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ABSTRACT 8 

 9 

To control reservoir pressure during CO2 injection for Carbon Capture and Storage, it may be 10 

necessary to produce native porewaters to the surface. These porewaters could contain potentially 11 

toxic metals mobilised from the reservoir rock by the injected CO2, which would then be discharged 12 

into the ocean if offshore, or treated if onshore. To evaluate the risk, both chip and grain samples 13 

from a UK North Sea sandstone that is a candidate for CO2 storage were exposed to CO2-saturated 14 

water in 30 day leaching experiments, and the metal load of the porewaters was analysed. Only Pb 15 

and Zn were convincingly mobilised (median 30 vs 2 g/L for Pb; 130 vs 25 g/L for Zn), and these 16 

elements these have been previously reported to be more easily mobilised in experiments than 17 

during in-situ CO2 injection. Hence, in this case, the risk of releasing toxic metals into the 18 

environment is assessed as small, and comparable to existing hydrocarbon operations. Results are 19 

significantly variable within a single sandstone reservoir, suggesting that experiments with multiple 20 

samples are required to make a realistic assessment of leaching potential. An assessment of other 21 

potential chemical data for assessing trace metal leaching suggested that only the comparatively 22 

lengthy leaching experiments generated useful data. 23 

 24 

1. Introduction 25 

 26 

Carbon capture and storage technology is being implimented at industrial scale in several locations 27 

worldwide. Finding sufficient secure storage is essential, and a limiting factor in the storage capacity 28 

of many sites will be the build-up of porewater pressure during injection (e.g. SCCS, 2011). One 29 

solution to control subsurface pressure, and hence to increase storage capacity, is to produce 30 

porewater from the reservoir to the surface (SCCS, 2011). This porewater could potentially contain 31 

some dissolved CO2, although the return of CO2 back to the surface will obviously be kept to an 32 

absolute minimum. Potentially toxic trace metals may have been mobilised from the reservoir rock 33 

into the porewater, which will require safe disposal. There are now multiple papers focused on CO2 – 34 

water - rock interactions with respect to underground CO2 storage, and the potential environmental 35 

impacts. The published literature encompasses modelling, laboratory, and field experiments, with 36 

environmental impacts of CO2 leakage on groundwater quality considered in more recent 37 

publications (e.g. Kirsch et al. 2014; Lu et al. 2014; Zheng and Spycher, 2018). Field studies have also 38 
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focussed on the environmental impacts of CO2 release into underground supplies of potable water 39 

as an aid to understanding in-situ reactions (e.g. Cahill et al. 2013; Trautz et al. 2013), as opposed to 40 

often far-from-equilibrium laboratory experiments. 41 

 42 

This paper deals with the Captain Sandstone Member of the Moray Firth of Scotland (Fig. 1) which 43 

has been extensively studied previously as a site for the engineered storage of CO2. A report 44 

commissioned by the UK government identified a portion of the sandstone, known as the Captain X 45 

site, as one of the 5 most promising CO2 storage sites on the UK Continental Shelf (UKCS; Pale Blue 46 

Dot Energy, 2016). The storage capacity of the site was estimated as 60 Mt CO2 (Pale Blue Dot 47 

Energy, 2016). Earlier work on the same sandstone member concluded that the capacity of the 48 

entire sandstone (as opposed to the geographically-restricted Captain X site) varied from 358 to 49 

1668 Mt CO2, depending on assumptions about the geometry, geomechanical properties of the 50 

reservoir and the nature of the boundaries of the sandstone (SCCS, 2011). A key finding was that, for 51 

maximum storage capacity, large volumes of porewater from the reservoir might have to be 52 

produced to the surface, and disposed of, most probably by discharging into the sea (‘over-53 

boarding’). To reduce the uncertainty in storage capacity, and hence the risk of investment in a CCS 54 

project in the Captain Sandstone Member, it would likely be necessary to plan for the production of 55 

porewaters to the surface, even though it may not be needed. The environmental risks of such a 56 

strategy must hence be evaluated, even though every effort would be made to avoid the production 57 

of CO2-laden waters back to the surface, as this would defeat the purpose of injection. 58 

 59 

Fig. 1 – Location map showing the extent of the Captain Sandstone Member (yellow), and the 60 

Captain hydrocarbon field (blue).   61 

 62 

In this study, experimental work under controlled laboratory conditions that are representative of 63 

reservoir temperatures has been carried out to determine how reservoir rocks from the Captain 64 

Sandstone Member react when CO2 is introduced. Our results are compared to a database of bi-65 

annually reported metal concentrations (As, Cd, Cr, Cu, Pb, Hg, Ni and Zn) in produced waters 66 

associated with hydrocarbon production from the Captain Sandstone Member. These monitoring 67 
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data were compiled since 2006 as required for some permits for hydrocarbon production in the 68 

Environmental and Emissions Monitoring System (EEMS, https://www.gov.uk/oiland-gas-eems-69 

database; obtained January 2015). This allows for the comparison of the experimental results to 70 

analyses of porewaters routinely discharged into the North Sea during oil industry operations 71 

utilising the same reservoir sandstone. It is assumed here that the EEMS analyses are representative 72 

of the in-situ porewaters in the subsurface, henceforth called the native porewaters. 73 

 74 

The Captain Sandstone Member is a Lower Cretaceous mass-flow sandstone-dominated unit of up to 75 

200 m thickness (Pinnock et al., 2003) covering c. 4000 km2 (from maps in SCCS, 2011). The 76 

sandstone forms the reservoir for several commercial hydrocarbon fields, including the Captain 77 

Field. The porewaters within the Captain Sandstone Member are below seawater salinity (12 – 78 

25,000 ppm TDS; Pinnock et al., 2003), and have been routinely discharged into the North Sea during 79 

hydrocarbon production. The Captain Sandstone Member in the Blake Field, the source of the 80 

experimental samples, is reported to be at 56°C and c. 330 bars pressure (Melvin et al., 2008), 81 

representing a significant overpressure. 82 

 83 

2 Materials & methods 84 

 85 

The study rock is hydrocarbon reservoir core from the Blake Field borehole 13/24a-4 (Table 1), 86 

drilled in December 1997 to January 1998. The sandstone samples were collected from the UK 87 

national collection stored by the British Geological Survey. Both samples were characterised using 88 

thin-sections impregnated with a blue-dyed resin examined with a petrographic microscope. 89 

Porosity and mineral abundance were determined by point-counting 200 points per thin-section in a 90 

grid pattern. Phases recognized during the thin section analysis but not recorded in the point 91 

counting have been recorded as present in quantities < 1%. Sample SA7 was oil stained and smelled 92 

of oil, while sample SA10 had no obvious oil contamination. Grain size was determined using a 93 

calibrated graticule on the microscope eyepiece. 94 

2.1 Leaching experiments and water analysis  95 

Rock samples were introduced to the reaction vessels as either chips of approximately 1 cm 96 

diameter, or as disaggregated grains. Sample preparation used a geological hammer and mortar and 97 

pestle; disaggregation required minimal force due to the low degree of consolidation of the material. 98 

Samples were added at the weights given in Table 1, to 250 mL of brine of 13,500 mg / L salinity 99 

made using Fisherbrand ‘SLR’ grade sodium chloride solid reagent and 11 m /cm high purity water 100 

from a Milli-Q water system. The NaCl has < 0.5 ppm of relevant specified impurities (Cu, Pb and Zn) 101 

which equates to less than 10 ppb in solution, significantly below the limit of analytical detection. It 102 

is assumed that the elements of interest that are not in the manufacturer’s specification are present 103 

in equally low concentrations. The reaction vessels were held at atmospheric pressure and a target 104 

temperature of 56 °C, with measured fluctuation between c. 55 and 58 °C and extremes of 50 – 68 105 

°C, for 30 days. Blank samples, i.e. with no rock, were run both with (CAP_F1) and without (CAP_B1) 106 

CO2. Although the partial pressure of oxygen within the vessels was presumably somewhat lower 107 

https://www.gov.uk/oiland-gas-eems-databasel
https://www.gov.uk/oiland-gas-eems-databasel


4 
 

than the surrounding atmosphere, the conditions were still oxidising. No attempt was made to 108 

reproduce reducing conditions as might be anticipated in the subsurface. 109 

Table 1. Batch experiment configurations. CO2 flow refers to the presence (Y) or absence (N) of 110 

bubbled CO2 in the experiment. 111 

Sample Name Sample depth 
(DD m) 

Sample type Sample Weight 
(g) 

CO2 Flow 

CAP_F1  blank 0 Y 

CAP_SA7_F2 1620 chip 3.36 Y 

CAP_SA7_F3 1620 grain 2.75 Y 

CAP_SA10_F4 1656 chip 3.36 Y 

CAP_SA10_F5 1656 grain 2.64 Y 

CAP_B1  blank 0 N 

CAP_SA7_B2 1620 chip 3.17 N 

CAP_SA7_B3 1620 grain 2.75 N 

CAP_SA10_B4 1656 chip 3.18 N 

CAP_SA10_B5 1656 grain 2.85 N 

 112 

The batch reaction vessels were Quickfit™ 250 mL round bottomed, three necked borosilicate flasks 113 

with Liebig condensers. Prior to set up, all glassware and sampling vessels were soaked in a 10% 114 

nitric acid bath for at least 12 hours, rinsed with distilled and deionised water (11 m / cm), and air 115 

dried. Glassware was then wrapped in aluminium foil and dried at 450° C for four hours to destroy 116 

any residual organic material, and left wrapped in the foil until the experiment was set up. Dry CO2 117 

gas was fed to each flask where appropriate from a BOC vapour withdrawal CO2 bottle with attached 118 

