166 research outputs found

    Starlike Functions of Complex Order with Respect to Symmetric Points Defined Using Higher Order Derivatives

    Get PDF
    In this paper, we introduce and study a new subclass of multivalent functions with respect to symmetric points involving higher order derivatives. In order to unify and extend various well-known results, we have defined the class subordinate to a conic region impacted by Janowski functions. We focused on conic regions when it pertained to applications of our main results. Inclusion results, subordination property and coefficient inequality of the defined class are the main results of this paper. The applications of our results which are extensions of those given in earlier works are presented here as corollaries

    The Chromosome-Level Genome Assembly of European Grayling Reveals Aspects of a Unique Genome Evolution Process Within Salmonids

    Get PDF
    Salmonids represent an intriguing taxonomical group for investigating genome evolution in vertebrates due to their relatively recent last common whole genome duplication event, which occurred between 80 and 100 million years ago. Here, we report on the chromosome-level genome assembly of European grayling (Thymallus thymallus), which represents one of the earliest diverged salmonid subfamilies. To achieve this, we first generated relatively long genomic scaffolds by using a previously published draft genome assembly along with long-read sequencing data and a linkage map. We then merged those scaffolds by applying synteny evidence from the Atlantic salmon (Salmo salar) genome. Comparisons of the European grayling genome assembly to the genomes of Atlantic salmon and Northern pike (Esox lucius), the latter used as a nonduplicated outgroup, detailed aspects of the characteristic chromosome evolution process that has taken place in European grayling. While Atlantic salmon and other salmonid genomes are portrayed by the typical occurrence of numerous chromosomal fusions, European grayling chromosomes were confirmed to be fusion-free and were characterized by a relatively large proportion of paracentric and pericentric inversions. We further reported on transposable elements specific to either the European grayling or Atlantic salmon genome, on the male-specific sdY gene in the European grayling chromosome 11A, and on regions under residual tetrasomy in the homeologous European grayling chromosome pairs 9A-9B and 25A-25B. The same chromosome pairs have been observed under residual tetrasomy in Atlantic salmon and in other salmonids, suggesting that this feature has been conserved since the subfamily split.Peer reviewe

    Population transcriptomics reveals weak parallel genetic basis in repeated marine and freshwater divergence in nine-spined sticklebacks

    Get PDF
    Abstract The degree to which adaptation to similar selection pressures is underlain by parallel vs. non-parallel genetic changes is a topic of broad interest in contemporary evolutionary biology. Sticklebacks provide opportunities to characterize and compare the genetic underpinnings of repeated marine-freshwater divergences at both intra- and interspecific levels. While the degree of genetic parallelism in repeated marine-freshwater divergences has been frequently studied in the three-spined stickleback (Gasterosteus aculeatus), much less is known about this in other stickleback species. Using a population transcriptomic approach, we identified both genetic and gene expression variations associated with marine-freshwater divergence in the nine-spined stickleback (Pungitius pungitius). Specifically, we used a genome-wide association study approach, and found that ~1% of the total 173,491 identified SNPs showed marine-freshwater ecotypic differentiation. A total of 861 genes were identified to have SNPs associated with marine-freshwater divergence in nine-spined stickleback, but only 12 of these genes have also been reported as candidates associated with marine-freshwater divergence in the three-spined stickleback. Hence, our results indicate a low degree of interspecific genetic parallelism in marine-freshwater divergence. Moreover, 1,578 genes in the brain and 1,050 genes in the liver were differentially expressed between marine and freshwater nine-spined sticklebacks, ~5% of which have also been identified as candidates associated with marine-freshwater divergence in the three-spined stickleback. However, only few of these (e.g., CLDND1) appear to have been involved in repeated marine-freshwater divergence in nine-spined sticklebacks. Taken together, the results indicate a low degree of genetic parallelism in repeated marine-freshwater divergence both at intra- and interspecific levels.Peer reviewe

    The Chromosome-Level Genome Assembly of European Grayling Reveals Aspects of a Unique Genome Evolution Process Within Salmonids

