ATLAS of
 PROTEIN SEQUENCE and STRUCTURE 1965

Margaret O. Dayhoff

 Richard V. Eck Marie A. Chang Minnie R. Sochard

National Biomedical Research Foundation 8600 16TH Street
Silver Spring, Maryland

ATLAS OF PROTEIN SEQUENCE AND STRUCTURE

 1965
Library of Congress Card Catalogue Number 65-29342

(C) Copyright 1965 by

The National Biomedical Research Foundation

Extra copies may be purchased from:
The National Biomedical Research Foundation 8600 16th Street, Silver Spring, Maryland

DEDICATION

To all the investigators who have developed the techniques necessary for the grand accomplishments represented by this tabulation, and to all those who have spent so much tedious effort in their application.

We would gratefully appreciate receiving suggestions, corrections, new data (even if fragmentary or provisional), and references to any data omitted from this volume.
M. O. D.
R. V.E.
M. A. C.
M. R.S.

PREFACE

This Atlas voluminously illustrates the triumph of experimental technique over the secretiveness of nature. Perhaps nowhere has the power of the scientific method been more brilliantly demonstrated than in the development of procedures for the study of the chemistry of life. As recently as twenty years ago, it was customary for biologists to have a hopeless attitude about biochemistry. Some details might be elicited, perhaps, but living things were thought to be so very complex and intricate that there surely was no hope of fully "understanding" them in all their chemical detail. Who, if he really comprehended the difficulty of the problem, would dare to think of man's ever knowing the detailed structure of a protein, for example, much less be able to synthesize it? Who would ever understand the mechanism of an enzyme as clearly as a chemist understands the details of an inorganic reaction? How could we ever hope to know the atomic details of a protein crystal?

Today some of these ambitions have already been attained, and the others no longer seem out of reach. We now rationally hope to be able to discover and understand the finest chemical details of living processes. These accomplishments and hopes have been made possible by the combined effect of several new approaches.

Techniques which permit the separation of chemically similar compounds have been developed for microgram samples. Among these are ion-exchange columns, paper chromatography, electrophoresis, and counter-current distribution. Radioactive tracer techniques and other micro-quantitative analytical procedures, often dependent on electronics and automation, have aided the analyses. X-ray crystallography, starting with the art of protein crystal production and ending with the processing of great numbers of experimental observations in the high-speed computer, has permitted a glimpse of three-dimensional structure.

Confidence in our understanding of experimental procedures and relationships among proteins has grown so great that sequences of amino acids are inferred from those found in homologous proteins. This technique requires only a small proportion of the analytical work needed to sequence a protein with no known relatives. The effectiveness of laboratory effort is thus magnified.

Some of the insights which have been developed cannot be attributed to any particular worker or school. Perhaps the greatest of these insights is that nature always uses "building blocks." A living cell is extremely complex and almost unimaginably intricate in detail. But it consists of a limited, understandable number of types of processes, reduplicated with variations. To understand the cell, we must have a few examples of each type of process, from which we can see the overall principles. For understanding, we need not work out the details of all the variations on these principles, although we may eventually choose to do so for medical or other practical reasons. Similarly, the analysis of such large, complex chemical molecules as proteins has been made possible by the recognition of their essential modularity, their buildingblock nature. Proteins are precise chemical structures built from regular subunits,
not statistical mixtures or hopelessly intricate molecular conglomerates as was once thought. It is by means of the discovery and utilization of such building block principles, combined with the large-scale application of new and improved techniques, that we now dare hope to make all of living nature accessible to our understanding.

Hidden in the amino acid sequence of a protein is the chemical information that produces its three-dimensional structure. In the case of an enzyme, this structure forms locks into which the proper keys-cell chemicals-fit. By these locks, the enzymes bring the proper reactants together quickly, efficiently, and selectively. Uncatalyzed reactions cannot complete with such specifically catalyzed reactions; therefore, the presence of enzymes determines which reactions can take place in living chemistry. In many cases, if not all, this three-dimensional structure is fully determined by the information in the one-dimensional sequence. The folding is the thermodynamically most stable result of all the possible intermolecular forces, such as hydrogen bonds and hydrophobic bonds, which can form between the various links of the chain. In principle, if we knew these forces in detail, and if we had appropriate computer routines, we should then be able to determine the three-dimensional structure of a protein, given only its amino acid sequence.