2 bar regulator, to glass injection tubes. CO2 flow was regulated using Hoffman tubing clamps to 119 

maintain a pressure of 1.4 bar to bubble CO2 into the batch fluids. Fluid samples were drawn from 120 

the batch flasks using a pipette and passed through a 0.22 µm filter into PTFE sample bottles, 121 

acidified to 2% v / v with analytical grade 69 % HNO3 and refrigerated prior to analysis. Results were 122 

obtained for 3 categories of experiment: blanks (no rock, with or without CO2); rock plus added CO2, 123 

henceforth referred to as +CO2 experiments; and controls i.e. rock with no added CO2. Solution 124 

composition during the experiments was modelled using PHREEQC v3.3.3 using mineralogy from X-125 

ray diffraction (see below) and the database Phreeqc.dat. The fluid was modelled as either saturated 126 

with air, or with CO2 as appropriate. 127 

Batch fluid samples were analysed by ICP-MS for major and trace elements using an Agilent 7500ce 128 

with octopole reaction system, employing an RF forward power of 1540 W, reflected power of 1 W, 129 

argon gas flows of 0.82 L/min and 0.2 L/min for carrier and makeup flows, respectively, and nickel 130 

skimmer and sample cones, with a Micro mist nebuliser and peristaltic pump providing a solution 131 

uptake rate of approximately 1.2 mL/min. The instrument was operated in spectrum multi-tune 132 

acquisition mode and three replicate runs per sample were employed. Calibration was with Merck VI 133 

multi-element ICP standard with the exception of Hg, which was calibrated with a BDH ’SpectrosoL’ 134 

ICP-MS standard, and Cs, P, Sb, Si, Sn, Th, Ti and Zr which were calibrated with SPEX Certiprep R or 135 

Fisherbrand ICP-MS standards. All standards were made up with the same NaCl concentration as the 136 

samples to be analysed.  137 
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Zero values in the experimental data refer to concentrations less than the analytical limit of 138 

detection (LOD; Table 2). As calculated mean concentrations are dependent on the LOD, median 139 

values are quoted which are independent of the LOD, except in the case that the median value is the 140 

LOD e.g. for Cd. The LOD was calculated using analyses of 10 blank aliquots of sample matrix and 2% 141 

HNO3 solutions. The instrumental LOD was calculated as 3 of the blanks’ ICP-MS counts per second 142 

divided by the slope of calibration line (Vandecasteele and Block, 1993). Concentrations of elements 143 

in the blank flasks (which had no rock samples) are assumed to be representative of any background 144 

concentrations of elements present in the fluid samples. As the majority of these were below 145 

detection limits no correction was made the experimental data for background levels of 146 

contamination. Detection limits are not published for the EEMS dataset.  147 

The mass of element mobilised during the leaching experiments was calculated using the measured 148 

concentrations multiplied by the volumes of fluid extracted from the flasks for each measurement. 149 

For concentrations below the limit of detection, a value equal to the limit of detection was assumed, 150 

to produce a ‘worst-case’ maximum value for the quantity of element mobilised.  151 

 152 

Table 2 – Detection limits (LoD) for by ICP-MS trace elements 153 

Element LoD g / L Predicted no-effect 

concentrations* g / L  
Seawater concentration g / L 

    

As 0.26 0.6 + Cb 0.75 – 4.0; Cutter et al. (2001) 

Cd 0.005 0.2 + Cb 0.00 – 0.11; Middag et al. (2018) 

Cr 0.08 0.6 + Cb 0.10 – 0.21; Jeandel and Minster (1987) 

Cu 2.9 2.6 0.00 – 0.32; Boiteau et al. (2016) 

Hg 0.02 0.05 + Cb 0.00 – 0.50; Bowman et al. (2015) 

Ni 0.04 8.6 + Cb 0.12 – 0.47; Schlitzer et al. (2018) 

Pb 0.13 1.3 0.00 – 0.01; Schlitzer et al. (2018) 

Zn 1.8 3.4 + Cb 0.00 – 0.52; Wyatt  et al. (2014) 

* Cb = background concentration; OSPAR Commission (2014) 154 

pH was measured by drawing 5 mL of fluid from the batch flasks using pipettor, transferring to a, 155 

rinsed, acid cleaned vial, cooling in air to approx. 26 - 27°C and analysing with a Hanna HI9125 pH 156 

meter with attached glass VWR ceramic junction pH electrode, calibrated with Hanna HI7007 (pH 157 

7.01) and HI7004 (pH 4.01) NIST traceable buffer solutions, accurate to ± 0.01 pH. Due to degassing 158 

of CO2 during cooling of the samples, the pH data are not regarded as being very reliable. 159 

 160 

Alkalinity was measured as bicarbonate (mg/L) using a Palintest Photometer 7100, accurate to ± 5 161 

mg/L and with a 2σ repeat measuring precision of 5.7 %. Measurements were taken by crushing a 162 

Palintest alkophot ‘M’ reagent tablet in 9 mL of sample, immediately after removal from the batch 163 

flask. The photometer was calibrated with a blank of 9 mL of NaCl solution of the same 164 

concentration as the synthetic batch fluids. For the majority of the pH values obtained for the 165 

experiment (4.8 - 8.5 for non-blank experiments), bicarbonate is the dominant carbonate species 166 

and therefore a reasonable proxy for total alkalinity. 167 
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2.2 Bulk rock geochemistry 168 

Bulk chemical analysis of the sandstone samples was carried out by complete dissolution of sample 169 

SA7 (insufficient sample SA10 remained) by microwave acid digestion using the following procedure. 170 

Four mL of concentrated HF, 3 mL concentrated HNO3 and 2 mL 30 % HCl were added. In a CEM 171 

Mars Xpress system, a set of 24 samples including procedural blanks and 2 soil standard reference 172 

materials (NIST SRM2710a and SRM2711a) were digested in closed vessels at 200 °C for at least 30 173 

minutes. The digested samples were evaporated to near dryness in the microwave system, using a 174 

MicroVap accessory. Samples were then taken up in the microwave in 10.5 ± 0.3 mL 2% HNO3, at 175 

180 °C. The resulting solution was analysed by ICP-MS as above. Uncertainties were calculated from 176 

three repeated analyses of the sample. Due to the microwave digestion method employed, Si 177 

volatises as hexafluorosilicic acid and therefore Si was not determined. 178 

2.3 Sequential extraction procedure 179 

A sequential extraction procedure (SEP) was performed on sample SA7 using a modified version of 180 

the method presented by Wigley et al. (2013) to include an additional step to target sulphide 181 

mineral phases, which replaced the hydrochloric acid step. Sample and reagent masses and volumes 182 

were taken from Tessier et al. (1979). 10 g each of sample were crushed with a mechanical jaw 183 

crusher and the resulting chips ground to a powder with a tungsten-carbide mill. Samples were 184 

homogenised and 1,000 ± 2 mg transferred to 50 mL centrifuge tubes. Reagents were added to the 185 

centrifuge tubes in the steps listed below.  186 

1. Water: 8 mL 18.2 M de-ionized (D.I.) water with continuous agitation for 2 hours. 187 

2. Exchangeable fraction: 8 mL 1M sodium acetate solution at pH 8.2, with continuous agitation for 3 188 

hours. 189 

3. Carbonates: 8 mL 1 M sodium acetate adjusted to pH 5 with acetic acid, with continuous agitation 190 

for 7 hours, repeated 3 times with fresh reagent. 191 

4. Oxides: 8 mL 0.1 M ammonium oxalate buffer adjusted to pH 3 with oxalic acid. Occasional 192 

agitation for 54 hours, repeated 3 times with fresh reagent. 193 

5. Sulphides: 3 mL 0.02M nitric acid + 5 mL of 30% hydrogen peroxide adjusted to pH 2 with 194 

concentrated HNO3, heated to 85 °C in a water bath for 2 hours with occasional agitation. 195 

Added 3 mL hydrogen peroxide, adjusted to pH 2 with nitric acid, and heated again for 3 hrs. After 196 

cooling to approximately room temperature, 5 mL of 3.2 M ammonium acetate in 20% (v/v) nitric 197 

acid was added and the whole mixture diluted to 20 mL with D.I. water before continuous agitation 198 

for 30 mins. 199 

6. Bulk digestion / silicates: Microwave digestion as above. 200 

All continuous agitation was carried out by means of a rotating ’end-over-end’ shaker connected to a 201 

voltage controller to adjust rotating speed. With the exception of Step 5, all SEP steps were carried 202 

out at a room temperature of c. 21 ° C. After each extraction period the samples and supernatants 203 

were centrifuged at 12,000 rpm for 20 minutes, and the supernatants removed from the centrifuge 204 

tubes by carefully pouring out into an acid cleaned vial. This centrifugal speed was higher than the 205 
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Wigley et al. (2013) method as their speed was not sufficiently high to ensure that any clays in 206 

suspension in the supernatant ’plate out’ during centrifugation. Although the clays plated out at the 207 

higher centrifugal speed used in this work, nonetheless when the supernatants were removed, some 208 

of the finest solid material was re-suspended and transferred into the sub-sampling vial. This was 209 

most pronounced after the first step using deionised water and became less apparent throughout 210 

the remainder of the steps. Each supernatant was filtered through a 0.22 m filter into the final 211 

sampling vessel. Each sample was acidified with 2% nitric acid and refrigerated for preservation until 212 

analysis. 213 

Bulk mineral analysis was carried out using a Bruker D8-Advance X-ray Diffractometer, employing a 214 

