserrat's history. Here, we present the first detailed mapping of the Silver Hills, the oldest and arguably least studied volcanic center on Montserrat. Volcanism at the Silver Hills was dominated by episodic andesite lava dome growth and collapse, produced Vulcanian style eruptions, and experienced periodic sector collapse events, similar to the style of volcanic activity that has been documented for the Centre Hills and Soufrière Hills. We also present an updated geochronology of volcanism on Montserrat, by revising existing ages and obtaining new 40Ar/39Ar dates and palaeomagnetic ages from marine tephra layers. We show that the centers of the Silver, Centre, and Soufrière Hills were active during at least ∼2.17–1.03 Ma, ∼1.14–0.38 Ma, and ∼0.45 Ma–present, respectively. Combined with timings of volcanism on Basse-Terre, Guadeloupe these ages suggest that ∼0.5–1 Ma is a common lifespan for volcanic centers in the Lesser Antilles. These new dates identify a previously unrecognized overlap in activity between the different volcanic centers, which appears to be a common phenomenon in island arcs. We also identify an older stage of Soufrière Hills activity ∼450–290 ka characterized by the eruption of hornblende-orthopyroxene-phyric lavas, demonstrating that the petrology of the Soufrière Hills eruptive products has changed at least twice throughout the volcano's development
    corecore