Also hidden in the sequences is information about the genes which directed their synthesis. For each amino acid there are a small number of possible corresponding nucleotide triplets in the gene. That is, each protein sequence corresponds to a limited number of possible nucleotide sequences. When nucleotide mutations occur, the substitution of alternative amino acids is not random. Analysis of amino acid sequence data, considered as a mathematical puzzle, can help elucidate both the mathematical details of the genetic code and the structural aspects of the genetic mechanism.

Hidden in each family of homologous sequences is the story of its evolution. Simple organisms, caught in their primitive ecological niches, still preserve even today enzymes performing primeval functions, held relatively fixed by natural selection. Even the older proteins of man are preserved as living "fossils" in his metabolism.

Enmeshed also in homologous sequences are the records of the many thousands of mutational steps by which we can quantify a phylogenetic tree. Each amino acid link is a trait by which we can trace species evolution. By comparison, the traditional taxonomic criteria are extremely vague and uncertain. In the case of distant relationships, they often break down completely. A truly quantitative and inclusive system of phylogenetic classification would be of great help to comparative physiologists and other students of evolution.

Conspicuous in comparative human protein sequences is information of great medical-diagnostic value. A long series of abnormalities has been found to be attributable to single amino acid replacements. One such tragically serious disease is sickle-cell anemia.

To facilitate the theoretical study of the protein sequences which have already been so ingeniously and laboriously determined, we have undertaken this compilation.

The information is kept in a compact, uniform format on punched cards. New information and corrections are easily inserted, while the text is kept accurate.

It is our intention to include the currently accepted amino acid sequence of every protein for which complete or substantial data is available. Uusally, only the definitive report giving the complete sequence from each laboratory will be referenced. If a substantial amount of work has been done on the same protein in other laboratories, their reports will also be referenced. We have also included some smaller peptides that have come to our attention. Unusual polypeptides which are presumably not produced by the genetic code have been omitted.

The format in which the Atlas is kept on punched cards is suitable for direct use in our computer programs. We use a three-letter code, which is a slight modification of the conventional notation, and also a mnemonic one-letter code which is clearer and much more suitable for certain comparative studies. We use a system of punctuation to describe the degree of confidence in each bond. Brief remarks are also included about the nature and function of the protein, and additional structural information such as the attachment of prosthetic groups, the location of S-S bonds, amino acids involved in active sites, and three-dimensional structures. In later editions we intend to include a section in which the alignment of all sequences of each family is given. Possibly we will also have sections on alleles and on mathematical methods and computer programs to treat the information.

This first edition is incomplete and imperfect and is intended mainly for distribution to investigators who have published protein sequence analyses, to acquaint them with the existence of this Atlas. We would gratefully appreciate their cooperation in making corrections, additions and suggestions for future editions. Since sequences are being reported in great numbers, we plan to bring out supplementary material in six months and a second edition in a year.

We thank all those who have assisted with this compilation, particularly Mr. Javier Albarran for his help with the computer aspects and Miss Lorrie Goldstein for her design of the cover.

The tabulations and computations were made at the University of Maryland Computer Science Center, College Park.

This work was supported by Grants GM-08710 and GM-12168 from the National Institutes of Health to the National Biomedical Research Foundation.

TABLE OF CONTENTS

PAGE

$$
\text { VI. TOBACCO MOSAIC VIRUS } 6.000
$$

VII. DIGESTIVE ENZYMES
7.000

CHYMOTRYPSINOGEN-A - BOVINE TR BOCH 7.001
 PAPAIN. PA PA 7.101 LYSOZYME - CHICKEN. LS CH 7. 201
VIII. HORMONES
8.000

GLUCAGON

PRESSINS

```
VASOPRESSIN ARGININE . . . . . . . . . . . . . PR BOAR 8.101
VASOPRESSIN LYSINE . . . . . . . . . . . . . PR PGLS 8.102
OXYTOCIN . . . . . . . . . . . . . . . . . PR BOOX 8.103
HYPERTENSIN . . . . . . . . . . . . . . . . . PR BOHY 8.104
```