2-theta (2θ) configuration, with X-rays generated by a Cu-anode X-ray tube operating at 40 kV, and a 215 

tube current of 40 mA. Diffracted X-rays were detected using a Sol-X energy dispersive detector, 216 

scanning from 2° to 60° 2θ at a scan rate of 0.01°/second and the resultant diffractograms compared 217 

with the 2008 issue of the International Centre for Diffraction Data (ICDD) diffractogram database 218 

library using the EVA analysis package. The uncertainty in the analyses is calculated by the software. 219 

The detection limit for crystalline phases is approximately 1 wt %, with values of less this indicative 220 

of probable presence only. 221 

 222 

3. Results 223 

Table 3 summarises the petrography of the samples. The samples were only poorly consolidated, 224 

with very few occurrences of brittle deformation of framework grains. There was visible dissolution 225 

and alteration to kaolinite of some feldspars and minor chloritization of a lithic fragment. Thin green 226 

rims that could not be identified optically were observed on some grain surfaces in SA7. No cement 227 

was observed in SA10. A minority of grains are replaced by microcrystalline calcite. Both samples are 228 

sub-arkoses according to the classification of Folk (1974).  229 

Table 3 – Sample petrography 230 

 SA7 point count  SA7 XRD / 
wt % 

SA10 point 
count 

SA10 XRD/ wt 
% 

Max grain size 1.2 mm  1.8 mm  

Min grain size 0.05 mm  0.006 mm  

Grain size fine-medium sand  medium sand  

Sorting moderate  moderate  

Roundness angular to well 
rounded 

 sub-angular to 
well rounded 

 

Porosity  30 %  30  

Quartz   
  

84  81 ± 1 82 88 ± 1 

Feldspars 12 9 ± 1 16 5 ± 1 

Biotite <1  <1  

Muscovite / illite 1 3.3 ± 0.5 2 2.1 ± 0.5 

Calcite <1 1.6 ± 1.4 <1 0.4 ± 0.1 

Kaolinite <1 2.8 ± 0.6  0.9 ± 0.2 

Chlorite  0.3 ± 0.3  3 ± 0.5 

Glauconite 2  <1  
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Opaque   1  <1  

Oxides/Hydroxides <1  <1  

Zircon  <1    

Corundum <1   0.7 ± 0.1 

Anatase    1.0 ± 0.1 

Lithic fragments   <1  

Halite  2.2 ± 0.1   

 231 

Porewater composition from the batch experiments are in Tables 4A and B. Figure 2 shows trace 232 

metal concentration for the EEMS database and the batch reaction experiments for both the 233 

controls and the CO2 - experiments. Note that a substantial proportion of the experimental analyses 234 

are below the limit of detection (BDL; Fig. 2), and are shown as ‘0’ in Tables 4A and B. Analyses 235 

below detection limits are not plotted on Fig. 2 but the numbers of such data are shown. Note that 236 

approximately one half of the analyses are below detection limits (0 – 90 % for an individual 237 

element; overall mean 57 ± 8 %). For most of the trace elements, the blank concentrations are 238 

significantly lower than the experimental concentrations. However, for Hg, the blank concentrations 239 

are comparable in magnitude to the experimental concentrations. For this reason, the Hg data in Fig. 240 

2 are blank-corrected, i.e. the average blank analysis has been subtracted from the experimental 241 

analysis for the same day for which samples were collected.  242 

 243 

The range of trace element concentrations for the experiments are similar to those of the EEMS data 244 

for As (median BDL [0.26 g/L] with CO2; 2.4 g/L without CO2; EEMS 1.0 g/L), Cr (median 0.5 g/L 245 

with CO2; BDL [0.08 g/L] without CO2; EEMS 0.7 g/L), Hg (blank-corrected; median BDL [0.02 g/L] 246 

with CO2; BDL without CO2; EEMS 0.08 g/L) and Ni (median 7.5 g/L with CO2; 1.7 g/L without CO2; 247 

EEMS 3.0 g/L). Element concentrations in the leaching experiments are substantially higher than 248 

the EEMS data for Cu (median 100 g/L with CO2; 90 g/L without CO2; EEMS 0.8 g/L), Pb (median 249 

30 g/L with CO2; 2 g/L without CO2; EEMS 0.5 g/L) and Zn (median 130 g/L with CO2; 25 g/L 250 

without CO2; EEMS 9 g/L). The experimental data for Cd appears to be higher (Fig. 2; median value 251 

with CO2 is BDL [0.005 g/L]; without CO2 is BDL; EEMS 0.05 g/L) but 21 out of 32 analyses were 252 

below detection limit in the +CO2 experiments, so that overall the experimental data and the EEMS 253 

data are comparable, or the +CO2  experimental data may in fact be lower. A more quantitative 254 

analysis is not possible given that the values of the analyses below detection limit are not  known. 255 

For Cu, the median of experiments is 90 - 100 g/L, much higher than 0.8 g/L for the EEMS data. 256 

However for Cu both experiments with and without CO2 have similar median values (90 versus 100 257 

g / L respectively). Hence, the only elements for which the CO2 appears to have significantly 258 

increased the trace element concentrations are Pb and Zn.  259 

 260 
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 261 

Fig 2 – Comparison of trace elemental concentrations from lab experiments and porewater from the 262 

Captain Sandstone Member (EEMS database). The data that fall below the limit of detection (the 263 

orange dotted line) are not plotted; the numbers of analyses that fall below this are given as below 264 

detection limit (BDL). Green is experimental data with no added CO2, red is experimental data with 265 

added CO2, blue is the EEMS dataset.  266 
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A time sequence of calculated trace element mass per g rock is shown in Fig. 3.  Concentrations of 267 

arsenic are higher in the –CO2 flasks than in those with added CO2. In the majority of the 268 

experiments, the leached metal concentrations appear to have stabilised by the end of the 269 

experiments, i.e. to have reached an approximately constant value, or to be decreasing. The water-270 

extractable metal loads determined on sample SA7 (shown as horizontal lines on Fig. 3) are not 271 

generally close to the leached loads for the same sample, with the possible exceptions of As, Hg for 272 

the +CO2 experiments and Ni for the -CO2 experiments. 273 

 274 

Fig. 3 – Calculated quantities of trace elements released from rock leaching experiments, through 275 

time, see methods section for details. Crosses are controls (no added CO2), circles are with CO2. Each 276 

colour represents a single experimental run. The horizontal orange lines are the concentrations from 277 

the water stage of the selective extraction procedure for sample SA7. 278 

 279 
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pH of the solutions varied from  3.9 - 5.4 for the blank flasks with added CO2; 4.7 – 8.3 for blanks 280 

without added CO2;  4.8 - 8.4 for flasks with rock sample and added CO2; and 5.2 to 8.5 for flasks 281 

with no rock and added CO2 (Tables 4A and B). Alkalinity values for the two blank flasks show a 282 

relatively small effect from the addition of CO2, with values approximately constant through the 283 

duration of the experiment at 25 - 65 mg / L (blank +CO2) and 20 - 70 mg / L (blank, -CO2). Alkalinity 284 

values for sample SA7 without the addition of CO2 are only slightly higher than the blanks at a range 285 

of 45 - 95 mg / L, while SA10 values without the addition of CO2 increase from 80 mg/L to 165 mg/L. 286 

The addition of CO2, however, increases alkalinity concentrations for both samples SA7 and SA10, 287 

with SA7 values increasing from 105 mg / L to 290 mg / L, and SA10 increasing from 135 mg / L to 288 

500 mg / L (Tables 4A and B). The DIC of the solution during the experiments was modelled using 289 

PHREEQC as 0.024 mol / L assuming no reactants other than CO2 and water, and as 0.036 mol / L 290 

with calcite present. 291 

Bulk analysis of sample SA7 (Table 5) showed that of the 8 trace metals of interest, concentrations 292 

are generally < 10 ppm, with Cr and Zn being the (slight) exceptions. Cadmium concentrations are 293 

very low at 0.029 ppm. Results of the selective extraction procedure are in Table 6 and the water 294 

extraction stage is in Table 5 for the 8 trace metals. The mean proportion of the total elements 295 

leached in the experiments is very variable (Table 5), from a small fraction of the total in the bulk 296 

rock analysis (< 1 %; Cd, Cr) to greater than 50 % (Pb, Cu, Zn). As, Ni and Hg are intermediate. 297 

  298 
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 299 

Table 5: Bulk analysis of sample SA7 by ICP-OES unless indicated, and trace metals leached during 300 

experiments and the water stage of the selective extraction procedure (SEP). 301 

Element 

Whole rock 
concentration 

g/g  
2  
(n = 3) 