    Get PDF
    Salmonids represent an intriguing taxonomical group for investigating genome evolution in vertebrates due to their relatively recent last common whole genome duplication event, which occurred between 80 and 100 million years ago. Here, we report on the chromosome-level genome assembly of European grayling (Thymallus thymallus), which represents one of the earliest diverged salmonid subfamilies. To achieve this, we first generated relatively long genomic scaffolds by using a previously published draft genome assembly along with long-read sequencing data and a linkage map. We then merged those scaffolds by applying synteny evidence from the Atlantic salmon (Salmo salar) genome. Comparisons of the European grayling genome assembly to the genomes of Atlantic salmon and Northern pike (Esox lucius), the latter used as a nonduplicated outgroup, detailed aspects of the characteristic chromosome evolution process that has taken place in European grayling. While Atlantic salmon and other salmonid genomes are portrayed by the typical occurrence of numerous chromosomal fusions, European grayling chromosomes were confirmed to be fusion-free and were characterized by a relatively large proportion of paracentric and pericentric inversions. We further reported on transposable elements specific to either the European grayling or Atlantic salmon genome, on the male-specific sdY gene in the European grayling chromosome 11A, and on regions under residual tetrasomy in the homeologous European grayling chromosome pairs 9A-9B and 25A-25B. The same chromosome pairs have been observed under residual tetrasomy in Atlantic salmon and in other salmonids, suggesting that this feature has been conserved since the subfamily split

    Gut Microbial Trimethylamine Is Elevated in Alcohol-Associated Hepatitis and Contributes to Ethanol-Induced Liver Injury in Mice

    Get PDF
    There is mounting evidence that microbes residing in the human intestine contribute to diverse alcohol-associated liver diseases (ALD) including the most deadly form known as alcohol-associated hepatitis (AH). However, mechanisms by which gut microbes synergize with excessive alcohol intake to promote liver injury are poorly understood. Furthermore, whether drugs that selectively target gut microbial metabolism can improve ALD has never been tested. We used liquid chromatography tandem mass spectrometry to quantify the levels of microbe and host choline co-metabolites in healthy controls and AH patients, finding elevated levels of the microbial metabolite trimethylamine (TMA) in AH. In subsequent studies, we treated mice with non-lethal bacterial choline TMA lyase (CutC/D) inhibitors to blunt gut microbe-dependent production of TMA in the context of chronic ethanol administration. Indices of liver injury were quantified by complementary RNA sequencing, biochemical, and histological approaches. In addition, we examined the impact of ethanol consumption and TMA lyase inhibition on gut microbiome structure via 16S rRNA sequencing. We show the gut microbial choline metabolite TMA is elevated in AH patients and correlates with reduced hepatic expression of the TMA oxygenase flavin-containing monooxygenase 3 (FMO3). Provocatively, we find that small molecule inhibition of gut microbial CutC/D activity protects mice from ethanol-induced liver injury. CutC/D inhibitor-driven improvement in ethanol-induced liver injury is associated with distinct reorganization of the gut microbiome and host liver transcriptome. The microbial metabolite TMA is elevated in patients with AH, and inhibition of TMA production from gut microbes can protect mice from ethanol-induced liver injury

    Summary Report on CO{sub 2} Geologic Sequestration & Water Resources Workshop

    Full text link
    The United States Environmental Protection Agency (EPA) and Lawrence Berkeley National Laboratory (LBNL) jointly hosted a workshop on “CO{sub 2} Geologic Sequestration and Water Resources” in Berkeley, June 1–2, 2011. The focus of the workshop was to evaluate R&D needs related to geological storage of CO{sub 2} and potential impacts on water resources. The objectives were to assess the current status of R&D, to identify key knowledge gaps, and to define specific research areas with relevance to EPA’s mission. About 70 experts from EPA, the DOE National Laboratories, industry, and academia came to Berkeley for two days of intensive discussions. Participants were split into four breakout session groups organized around the following themes: Water Quality and Impact Assessment/Risk Prediction; Modeling and Mapping of Area of Potential Impact; Monitoring and Mitigation; Wells as Leakage Pathways. In each breakout group, participants identified and addressed several key science issues. All groups developed lists of specific research needs; some groups prioritized them, others developed short-term vs. long-term recommendations for research directions. Several crosscutting issues came up. Most participants agreed that the risk of CO{sub 2} leakage from sequestration sites that are properly selected and monitored is expected to be low. However, it also became clear that more work needs to be done to be able to predict and detect potential environmental impacts of CO{sub 2} storage in cases where the storage formation may not provide for perfect containment and leakage of CO{sub 2}–brine might occur