CORTICOIDS

ALPHA MELANOCYTE-STIMULATING HORMONE
BOVINE, FiG. ANO HORSE. TN BPAM 8. 201 beta melanocyte-stimulating hormone

BOVINE TN BOBM 8. 202
PIG TN PGBM 8. 203 HORSE TN HOBM 8.204

BETA CORTICOTROPIN - PIG. TN PGAC 8. 206 ALPHA CORTICOTROPIN - SHEEP AND BOVINE. TN SBAC 8. 207

INSULINS

```
INSULIN A
    BOVINE ..................... IS BOA 8.301
    BONITO. ...................... IS BNA 8.302
    HORSE ......................... IS HOA 8.303
    SHEEP . . . . . . . . . . . . . . . . . . . . IS SHA 8.304
    SPERM WHALE, FIN-WHALE, PIG, AND HUMAN. . . IS WPA 8.305
    SEI-WHALE.................. IH WHA 8.306
INSULIN B
BOVINE, SHEEP, HORSE, HUMAN, PIG, AND
SPERM WHALE. . . . IS BOB 8.321
BONITO ...................... IS BNB 8.322
```

FIBRINOPEPTIDE A

```
BOVINE. . . . . . . . . . . . . . . . . . FB BOA 9.001
SHEEP . . . . . . . . . . . . . . . . FB SHA 9.002
GOAT. . . . . . . . . . . . . . . . FB GTA 9.003
REINDEER. . . . . . . . . ......... FB RDA 9.004
PIG . . . . . . . . . . . . . . . . . FB PGA 9.005
HUMAN . . . . . . . . . . . . . . . . FB HUA 9.006
```


FIBRINOPEPTIDE B

X• GLOBULINS 10.000
BENCE-JONES 10.001
the meaning of the punctuation is as follows.

[^0]BOTH SINGLE- AND THREE-LETTER NOTATIONS ARE USED, AS FDLLOWS.

```
A = ALA = ALANINE M = MET = METHIONINE
C = CYS = CYSTEINE N = ASN = ASPARAGINE
D = ASP = ASPARTIC ACID O = TYR = TYROSINE
E GLU = GLUTAMIC ACID P = PRO = PROLINE
F= PHE = PHENYLALANINE Q = GLN = GLUTAMINE
G = GLY = GLYCINE R = ARG = ARGININE
H= HIS = HISTIDINE S = SER = SERINE
I = ILU = ISOLEUCINE T = THR = THREONINE
K = LYS = LYSINE W = TRP = TRYPTOPHAN
L = LEU = LEUCINE V = VAL = VALINE
B = ASX = ASPARTIC ACID OR ASPARAGINE
Z = GLX = GLUTAMIC ACID OR GLUTAMINE
X = XXX = UNDETERMINED OR OTHERWISE UNUSUAL
```

MNEMONICS DF THE ONE-LETTER CODE

If possible, the initial letter of the amino acid is used.
If MORE THAN GNE AMINO ACID BEGINS WITH THE SAME LETTER, THE MOST COMMONLY-OCCURRING ONE IS ASSIGNED THE INITIAL.

$A=$ ALANINE	$I=$ ISOLEUCINE	$S=$ SERINE
$C=$ CYSTEINE	$L=$ LEUCINE	$T=$ THREONINE
$G=$ GLYCINE	$M=$ METHIONINE	$V=$ VALINE
$H=$ HISTIDINE	$P=$ PROLINE	

SOME OF THE OTHERS ARE PHONETICALLY SUGGESTIVE.
$F=$ PHENYLALANINE
R $=$ ARGININE
$0=$ TYROSINE
DOUBLE RING IN THE SIDE CHAIN.
$W=$ TRYPTOPHAN
THE THO ACIDS ARE ADJACENT, IN ALPHABETICAL ORDER.
$D=A S P A R T I C A C I D$
E = GLUTAMIC ACID
the two amines have letters from the middle of the alphabet.
$N=$ ASPARAGINE (CONTAINS N)
$0=$ GLUTAMINE ('Q-TAMINE')
NON-INITIAL LETTER AS CLOSE AS POSSIBLE TO ITS INITIAL.
$K=$ LYSINE