Element leached g/g rock 

range mean 
–CO2 

mean 
+CO2 

Water stage 
of the SEP 

Al 20,000 2,000     

As 4.3 0.7 0.02 – 1 0.32 0.07 0.1 ± 0.008 

Ba 640 60     

Ca 5600 800     

Cd (ICP-MS) 160 0.001 
0.0004 – 

0.1 
0.007 0.03 0.0008 ± 1e-

5 

Cr 24 3 
0.006 – 

0.3 
0.067 0.13 0.013 ± 0.001 

Cu 7.8 0.8 5 - 35 17 17 2.5 ± 0.1 

Fe 5400 700     

Hg (ICP-MS) 5.9 1.2 0.1 - 130 1.5 0.27 0.3 ± 0.003 

K 14100 800     

Li 14 2     

Mg 940 80     

Mn 54 7     

Na 6200 500     

Ni 5.9 0.7 0.003 – 23 2.9 1.7 0.25 ± 0.003 

Pb 6.6 0.9 
0.01 - 26 0.8 7.6 0.008 ± 

0.0009 

Ti 1500 200     

U 7.5 0.7     

Zn 16 2 0.2 - 26 3.9 13 0.11 ± 0.002 

 302 

Results of X-ray diffraction (XRD) analysis of the unreacted rock samples (SA7 and SA10) are given in 303 

Table 3, as weight %. Values of less than 1 % are indicative only of probable presence of a mineral in 304 

the sample. Fe-oxides were not detected, neither were they positively identified  in thin-section 305 

using a petrographic microscope. However, thin green rims that could not be identified optically 306 

were present on some grain surfaces in SA7, and these could include Fe-oxides. Geochemical 307 

evidence (see below) suggests that Fe-oxides are present, presumably in concentrations below 308 

detection limit for XRD.  309 

 310 

Table 6: Results of the selective extraction procedure, units μg/g. 311 

Element 
 

Extraction stage 

Water Exchangeable Carbonate Oxide Sulphide Silicate Bulk 

Al 0 0 0.350 0 0 0 0 

As 1.192 0 0 0.434 0 0 0 
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Ba 0 0.035 0 0.238 0.045 0 0 

Ca  0 35.167 6.183 0 0 130.675 130.675 

Cd  0.041 0.028 0 0 0 0.175 0.175 

Cr 0.462 0.074 0 0 0 2.900 2.900 

Cu 0.351 3.104 11.741 0 2.704 1.725 1.725 

Fe 14.985 0 16.477 0.071 1.180 0 0 

Hg 0 0 0.010 0.015 0.038   

K 0 45.850   0 0 0 

Li 0.416 0 0 0 0 4.925 4.925 

Mg 0.638 0.501 1.407 0 0.352 87.300 87.300 

Mn 0 0.056 0.062 0 0 0 0 

Na 83.075     568.475 568.475 

Ni 0 1.137 0.809 1.381 2.109 0 0 

Pb 0.174 0.103 0.039 0.012 0.040 0 0 

Ti 0.280 0 0 0.011 0 0 0 

U 0.028 0 0.000 0 0 0 0 

Zn 1.283 3.369 0.547 0.158 2.475 10.075 10.075 

        

n = 6 6 18 18 6 4 4 

 312 

4. Discussion 313 

The only metal with a strong decrease in concentration in the presence of CO2 was arsenic (Fig. 3; 314 

median BDL [0.26 g/L] with CO2; 2.4 g/L without CO2). A relationship between Fe and As is 315 

demonstrated by Fig. 4, where As concentrations are only above c. 1 g/L in solutions with low (< 316 

100 g/L) Fe. As arsenic (V) absorption onto Fe-oxides increases strongly with decreasing pH (e.g. 317 

Hsia et al., 1994), a simple pH control can be proposed. Any Fe-oxides could be an original 318 

component of the rock (perhaps the green rims on some grains in sample SA7); or formed by the 319 

oxidation of pyrite during the experiments; or during the storage of the core in the approximately 15 320 

years between drilling and sampling. The latter is feasible, as pyrite is prone to reaction to oxy-321 

hydroxides even in museum collections. The general decrease in As concentration during the 322 

experiments (e.g. c. 9 – 4 μg/L in experiment CAP_SA10_B5) could be interpreted as the progressive 323 

reaction from pyrite to Fe-oxides, increasing the surface area available for adsorption, or that 324 

adsorption is a slow reaction on the time scale of the experiments. Note that, although no sulphide 325 

minerals were detected by XRD analysis, the sulphide stage of the selective extraction procedure did 326 

generate metal concentrations above analytical detection limits that were dominated by iron, as 327 

might be expected if pyrite were present. The measured 260 g / g of Fe liberated by the sulphide 328 

stage of the selective extraction procedure (Table 6) equates to c. 0.05 % pyrite, comparable to the 329 

0.03 % of Allen et al. (2020, their Fig. 6) using QUEMSCAN analysis of a thin section of the Captain 330 

Sandstone, well below the detection limit for XRD. At least some of the remainder of the whole-rock 331 

Fe could be present as Fe-oxide coatings to detrital grains, however chlorite has a significant Fe 332 

content and is probably present in both rock samples (the 0.3% in SA7 is only an indicator of possible 333 

presence). Given the low abundance of chlorite (0.3 – 3 wt %), then separation for chemical analysis 334 

is considered to be impractical. 335 
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 336 

Fig. 4 – Arsenic concentrations are only above c. 1 g/L in solutions with low (< 100 g/L) Fe. 337 

4.1 Comparison of experimental and natural water chemistry 338 

A strong increase in the concentration of dissolved metals has been noted in previous studies of the 339 

effects of CO2 in sandstones, and has been attributed to the dissolution of carbonates (e.g. Kjöller et 340 

al. 2011; Rosenbauer et al. 2005; Shiraki and Dunn 2000; Varadharajan et al. 2013), or desorption 341 

mechanisms (e.g. Cahill et al. 2013; Mickler et al. 2013; Varadharajan et al. 2013; Weibel et al., 342 

2014). Slower releases of elements, e.g. Fe, K and Al are then attributed to silicate or oxide 343 

dissolution by these authors. For the experiments reported here, a strong case can only be made for 344 

Pb and Zn mobilisation by the added CO2, in that for these elements the median experimental 345 

concentrations substantially exceed the EEMS data (Pb median 30 g/L with CO2; EEMS 0.5 g/L; Zn 346 

median 130 g/L with CO2; EEMS 9 g/L), and the element concentrations in the CO2 experiments 347 

exceed those of the controls (Pb 2 g/L without CO2; Zn 25 g/L without CO2).  348 

 349 

There is a strong 1:1 correlation between (Ca + Mg) and total alkalinity for both control and CO2 350 

flasks, and Ba, Ca, Fe, Mg, Mn, and Sr exhibit, in virtually all cases, enhanced concentrations with the 351 

addition of CO2 (Table 4A). This suggests that these elements are derived by the dissolution of 352 

calcite, as the only carbonate phase detected by XRD analysis (Table 3), driven by pH changes of 353 

approximately -1 pH unit. Note that for two of the leaching experiments with added CO2, the 354 

calculated quantity of Ca released per g of rock exceeds that in the bulk analysis (Fig. 5), interpreted 355 

to be a product of the uneven distribution of calcite within the sandstone (Table 3). This may be 356 

partly a problem caused by limited sample size, constrained by the availability of core material from 357 

oilfield boreholes. While the quantity of sample required for analysis is small (approximately 1 g), 358 

using a sub-sample from a much larger sample (assuming effective homogenisation) might have 359 

reduced the discrepancy by incorporating more crystals of calcite in the experimental procedures. 360 
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 361 

Fig. 5 – Calculated mass of calcium released during the leaching experiments. Note the reaction 362 

appears to be ongoing for at least 2 of the flasks at the end of the experiments (red and purple 363 

circles: sample SA10 with CO2). The orange dotted line is the whole-rock total Ca for sample SA7. 364 

  
 365 

Fig 6A (left). Zn versus Ca in the leaching experiments show different ratios for samples SA7 (red 366 

crosses) and SA10 (black circles), for both +CO2  and –CO2  flasks (not differentiated). 367 

Fig. 6B (right) - Pb versus Ca shows 2 trends, neither lies close to the ratio of Pb : Ca from the 368 

carbonate stage of the selective extraction procedure (green line). 369 
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 370 

Of the elements mobilised by the CO2, Zn correlates weakly overall with Ca (Fig. 6A), however rock 371 

samples SA7 and SA10 form separate trends. Zn could hence be interpreted to be released by the 372 

dissolution of calcite with differing Zn contents in the 2 samples, higher for SA7. However, the 373 

carbonate phase of the selective extraction procedure did not liberate Zn in detectable quantities, 374 

and the quantity of Zn leached is a very high proportion of that present in the whole rock (c. 25 – 80 375 

%; Table 5). Hence, if the Zn were derived by the dissolution of calcite, then almost all of the calcite 376 

would have to be dissolved. The calculated dissolved mass of Ca however, ranges from c. 1 – 10 g / 377 

g rock, a small proportion of the c. 2900 ppm determined in the carbonate stage of the selective 378 

extraction procedure (Table 6). An alternative explanation of the correlation of Zn with Ca is that it 379 

reflects a common control, possibly pH change or time for slow desorption and dissolution reactions. 380 

Given that the mean mass of Zn leached per g of rock is close to the total in the bulk rock analysis, 381 

the preferred explanation is that the Zn is present in the sandstones absorbed onto mineral (Fe, Mn 382 

and Al oxides or hydroxides, clay minerals; Lions et al., 2014) or organic surfaces, and is hence 383 

released almost entirely during the leaching experiments. 384 

 385 

The same patterns and arguments apply to Pb (Fig. 6B) which for sample SA7 would require in excess 386 