    Metal release from contaminated estuarine sediment under pH changes in the marine environment

    Get PDF
    The contaminant release from estuarine sediment due to pH changes was investigated using a modified CEN/TS 14429 pH-dependence leaching test. The test is performed in the range of pH values of 0-14 using deionised water and seawater as leaching solutions. The experimental conditions mimic different circumstances of the marine environment due to the global acidification, carbon dioxide (CO2) leakages from carbon capture and sequestration technologies, and accidental chemical spills in seawater. Leaching test results using seawater as leaching solution show a better neutralisation capacity giving slightly lower metal leaching concentrations than when using deionised water. The contaminated sediment shows a low base-neutralisation capacity (BNCpH 12 = -0.44 eq/kg for deionised water and BNCpH 12 = -1.38 eq/kg for seawater) but a high acid-neutralisation capacity when using deionised water (ANCpH 4 = 3.58 eq/ kg) and seawater (ANCpH 4 = 3.97 eq/kg). Experimental results are modelled with the Visual MINTEQ geochemical software to predict metal release from sediment using both leaching liquids. Surface adsorption to iron- and aluminium- (hydr)oxides was applied for all studied elements. The consideration of the metal-organic matter binding through the NICA-Donnan model and Stockholm Humic Model for lead and copper, respectively, improves the former metal release prediction. Modelled curves can be useful for the environmental impact assessment of seawater acidification due to its match with the experimental values.This work was supported by the Spanish Ministry of Economy and Competitiveness, Project No. CTM 2011-28437-C02-01, ERDF included. M. C. Martı´n-Torre was funded by the Spanish Ministry of Economy and Competitiveness by means of FPI. Fellowship No. BES-2012-053816

    Development of a Multivalent Subunit Vaccine against Tularemia Using Tobacco Mosaic Virus (TMV) Based Delivery System

    Get PDF
    Francisella tularensisis a facultative intracellular pathogen, and is the causative agent of a fatal human disease known as tularemia. F. tularensis is classified as a Category A Biothreat agent by the CDC based on its use in bioweapon programs by several countries in the past and its potential to be used as an agent of bioterrorism. No licensed vaccine is currently available for prevention of tularemia. In this study, we used a novel approach for development of a multivalent subunit vaccine against tularemia by using an efficient tobacco mosaic virus (TMV) based delivery platform. The multivalent subunit vaccine was formulated to contain a combination of F. tularensis protective antigens: OmpA-like protein (OmpA), chaperone protein DnaK and lipoprotein Tul4 from the highly virulent F. tularensisSchuS4 strain. Two different vaccine formulations and immunization schedules were used. The immunized mice were challenged with lethal (10xLD100) doses of F. tularensisLVS on day 28 of the primary immunization and observed daily for morbidity and mortality. Results from this study demonstrate that TMV can be used as a carrier for effective delivery of multiple F. tularensisantigens. TMV-conjugate vaccine formulations are safe and multiple doses can be administered without causing any adverse reactions in immunized mice. Immunization with TMV-conjugated F. tularensisproteins induced a strong humoral immune response and protected mice against respiratory challenges with very high doses of F. tularensis LVS. This study provides a proof-of-concept that TMV can serve as a suitable platform for simultaneous delivery of multiple protective antigens of F. tularensis. Refinement of vaccine formulations coupled with TMV-targeting strategies developed in this study will provide a platform for development of an effective tularemia subunit vaccine as well as a vaccination approach that may broadly be applicable to many other bacterial pathogens
    corecore