CYIOCHROME C - BAKER'S YEAST
HEME BONDED TO CYSTEINES AT POSITIONS 19 AND 22.
123456789012345678901234567890
1TEFKAGSAKKGATLFKTRCELCHTVEKGGP 31HKVGPNLHGIFGRHSGOAQGOSOTDANIKK G1NVLWDENNMSEOLTNPKKOIPGTKMAFGGL 91KKEKDRNDLITOLKKACE.
$\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$
1 thr glu phe lys ala gly ser ala lys lys gly ala thr leu phe LYS THR ARG CYS GLU LEU CYS HIS THR VAL GLU LYS GLY GLY PRO 31 HIS LYS VAL GLY PRO ASN LEU HIS GLY ILU PHE GLY ARG HIS SER GLY GLN ALA GLN GLY TYR SER TYR THR ASP ALA ASN ILU LYS LYS 61 ASN VAL LEU TRP ASP GLU ASN ASN MET SER GLU TYR LEU THR ASN PRO LYS LYS TYR ILU PRO GLY THR LYS MET ALA PHE GLY GLY LEU 91 LYS LYS GLU LYS ASP ARG ASN ASP LEU ILU THR TYR LEU LYS LYS ALA CYS GLU ***

COMPOSITION

7	ALA	A	2	GLN	0	8	LEU	L	4	SER	S
3	ARG	R	7	GLU	E	16	LYS	K	8	THR	T
7	ASN	N	12	GLY	G	2	MET	M	1	TRP	W
4	ASP	D	4	HIS	H	4	PHE	F	5	TYR	0
3	CYS	C	4	ILU	I	4	PRO	P	3	VAL	V

- NARITA,K.,YITANI,K.,YAOI,Y.,MURAKAMI,H., BIOCHIM. BIOPHYS. ACTA, VOL. 77, PP.688-690, 1963

CYTOCHROME C - CHICKEN
ACETYL AT AMINO END.
HEME BONDED TO CYSTEINES AT POSITIONS 14 AND 17.
123456789012345678901234567890
1GDIEKGKKIFVOKCSOCHTVEKGGKHKTGP
31 NLHGLFGRKTGOAEGFSOTDANKNKGITVG GIEDTLMEDLENPKKOIPGTKMIFAGIKKKSE 91 RVDLIAOLKKATNS*
$\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$
1 GLY ASP ILU GLU LYS GLY LYS LYS ILU PHE VAL GLN LYS GYS SER GLN CYS HIS THR VAL GLU LYS GLY GLY LYS HIS LYS THR GLY PRO 31 ASN LEU HIS GLY LEU PHE GLY ARG LYS THR GLY GLN ALA GLU GLY PHE SER TYR THR ASP ALA ASN LYS ASN LYS GLY ILU THR TRP GLY

61 GLU ASP THR LEU MET GLU TYR LEU GLU ASN PRO LYS LYS TYR ILU PRO GLY THR LYS MET ILU Phe ala gly ilu lys lys lys ser glu 91 arg val asp leu ilu ala tyr leu lys lys ala thr ásin ser met

COMPOSITION

5	AlA	A	3	GLN	Q	6	LEU	L	4	SER	S
2	ARG	R	7	GLU	E	18	LYS	K	8	THR	T
5	ASN	N	13	GLY	G	2	MET	M	1	TRP	H
4	ASP	D	3	HIS	H	4	PHE	F	4	TYR	0
2	CYS	C	7	ILU	1	3	PRO	P	3	VAL	V

CYTOCHROME C - HORSE
ACETYL AT AMINO END.
HEME BONDED TO CYSTEINES AT POSITIDNS 14 AND 17.
OXIDATION-REDUCTION POTENTIAL EQUALS . 250 V .
123456789012345678901234587890
1GDVEKGKKIFVQKCAQCHTVEKGGKHKTGP
31 NLHGLFGRKTGQAPGFTOTDANKNKGITWK
61 EETLMEOLENPKKDIPGTKMIFAGIKKKTE 91 REDLIAOLKKATNE*

$$
\begin{array}{lllllllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15
\end{array}
$$