10 % of the total calcite to be dissolved if it were to be obtained from this source, i.e. far in excess of 387 

the quantity dissolved as inferred from the measured Ca concentrations. As an alternative source, Pb 388 

is typically present in K-feldspars in the range of 10 – 1000 ppm (Smith and Brown, 1988), though for 389 

sample SA7 the Pb concentrations (relative to K) would require dissolution of a feldspar with > 1 % 390 

Pb, which is unfeasible, or for much of the liberated K to be precipitated as, for example, a K-rich 391 

clay mineral such as illite. For SA10, which has much lower concentrations of Pb compared to K  392 

(median 30 and 70000 g/L with CO2, respectively), there is no correlation between the two 393 

elements. This either indicates that the dissolution of K-feldspar is not the source of the Pb, or that 394 

the individual feldspar crystals have varying Pb contents and reactivities. Interestingly, modelling 395 

using Phreeqc indicates an equilibrium K concentration of c. 30,000 g / L in the presence of K-396 

feldspar and quartz under the experimental conditions, which is the upper boundary of observed K 397 

concentrations, possibly implying an approach to equilibrium with K-feldspar for sample SA10. It is 398 

hence difficult to quantify the contribution of K-feldspar dissolution to the Pb budget for sample 399 

SA10, though a contribution certainly cannot be excluded. The contribution of plagioclase 400 

dissolution is even more difficult to quantify, as all the major elements contributed by plagioclase 401 

are also sourced from carbonates (Ca), other alumino-silicates (Si, Al) or dissolved in porewater in 402 

concentrations that substantially exceed any likely contribution from plagioclase (Na). Hence, from 403 

the above discussion, Pb is also interpreted to be desorbed from mineral (clay minerals; Fe-oxides) 404 

and / or organic matter surfaces with the possible exception of the Pb in sample SA10 which could 405 

be sourced from K-feldspars. Given that both Pb and Zn are sourced by desorption, this would make 406 

for difficult prediction of likely mobilisation during CO2 injection, as the measurement of absorbed 407 

Pb and Zn on mineral surfaces will not be simple. Neither the selective extraction procedure nor the 408 

whole rock analysis appears to provide useful information in this context and are not viable 409 

alternatives to the leaching experiments. Indeed, the simplest method for the determination of trace 410 

metal will most likely be desorption under simulated reservoir conditions, as with the leaching 411 

experiments reported here. 412 
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Lions et al. (2014) noted that, for both Pb and Zn, dissolution experiments conducted in a laboratory  413 

setting (e.g. Little and Jackson, 2010; Lu et al., 2010) show significantly higher degrees of 414 

mobilisation than in-situ experiments (Kharaka et al., 2010; Trautz et al., 2013; Cahill and Jakobsen, 415 

2013). It has hence been suggested that, in natural systems, scavenging of mobilised metals along 416 

fluid flow paths reduces Pb and Zn concentrations, which are artificially intensified under laboratory 417 

conditions (Lions et al., 2014). It is therefore concluded that the relatively high Pb and Zn 418 

concentrations in the experiments reported here are unlikely to be found in a subsurface injection 419 

scenario. Hence, if porewater from the Captain Sandstone Member were to be produced to the 420 

surface and disposed of by over-boarding into the North Sea, then the trace element load of the 421 

waters will be comparable to existing practise during hydrocarbon operations, and experimental 422 

tests such as those presented here would represent overestimates of the potential for metal 423 

pollution. 424 

 425 

4.2 Limitations of the experimental method 426 

 427 

Because the rock samples utilised in the experiments reported here are from oilfield core, they have 428 

been potentially contaminated by the ‘mud’ used in drilling, an issue that has long been known to 429 

make difficult the extraction of uncontaminated porewaters from core samples e.g. Lovelock et al. 430 

(1975). Such mud contains barite (North, 1985) and for borehole 13/24a-4 had KCl contents of c. 60 431 

mg / L at the relevant depth of drilling (unpublished End of Well Report by Haliburton for BG 432 

Exploration and Production, 1998). There is a correlation between K and Ba for sample SA10 which is 433 

significant for 95 % confidence (Fig. 7; R2 = 0.35, n = 32) but not for SA7 (R2 = 0.01, n = 28). The range 434 

of concentrations for the 2 samples used is similar for Ba, but significantly different for K (Fig. 7). 435 

Modelling a solution in equilibrium with barite using Phreeqc gives a concentration of c. 2400 g / L 436 

under the conditions of the experiments. As many of the Ba concentrations exceed the modelled 437 

value, and there is no clustering around the value, it is concluded that barite is not buffering Ba, nor 438 

even an significant source of the element in the experiments. For K, simple mass balance shows that 439 

the experimental concentrations massively exceed those that could be produced even if the 440 

porefluids within the sandstone were fully replaced by drilling mud, and this were evaporated to 441 

dryness during sample storage, and then fully re-dissolved in the experimental brine (calculated at c. 442 

50 g / L). Phreeqc modelling indicates an equilibrium concentration of K of c. 30,000 g / L in the 443 

presence of K-feldspar and quartz, which is the upper boundary of observed concentrations, possibly 444 

implying an approach to equilibrium during the experiments for sample SA10. Sample SA7 has much 445 

lower concentrations, so that either K-feldpar is absent (and the K comes from another source), or 446 

any present is less reactive due to for example, a much lower surface area. Either way, there is no 447 

evidence to support significant contamination of the samples by drilling mud. 448 
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 449 

Fig. 7 – Possible indicators of rock sample contamination by drilling mud. There is no strong 450 

relationship between K and Ba. The range of concentrations for the 2 samples (SA7 in red, SA10 in 451 

black) is similar for Ba, but significantly different for K. 452 

The experiments here were conducted in open flasks, which though flushed with CO2 were in 453 

contact with the atmosphere through the condenser, as were the reagents prior to the start of the 454 

experiments. The redox conditions will hence differ from those likely to be found in the subsurface, 455 

although the oxygen partial pressure was most likely substantially below that of the atmosphere for 456 

much of the duration of the experiments. The duration of the experiments was very short compared 457 

to the hoped-for residence time of CO2 in engineered storage (10,000 years) or even the lifetime of a 458 

typical CO2 injection facility (30 – 50 years?). Longer experiments are logistically more difficult. 459 

However, calculated trace metal loads are either stable or falling by the end of the experiments (Fig. 460 

3), so there is no evidence that running the experiments for longer would materially alter the 461 

conclusions of the work. 462 

 463 

In the experiments reported here, the initial porewater were not in equilibrium with the mineral 464 

phases in the rock samples. Hence, some initial reaction between brine and host rock would be 465 

expected; this would not be due to the presence of the CO2. Here, control experiments were ran 466 

without added CO2, so that any reactions due to this disequilibrium will be common to both control 467 

and CO2 flasks. For this reason, the leaching of Cu is interpreted to be due to the establishment of 468 

initial equilibrium, as concentrations are similar for control and CO2 flasks (median 90 g/L without 469 

CO2; 100 g/L with CO2), despite both being higher than the EEMS data (median 0.8 g/L). Other 470 

authors have run parallel experiments with an inert gas (N2) as a control (e.g. Weibel et al., 2014) or 471 
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attempted to recreate the chemistry of the in-situ brine as closely as practicable (e.g. Fisher et al., 472 

2010). An alternative approach, to leave the experiments to reach equilibrium before adding the 473 

CO2, has not been attempted most likely due to the excessive time required, or the difficulty of 474 

establishing that equilibrium has been established. 475 

 476 

All of the experiments reported in the literature, including those reported here, are run under 477 

conditions in which bacteria or other micro-organisms can survive. There is no evidence of biological 478 

activity in the experiments, but neither is there proof that such activity did not take place. The role 479 

of micro-organisms in subsurface reactions has long been recognised, most commonly in mudrocks 480 

(e.g. Irwin et al., 1977) and more controversially in sandstones (e.g. Folk and Lynch, 1997). The 481 

possibility of interference of micro-organisms in the experiments cannot hence be eliminated. A 482 

biocide could possibly have been added to the experiments to prevent this. 483 

 484 

The results from the two rock samples used (SA7 and SA10) are significantly different for Cu (40 vs 485 

150 g/L respectively) and Pb (200 g/L vs BDL), as well as for the total Ca dissolved in the +CO2 486 

experiments (35000 vs 85000 g/L; Fig. 6). The results of the leaching experiments therefore agree 487 

with the XRD analysis: sample SA10 has more calcite (1.6 ± 0.4 % XRD) than sample SA7 (0.37 ± 0.06, 488 

XRD). Given that calcite is typically present in deeply buried sandstones as unevenly distributed 489 

single crystals, this is not surprising. As the differences are not due to sample contamination by 490 

drilling mud, they demonstrate natural sample heterogeneity, a feature of sandstones. 491 

Consequently, a leaching experiment based upon a single rock sample, even if replicated, cannot 492 

capture natural variation within a reservoir. To fully characterise the likely trace metal load of any 493 

produced waters would require a representative number of rock samples, presumably spread 494 

throughout the reservoir of interest, to capture the inevitable natural heterogeneity. 495 

