54,503 research outputs found

    Parametric frequency mixing in the magneto-elastically driven FMR-oscillator

    Get PDF
    We demonstrate the nonlinear frequency conversion of ferromagnetic resonance (FMR) frequency by optically excited elastic waves in a thin metallic film on dielectric substrates. Time-resolved probing of the magnetization directly witnesses magneto-elastically driven second harmonic generation, sum- and difference frequency mixing from two distinct frequencies, as well as parametric downconversion of each individual drive frequency. Starting from the Landau-Lifshitz-Gilbert equations, we derive an analytical equation of an elastically driven nonlinear parametric oscillator and show that frequency mixing is dominated by the parametric modulation of FMR frequency

    Atlas of protein sequence and structure

    Get PDF
    Atlas of protein sequence and structur

    Semileptonic Bc−→D∗0ℓνB_{c}^{-}\to D^{*0}\ell\nu transition in three--point QCD sum rules and HQET with gluon condensate corrections

    Full text link
    Taking into account the gluon condensate contributions, the form factors of the semileptonic Bc−→D∗0ℓνB_c^- \to D^{*0}\ell\nu transition with l=τ,el=\tau, e are calculated in the framework of the three point QCD sum rules. The heavy quark effective theory limit of the form factors are also computed. The relevant total decay width as well as the branching ratio are evaluated and compared with the predictions of the other non-perturbative approaches.Comment: 27 Pages, 4 Figures and 4 Table

    Hadronic Production of the Doubly Charmed Baryon Ξcc\Xi_{cc} with Intrinsic Charm

    Full text link
    The effects of the intrinsic charm on the hadronic production of Ξcc\Xi_{cc} are studied. By taking reasonable intrinsic charm component into account, the change of the theoretical prediction on the production of Ξcc\Xi_{cc} for LHC and Tevatron is small, but in contrast it may enhance significantly for SELEX. The reason is that the collision energy at LHC and Tevatron is so large that the gluon-gluon fusion sub-process, which is irrelevant to intrinsic charm, becomes dominant. But the situation for SELEX is quite different. Our numerical results for SELEX show that by considering all the contributions from various sub-processes, the predicted cross-section may be enhanced by a factor so big as 10210^2 due to a modulating intrinsic charm being taken into account. Therefore, the hadronic production of Ξcc\Xi_{cc} at SELEX may be sensitive enough in observing the intrinsic charm inside the incident hadrons.Comment: 18 pages, 8 figures. More discussions are adde

    Decays of the Meson BcB_c to a PP-Wave Charmonium State χc\chi_c or hch_c

    Full text link
    The semileptonic decays, Bc⟶χc(hc)+ℓ+νℓB_{c}{\longrightarrow}{\chi_c}(h_c)+{\ell}+{{\nu}}_{\ell}, and the two-body nonleptonic decays, Bc⟶χc(hc)+hB_{c}{\longrightarrow}{\chi_c}(h_c)+h, (here χc\chi_c and hch_c denote (ccˉ[3PJ])(c\bar c[^3P_J]) and (ccˉ[1P1])(c\bar c[^1P_1]) respectively, and hh indicates a meson) were computed. All of the form factors appearing in the relevant weak-current matrix elements with BcB_c as its initial state and a PP-wave charmonium state as its final state for the decays were precisely formulated in terms of two independent overlapping-integrations of the wave-functions of BcB_c and the PP-wave charmonium and with proper kinematics factors being `accompanied'. We found that the decays are quite sizable, so they may be accessible in Run-II at Tevatron and in the foreseen future at LHC, particularly, when BTeV and LHCB, the special detectors for B-physics, are borne in mind. In addition, we also pointed out that the decays Bc→hc+...B_c\to h_c+... may potentially be used as a fresh window to look for the hch_c charmonium state, and the cascade decays, Bc→χc[3P1,2]+l+νlB_c\to \chi_c[^3P_{1,2}]+l+\nu_l (Bc→χc[3P1,2]+hB_c\to \chi_c[^3P_{1,2}]+h) with one of the radiative decays χc[3P1,2]→J/ψ+γ\chi_c[^3P_{1,2}] \to J/\psi+\gamma being followed accordingly, may affect the observations of BcB_c meson through the decays Bc→J/ψ+l+νlB_{c}\to {J/\psi}+{l}+\nu_{l} (Bc→J/ψ+hB_c\to J/\psi+h) substantially.Comment: 24 pages, 3 figures, the replacement for improving the presentation and adding reference

    Explicit coercivity estimates for the linearized Boltzmann and Landau operators

    Full text link
    We prove explicit coercivity estimates for the linearized Boltzmann and Landau operators, for a general class of interactions including any inverse-power law interactions, and hard spheres. The functional spaces of these coercivity estimates depend on the collision kernel of these operators. They cover the spectral gap estimates for the linearized Boltzmann operator with Maxwell molecules, improve these estimates for hard potentials, and are the first explicit coercivity estimates for soft potentials (including in particular the case of Coulombian interactions). We also prove a regularity property for the linearized Boltzmann operator with non locally integrable collision kernels, and we deduce from it a new proof of the compactness of its resolvent for hard potentials without angular cutoff.Comment: 32 page

    Eigenfunctions of electrons in weakly disordered quantum dots: Crossover between orthogonal and unitary symmetries

    Full text link
    A one-parameter random matrix model is proposed for describing the statistics of the local amplitudes and phases of electron eigenfunctions in a mesoscopic quantum dot in an arbitrary magnetic field. Comparison of the statistics obtained with recent results derived from first principles within the framework of supersymmetry technique allows to identify a transition parameter with real microscopic characteristics of the problem. The random-matrix model is applied to the statistics of the height of the resonance conductance of a quantum dot in the regime of the crossover between orthogonal and unitary symmetry classes.Comment: 6 pages (latex), 3 figures available upon request, to appear in Physical Review

    Ultraviolet photonic crystal laser

    Get PDF
    We fabricated two dimensional photonic crystal structures in zinc oxide films with focused ion beam etching. Lasing is realized in the near ultraviolet frequency at room temperature under optical pumping. From the measurement of lasing frequency and spatial profile of the lasing modes, as well as the photonic band structure calculation, we conclude that lasing occurs in the strongly localized defect modes near the edges of photonic band gap. These defect modes originate from the structure disorder unintentionally introduced during the fabrication process.Comment: 4 pages, 4 figure
    • …
    corecore