The analytical limit of detection (LoD) for 7 of the 8 trace metals is less than the predicted no-effect 496 

concentrations (PNEC; Table 2). The exception is Cu, where the LoD (2.9 g / L) exceeds the PNEC 497 

value (2.6 g / L). As the two values differ by only c. 10%, this is not considered to influence the 498 

conclusions of this study. It is also noted that the concentrations of Cu in both the CO2 and no-CO2 499 

experiments (median 100 g/L with CO2; 90 g/L without CO2) substantially exceed the LoD and 500 

PNEC values (2.9 and 2.6 g / L respectively; Table 2), and that although the experimental Cu 501 

concentrations substantially exceed that of the Captain Sandstone data from the EEMS database 502 

(median 0.8 g/L), there is no evidence that the CO2 enhances the leaching.  503 

 504 

5. Conclusions 505 

Batch experiments using samples of the Captain Sandstone Member suggest that the mobility of 8 506 

potentially toxic trace metals is low in the presence of high concentrations of CO2. The 507 

concentrations of these metals leached from sandstones are often lower than analytical detection 508 

limits, which are (for 7 of the 8 trace metals considered) lower than concentrations recommended 509 

by the OSPAR commission for produced water discharges from offshore installations. Where analysis 510 
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was possible, the concentrations generally are similar to those of natural brine from the Captain 511 

Sandstone Member, suggesting minimal extra trace metal load compared to existing hydrocarbon 512 

operations.  513 

For As, Cd, Cr, Hg, and Pb, the experiments have effectively recreated trace metal load of the native 514 

porewaters of the Captain Sandstone aquifer despite the difference in pressure, redox and timescale 515 

of the experiments compared to in-situ subsurface conditions. The use of rock chips versus 516 

disaggregated grains made little difference to the results, the only elements that show any apparent 517 

difference are those for which the majority of analyses were below the limit of detection (As, Cd) so 518 

that a meaningful interpretation cannot be made. Arsenic concentrations notably decreased in the 519 

presence of CO2, probably due to increased absorption onto Fe-oxides under lowered pH conditions. 520 

Only Pb and Zn were convincingly mobilised during the CO2 – rich experiments mobilised (median 30 521 

vs 2 g/L for Pb; 130 vs 25 g/L for Zn), and are interpreted to have been desorbed from mineral or 522 

organic matter surfaces, although the contribution from the dissolution of feldspars is difficult to 523 

quantify. Both Pb and Zn have been previously reported to be more easily mobilised in experiments 524 

than during in-situ CO2 injection, due to re-absorption onto mineral surfaces. It is hence considered 525 

that the production of native porewater from the Captain Sandstone Member, for pressure control 526 

during the injection of CO2, is unlikely to produce a higher load of trace metals than existing oil and 527 

gas production from the same reservoir. 528 

The results from the two rock samples used are significantly different for Cu (median 40 vs 150 g/L) 529 

and Pb (median 200 g/L vs BDL), although they are from the same reservoir sandstone. 530 

Consequently, a representative number of samples would have to be used to determine potential 531 

reaction with a high degree of confidence. 532 

Neither the whole-rock analysis nor the selective extraction procedure (either of which could have 533 

provided quicker and cheaper alternatives to the leaching experiment) provided useful information 534 

about the leached trace metal loads. Consequently, the leaching experiments appear to be the only 535 

practical way to assess trace metal loading. 536 
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Table 4A. Porewater composition of the batch experiments with added CO2  No blank correction except for Hg (blank experiments excepted). 662 

 663 

Flask Type Bubbled Date Days Hours pH HCO3
- CO3

2- Al As Ba Ca Cd Cr Cu Fe Hg K Mg Mn Na Ni Pb Ti U V Zn 

     CO2         mg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L 

F1 Blank Y 31/05/2011 1 4 4.66 65 30 14.02 0 6.04 1750 0.0046 0 54.37 178.07 2.22 445.13 37.96 1.42 0 0 0 0 0 1.95 5.6 

F1 Blank Y 01/06/2011 2 16 4.30 50 25                    

F1 Blank Y 02/06/2011 3 45 4.45 25 10 175.81 0 9.63 1640 0.21 0.46 91.51 14.18 5.63 358.02 36.58 1.26 0 0 3.58 0  1.49 0 

F1 Blank Y 03/06/2011 4 69.5 4.77 50 25                    

F1 Blank Y 04/06/2011 5 91 4.73 30 15 5.02 0 8.34 390 0.43 0 157.77 118.3 3.96 323.34 20.31 2.55 0 15.48 0 0 0 1.52 61.24 

F1 Blank Y 05/06/2011 6 109.5 5.36 65 30                    

F1 Blank Y 06/06/2011 7 137 4.60 55 25                    

F1 Blank Y 08/06/2011 9 183.5 4.51 50 25 148.39 1.67 0 1830 0 0 66.01 0 2.34 87.86 0 0 876.49 54.88 0 0 0 0 0 

F1 Blank Y 09/06/2011 10 210.5 4.06                      

F1 Blank Y 10/06/2011 11 229.5 4.27 45 20 70.95 0 2.47 1140 0 0 103.98 0 2.26 291.72 0 0 756.13 3.09 13.22 0 0 0 0 

F1 Blank Y 12/06/2011 13 285 3.96                      

F1 Blank Y 13/06/2011 14 308 3.90 55 25 226.03 0 5.09 1630 0 0.18 102.67 34.56 2.22 146.59 23.46 0 1635.37 5.16 2.79 0 0 0 0 

F1 Blank Y 15/06/2011 16 349.5 3.91                      

F1 Blank Y 21/06/2011 22 491.5 5.01 55 30 5.02 0 0 0 0 0.87 147.9 35.97 1.84 1187.48 83.86 0 4650.49 0 4.06 0 0 0 0 

F1 Blank Y 29/06/2011 30 689.5 4.95 50 25 203.86 0 11.49 1600 0 0.66 83.6 48.76 1.85 1526.74 19.97 1.05 8504.05 0.19 6.26 6.56 0 0 0 

F2 SA7_Chip Y 31/05/2011 1 4 4.79 50 25 0 0 679.81 11030 0.2554 1.3002 12.77 0 0 57.12 151.05 24.83 0 9.9794 104.3051 0 0 0 19.1 

F2 SA7_Chip Y 01/06/2011 2 16 5.03 80 40                    

F2 SA7_Chip Y 02/06/2011 3 45 6.20 105 50 0 0 2389.41 23370 0.15 0 13.43 433.02 0 189.11 288.19 106.96 0 10.8294 185.3 0 0 0.43 101.73 

F2 SA7_Chip Y 03/06/2011 4 69.5 6.23 105 50                    

F2 SA7_Chip Y 04/06/2011 5 91 6.11 105 50 14.38 0 2861.94 28350 0 3.4202 7.71 0 0 424.73 387.28 132.72 0 1.23 188.4351 0 0 0.19 108.22 

F2 SA7_Chip Y 05/06/2011 6 109.5 6.46 120 60                    

F2 SA7_Chip Y 06/06/2011 7 137 6.46 120 60                    

F2 SA7_Chip Y 08/06/2011 9 183.5 6.12 120 60 0 0 3861.34 34160 0 1.0002 67.55 34.075 0 475.59 617.997 199.5843 0 0 201.6351 0 0 0 115.07 

F2 SA7_Chip Y 09/06/2011 10 210.5 6.10                      

F2 SA7_Chip Y 10/06/2011 11 229.5 6.40 135 65 0 0 4273.37 35150 0 0.5702 42.25 110.385 0 435.34 649.417 227.3943 0 8.85 206.28 0 0 0 132.09 

F2 SA7_Chip Y 12/06/2011 13 285 5.99                      

F2 SA7_Chip Y 13/06/2011 14 308 6.12 160 80 0 0 4741.99 43170 0 0.63 33.74 283.88 0 513.76 793.36 281.0443 0 10.09 223.85 0 0 0 184.66 

F2 SA7_Chip Y 15/06/2011 16 349.5 6.18                      

F2 SA7_Chip Y 21/06/2011 22 491.5 6.99 185 90 0 0 5993.14 68331 0 0 61.61 0 0 1223.8 1410.03 539.5143 0 22.1094 200.14 12.31 0 0 288.29 

F2 SA7_Chip Y 29/06/2011 30 689.5 7.43 235 115 0 0 5849.43 76530 0 0 86.29 263.97 0 870.26 1847.45 683.98 0 24.31 157.04 0 0 0 306.04 

F3 SA7_Grain Y 31/05/2011 1 4 5.19 105 50 0 4.285 2660.24 18410 0.2654 1.5902 26.11 0 0 170.13 179.3 59.41 0 3.4994 189.1651 0 0 0 124.04 

F3 SA7_Grain Y 01/06/2011 2 16 5.65 115 55                    

F3 SA7_Grain Y 02/06/2011 3 45 6.39 100 50 0 0 5941.05 33450 0 0 82.93 922.62 0 482.87 357.22 187.91 0 3.5694 299.56 0 0 2.36 262.99 

F3 SA7_Grain Y 03/06/2011 4 69.5 6.66 150 75                    

F3 SA7_Grain Y 04/06/2011 5 91 6.92 95 45 137.92 0 5785.26 32780 0 3.9502 0 0 0 515.51 493.16 136.25 0 0.43 39.5951 0 0 0.35 116.99 

F3 SA7_Grain Y 05/06/2011 6 109.5 7.34 115 55                    

F3 SA7_Grain Y 06/06/2011 7 137 8.20 115 55                    

F3 SA7_Grain Y 08/06/2011 9 183.5 6.09 125 60 0 0 5872.78 29480 0 1.5002 145.13 53.025 0 611.66 627.587 185.9843 0 0 225.0951 0 0 0 209.95 

F3 SA7_Grain Y 09/06/2011 10 210.5 5.90                      

F3 SA7_Grain Y 10/06/2011 11 229.5 6.75 120 60 0 0 5372.93 35890 0 0 34.72 0 0 487.76 639.007 197.9143 0 376.35 60.63 0 0 0 154.04 
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F3 SA7_Grain Y 12/06/2011 13 285 5.78                      

F3 SA7_Grain Y 13/06/2011 14 308 5.99 130 65 0 0 5592.67 40460 0 0.45 151.11 167.71 0 0 823.14 252.4843 0 5.22 248.95 4.18 0 0 342.14 

F3 SA7_Grain Y 15/06/2011 16 349.5 5.93                      

F3 SA7_Grain Y 21/06/2011 22 491.5 6.95 165 80 0 0 4487.62 62381 0 0 4.47 17.29 0 2231.56 1529.78 476.6843 1611.6 14.2194 129.85 2.2 0 0 211.79 

F3 SA7_Grain Y 29/06/2011 30 689.5 7.73 290 80 0 0 3821.67 117860 0 0.84 136.52 330.68 0 4097.54 3423.55 1039.15 9033.12 39.55 463.96 22.67 0 0 450.26 

F4 SA10_Chip Y 31/05/2011 1 4 5.73 110 55 0 0.445 1800.99 29870 1.5354 0 158.81 34.29 1.91 18137.23 547.11 93.48 920.68 5.2594 14.4051 0 0 0.78 76.39 

F4 SA10_Chip Y 01/06/2011 2 16 7.77 160 80                    

F4 SA10_Chip Y 02/06/2011 3 45 6.65 275 135 0 0 4064.25 69230 1.08 0.1 135.75 599.86 0 14009.7 761.47 236.6 0 5.7194 5.18 0 0 1.03 130.82 

F4 SA10_Chip Y 03/06/2011 4 69.5 7.93 275 135                    

F4 SA10_Chip Y 04/06/2011 5 91 7.42 270 130 25.66 0 4316.46 78990 0.65 5.4102 68.26 307.04 0 11769.78 848.93 222.46 0 34.64 2.2751 0 0 0.89 90.23 

F4 SA10_Chip Y 05/06/2011 6 109.5 7.90 310 155                    

F4 SA10_Chip Y 06/06/2011 7 137 7.88 300 150                    

F4 SA10_Chip Y 08/06/2011 9 183.5 6.68 320 160 16.85 0 5348.5 97440 0 0.0902 154.92 395.965 0 13261.9 1476.017 360.1943 0 0 4.0151 15.48 0 0.2644 117.68 

F4 SA10_Chip Y 09/06/2011 10 210.5 6.71                      

F4 SA10_Chip Y 10/06/2011 11 229.5 7.04 420 200 0 1.245 5499.41 125710 0 0.1902 109 421.465 0 13296.72 1723.267 441.5943 0 10.24 0 0 0 0 114.21 

F4 SA10_Chip Y 12/06/2011 13 285 6.71                      

F4 SA10_Chip Y 13/06/2011 14 308 6.80 500 240 0 0 5961.91 161690 0 2.14 40.09 629.26 0 31065.41 2579.58 616.6243 0 6.84 1.34 0 0 0 792.58 

F4 SA10_Chip Y 15/06/2011 16 349.5 6.87                      

F4 SA10_Chip Y 21/06/2011 22 491.5 8.00 650 320 0 0 6705.1 237331 0 1.08 44.55 727.6 0 20946.52 4061.42 883.2543 0 15.7394 0 21.59 0 0 202.61 

F4 SA10_Chip Y 29/06/2011 30 689.5 8.37 800 400 0 0 7583.43 277060 0 0 131.42 0 0 25095.26 5675.71 1058.53 0 19.36 0 9.89 0 0 302.98 

F5 SA10_Grain Y 31/05/2011 1 4 6.66 135 65 0 3.725 2295.08 32580 0.3254 0.7002 209.2 61.22 0 9114.31 349.23 97.97 0 2.9994 2.7951 0 0 1.11 65.35 

F5 SA10_Grain Y 01/06/2011 2 16 7.52 210 105                    

F5 SA10_Grain Y 02/06/2011 3 45 6.90 270 135 0 0 4668.09 71110 0.14 0.41 239.17 796.42 0 10211.22 674.56 205.19 0 5.1794 0 0 0 1.29 142.45 

F5 SA10_Grain Y 03/06/2011 4 69.5 8.11 260 130                    

F5 SA10_Grain Y 04/06/2011 5 91 8.01 285 140 15.24 0 4818.3 76480 0 4.1702 138.85 517.5 4.12 10360.14 770.6 148.72 0 0 0 0 0 1.49 84.4 

F5 SA10_Grain Y 05/06/2011 6 109.5 8.29 290 140                    

F5 SA10_Grain Y 06/06/2011 7 137 8.46 270 135                    

F5 SA10_Grain Y 08/06/2011 9 183.5 6.59 300 150 0 0 5403.58 79890 0 1.0302 254.27 281.725 0 10077.46 1277.327 286.7543 0 0 0 6.94 0 0 115.48 

F5 SA10_Grain Y 09/06/2011 10 210.5 6.54                      

F5 SA10_Grain Y 10/06/2011 11 229.5 7.20 335 165 0 0 5515.73 89840 0 1.4702 309.94 488.175 0 9716.52 1473.977 324.7043 0 8.15 0 36.83 0 0 108.56 

F5 SA10_Grain Y 12/06/2011 13 285 6.51                      

F5 SA10_Grain Y 13/06/2011 14 308 6.52 325 160 0 0 5172.43 82300 0 0 245.56 211.87 0 9072.17 1559.78 404.2643 0 5.11 0 0 0 0 101.63 

F5 SA10_Grain Y 15/06/2011 16 349.5 6.65                      

F5 SA10_Grain Y 21/06/2011 22 491.5 7.80 370 180 0 0 6754.06 118661 0 0 187.68 0 0 16181.08 3133.22 727.1943 167.28 42.1294 0 1.96 0 0 204.85 

F5 SA10_Grain Y 29/06/2011 30 689.5 8.25 500 240 0 0 9470.43 180290 0 0 467.61 0 0.53 27502.46 5583.91 1139.92 2792.76 20.03 0 11.28 0 0 351.32 

 664 

 665 

 666 

  667 
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Table 4B. Porewater composition from the batch experiments with no added CO2  No blank correction except for Hg (blank experiments excepted).. 668 

Flask Type Bubbled Date Days Hours pH HCO3
- CO3

2- Al As Ba Ca Cd Cr Cu Fe Hg K Mg Mn Na Ni Pb Ti U V Zn 

     CO2         mg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L 

B1 Blank N 31/05/2011 1 4 6.41 55 30 49.41 2.01 11.42 2990 0.71 4.23 55.18 68.63 46858.8 1007.96 224.81 11.55 119.01 0.0406 1.84 10.84 0 1.52 28.7 

B1 Blank N 01/06/2011 2 16 6.67 65 30                    

B1 Blank N 02/06/2011 3 45 6.57 70 35 0 0 1.79 0 0.16 0.51 76.01 0 13.99 641.17 10.33 1.6 119.01 0.0406 0 0 0 1.36 1.8 

B1 Blank N 03/06/2011 4 69.5 8.26 60 30                    

B1 Blank N 04/06/2011 5 91 8.26 55 25 0 0 15.18 5270 0 0 93.51 0 6.25 320.69 8.08 0.0657 119.01 0.0406 0 0 0 1.49 7.57 

B1 Blank N 05/06/2011 6 109.5 6.95 55 25                    

B1 Blank N 06/06/2011 7 137 7.04 20 10                    

B1 Blank N 08/06/2011 9 183.5 4.77 40 20 196.78 3.97 0 1410 0 0.19 56.9 0 3.89 0 0 0 0 8.52 0 0 0 0 0 

B1 Blank N 09/06/2011 10 210.5 4.66                      

B1 Blank N 10/06/2011 11 229.5 5.07 50 25 0 0 0 1170 0 2.05 46.98 0 2.72 0 0 0 0 2.12 0 4.55 0 0 0 

B1 Blank N 12/06/2011 13 285 5.35                      

B1 Blank N 13/06/2011 14 308 5.10 45 20 70.18 0 0 470 0 0 27.17 0 2.97 0 0 0 0 271.12 0 0 0 0 0 

B1 Blank N 15/06/2011 16 349.5 4.80                      

B1 Blank N 21/06/2011 22 491.5 4.76 55 25 0 0 0 250 0 0 117.4 4.38 4.89 702.17 1.143 0 2122.93 0 1.2 5.45 0 0 0 

B1 Blank N 29/06/2011 30 689.5 5.85 55 30 76.6 0 3.34 1180 0 2.38 78.64 14.67 3.19 892.91 83.23 1.7 2881.81 0 1.77 2.38 0 0 0 

B2 SA7_Chip N 31/05/2011 1 4 6.31 50 25 0 0 97.54 8660 0 0 43.9 60.71 0 0 0 7.07 0 0 16.16 0 0 0.14 2.53 

B2 SA7_Chip N 01/06/2011 2 16 6.91 35 15                    

B2 SA7_Chip N 02/06/2011 3 45 6.68 45 20 0 0 155.76 14771 0 0.62 0 8.205 0 0 198.36 14.12 0 0 10.5951 0 0 0.76 0 

B2 SA7_Chip N 03/06/2011 4 69.5 7.45 45 20                    

B2 SA7_Chip N 04/06/2011 5 91 7.37 75 40 0 0 149.94 9100 0.2654 1.6402 14.92 0 0 104.45 196.53 21.0643 0 0 26.4951 0 0 0.1 13.65 

B2 SA7_Chip N 05/06/2011 6 109.5 6.83 55 25                    

B2 SA7_Chip N 06/06/2011 7 137 6.88 75 35                    

B2 SA7_Chip N 08/06/2011 9 183.5 5.17 80 40 0 0 180.04 14980 0 0 15.79 0 0 374.4 463.367 28.2543 0 10.41 20.82 0 0 0 0 

B2 SA7_Chip N 09/06/2011 10 210.5 5.34                      

B2 SA7_Chip N 10/06/2011 11 229.5 6.41 60 30 160.49 0 184.02 20310 0 0 48.84 0 0 301.16 340.967 31.0043 0 2.6 29.8451 0 0 0 0 

B2 SA7_Chip N 12/06/2011 13 285 6.52                      

B2 SA7_Chip N 13/06/2011 14 308 6.51 70 35 0 0 176.9 20710 0 0 69.77 0 0 608.38 348.517 34.2043 0 0 #REF! 4.22 0 0 0 

B2 SA7_Chip N 15/06/2011 16 349.5 6.53                      

B2 SA7_Chip N 21/06/2011 22 491.5 6.54 75 35 12.42 0 191.14 30660 0 2.03 0 12.55 0 753.37 686.747 52.8943 361.08 20.8494 1.49 0 0 0 0 

B2 SA7_Chip N 29/06/2011 30 689.5 6.50 75 35 99.55 0 185.83 34050 0 0 47.13 36.35 0 1194.01 780.71 73.27 826.2 2.6194 1.63 0 0 1.8044 0 

B3 SA7_Grain N 31/05/2011 1 4 6.37 60 30 0 0 136.89 10420 0 0 3.43 0 0 0 0 0.28 0 0 6.5 0 0 0 0 

B3 SA7_Grain N 01/06/2011 2 16 7.30 65 30                    

B3 SA7_Grain N 02/06/2011 3 45 6.73 45 20 0 0.685 180.48 13051 0.09 0.2 11.47 0 4.99 821.31 170.31 19.94 0 0 3.0451 0 0 0.58 0 

B3 SA7_Grain N 03/06/2011 4 69.5 7.02 70 35                    

B3 SA7_Grain N 04/06/2011 5 91 7.07 65 30 0 2.395 158.16 8900 0.2554 0 21.71 0 0 262.95 170.56 26.7443 0 0 40.0251 0 0 0.27 0 

B3 SA7_Grain N 05/06/2011 6 109.5 6.84 65 30                    

B3 SA7_Grain N 06/06/2011 7 137 6.79 60 30                    

B3 SA7_Grain N 08/06/2011 9 183.5 5.23 65 30 0 1.77 201.58 15310 0 1 37.88 0 0 491.7 260.997 33.3943 0 0.54 31.71 10.25 0 0 0 

B3 SA7_Grain N 09/06/2011 10 210.5 5.91                      

B3 SA7_Grain N 10/06/2011 11 229.5 6.42 75 35 0 3.905 186.08 14240 0 0 43.05 0 0 563.71 260.587 31.4143 0 7.98 #REF! 0 0 0 0 

B3 SA7_Grain N 12/06/2011 13 285 6.46                      

B3 SA7_Grain N 13/06/2011 14 308 6.54 65 35 0 2.975 189.54 16930 0 1.2702 81.64 0 0 482.72 259.157 35.2243 0 0 11.8951 0 0 0 0 
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B3 SA7_Grain N 15/06/2011 16 349.5 6.60                      

B3 SA7_Grain N 21/06/2011 22 491.5 7.01 95 45 0  218.72 24010 0 1.21 0 0 0 1960.03 509.877 48.4443 1399.44 2.1694 2.35 5.65 0 1.8644 0 

B3 SA7_Grain N 29/06/2011 30 689.5 6.92 80 40 39.54  208.82 28600 0 1.27 9.39 6.28 0 2089.57 728.89 62.68 1717.68 3.3594 1.1 3.74 0 5.4344 145.67 

B4 SA10_Chip N 31/05/2011 1 4 6.84 80 40 0 1.56 585.08 5300 0 0 92.07 0 0 11570.68 62.63 4.19 0 0.6594 1.64 0 0 0.81 #REF! 

B4 SA10_Chip N 01/06/2011 2 16 7.93 75 40                    

B4 SA10_Chip N 02/06/2011 3 45 7.38 90 45 0 8.035 2364.61 22091 0 0 183.89 0 1.49 12345.47 352.47 67.21 0 0 0 26.01 0 4 106.36 

B4 SA10_Chip N 03/06/2011 4 69.5 7.59 85 45                    

B4 SA10_Chip N 04/06/2011 5 91 7.96 75 35 0 4.335 3059.1 17150 0 0 206.37 0 0 10823.83 568.12 45.7543 0 0 0 0 0 3.03 96.39 

B4 SA10_Chip N 05/06/2011 6 109.5 8.05 85 40                    

B4 SA10_Chip N 06/06/2011 7 137 7.97 120 60                    

B4 SA10_Chip N 08/06/2011 9 183.5 7.12 115 55 0 5.5 3902.14 23680 0 2.22 175.25 0 0 11771.06 809.347 13.4143 0 4.21 0 0 0 2.0444 46.83 

B4 SA10_Chip N 09/06/2011 10 210.5 7.05                      

B4 SA10_Chip N 10/06/2011 11 229.5 7.31 140 70 125.91  4104.1 27290 0 0 205.37 0 0.67 11597.66 910.537 14.8143 0 559.08 0 0 0 2.5344 47.85 

B4 SA10_Chip N 12/06/2011 13 285 7.49                      

B4 SA10_Chip N 13/06/2011 14 308 7.37 125 60 12.32 4.475 4338.7 31290 0 0.8302 276.59 0 0.49 12103.58 1021.717 12.6843 0 134.02 7.1751 0.9 0 3.8444 57.65 

B4 SA10_Chip N 15/06/2011 16 349.5 7.55                      

B4 SA10_Chip N 21/06/2011 22 491.5 7.61 145 70 40.53  5026.18 40550 0 0 267.34 1.69 0 17974.03 1767.537 13.3543 1383.12 3.4494 0 0 0 10.2544 119.21 

B4 SA10_Chip N 29/06/2011 30 689.5 7.37 150 75 15.55  4935.5 37820 0 1.16 250.62 38.37 1.34 17879.17 1767.25 17.21 1122 2.7894 1.4 3.29 0 15.6044 163.52 

B5 SA10_Grain N 31/05/2011 1 4 8.51 80 40 0 8.79 1951.47 12810 0 0 302.02 116.17 0 9724.48 33.39 3.69 0 0 0 0 0 3.71 47.19 

B5 SA10_Grain N 01/06/2011 2 16 8.35 80 40                    

B5 SA10_Grain N 02/06/2011 3 45 8.30 95 45 77.17 7.675 3576.37 22131 0 0.4 284.66 37.925 0 9473.15 432.96 8.56 0 1.8994 0 0 0 3.63 99.04 

B5 SA10_Grain N 03/06/2011 4 69.5 8.18 125 60                    

B5 SA10_Grain N 04/06/2011 5 91 8.26 115 55 0 8.915 3889.38 28720 0 0 307.96 0 0.04 9542.71 452.92 9.8443 0 1.2094 0 0 0 5.6 157.69 

B5 SA10_Grain N 05/06/2011 6 109.5 8.33 125 60                    

B5 SA10_Grain N 06/06/2011 7 137 8.36 135 65                    

B5 SA10_Grain N 08/06/2011 9 183.5 7.60 130 65 0 5.6 4552.9 28720 0 0.97 308.46 0 1.92 10381.82 817.717 9.2743 0 10.68 0 14.56 0 5.1344 72.15 

B5 SA10_Grain N 09/06/2011 10 210.5 7.35                      

B5 SA10_Grain N 10/06/2011 11 229.5 7.54 125 60 97.35 2.575 4230.58 25680 0 0 283.3 0 2.8 9773.9 770.387 7.6843 0 5.36 8.6851 0 0 3.7544 56.34 

B5 SA10_Grain N 12/06/2011 13 285 7.70                      

B5 SA10_Grain N 13/06/2011 14 308 7.60 145 70 79.29 3.665 4599.82 31290 0 0 355.74 0 3.66 10569.5 848.107 6.4243 0 480.42 #REF! 27.85 0 4.5344 65.79 

B5 SA10_Grain N 15/06/2011 16 349.5 7.60                      

B5 SA10_Grain N 21/06/2011 22 491.5 7.74 155 75 0  3524.74 26230 0 0 180.64 7.07 2.12 10109.83 1012.737 3.3643 0 0 4.32 0 0 6.8944 37.04 

B5 SA10_Grain N 29/06/2011 30 689.5 7.44 165 80 74.24   5129.3 40270 0 0 265.3 26.42 6.57 16218.61 1664.44 11.61 1815.6 1.4394 0 0 0 12.7144 149.02 
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