1 GLY ASP VAL GLU LYS GLY LYS LYS ILU PHE VAL GLN LYS CYS ala GLN CYS HIS THR VAL GLU LYS GLY GLY LYS HIS LYS THR GLY PRO

31 ASN LEU HIS GLY LEU PHE GLY ARE LYS THR GIY GIN ALA POR GLY PHE THR TYR THR ASP ALA ASN LYS ASN LYS GLY ILU THR TRP LYS

61 GLU GLU THR LEU MET GLU TYR LEU GLU ASN PRO LYS LYS TYR ILU pro gly thr lys met ilu phe ala gly ilu lys lys lys thr glu 91 arg glu asp leu ilu ala tyr leu lys lys ala thr asn glu ***

COMPOSITION

6	ALA	A	3	GLN	0	6	LEU	L	0	SER	S
2	ARG	R	9	GLU	E	19	LYS	K	10	THR	1
5	ASN	N	12	GLY	G	2	MET	M	1	trp	M
3	ASP	D	3	HIS	H	4	PHE	F	4	TYR	0
2	CYS	C	6	ILU	I	4	PRO	P	3	VAL	v

* MARGOLIASH,E., SMITH,E.L., KREIL,G., AND TUPPY, H., NATURE, VOL.192, NO.4808, PP.1121-1127, DEC.23, 1961

ACETYL AT AMINO END.
HEME BONDED TO CYSTEINES AT POSITIONS 14 AND 17. LEU (L) REPLACES MET (M) AT POSITION 65 IN 10 PERCENT YIELD IN POOLED PROTEIN.

1234567890123456789012234567890 IGDVEKGKKIFIMKCSQCHTVEKGGKHKTGP 31 NLHGLFGRKTGQAPGOSOTAANKNKGIING 61 EDTLMEOLENPKKDIPGTKMIFYGIKKKEE 91 RADLIAOLKKATNE*
$\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$
1 GLY ASP VAL GLU LYS GLY LYS LYS ILU PHE ILU MET LYS CYS SER GLN CYS HIS THR VAL GLU LYS GLY GLY LYS HIS LYS THR GLY PRO 31 ASN LEU HIS GLY LEU PHE GLY ARG LYS THR GLY GLN ALA PRO GLY TYR SER TYR THR ALA ALA ASN LYS ASN LYS GLY ILU ILU TRP GLY 61 GLU ASP THR LEU MET GLU TYR LEU GLU ASN PRO LYS LYS TYR ILU PRO GLY THR LYS MET ILU PHE VAL GLY ILU LYS LYS LYS GLU GLU 91 ARG ALA ASP LEU ILU ALA TYR LEU LYS LYS ALA THR ASN GLU ***

COMPOSITION

6	ALA	A	2	GLN	Q	6	LEU	L	2	SER	S
2	ARG	R	8	GLU	E	18	LYS	K	7	THR	T
5	ASN	N	13	GLY	G	3	MET	M	1	TRP	W
3	ASP	D	3	HIS	H	3	PHE	F	5	TYR	0
2	CYS	C	8	ILU	I	4	PRO	P	3	VAL	V

- MATSUBARA, H., AND SMITH,E.L., J. BIOL. CHEM., VOL. 237, NO.11, PC 3575-PC 3576, NOV., 1962

CYTOCHROME - C PIG AND BOVINE
ACETYL AT AMINO END.
HEME BONDED TO CYSTEINES AT POSITIONS 14 AND 17.
123456789012345678901243567890
IGDVEKGKKIFVQKCAOCHTVEKGGKHKTGP 31 NLHGLFGRKTGQAPGFSOTDANKNKGITHG 61 EETLMEOLENPKKOIPGTKMIFAGIKKKGE 91 REDLIAOLKKATNE*
$\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$
1 GLY ASP VAL GLU LYS GLY LYS LYS ILU PHE VAL GLN LYS CYS ALA GLN CYS HIS THR VAL GLU LYS GLY GLY LYS HIS LYS THR GLY PRO

31 ASN LEU HIS GLY LEU PHE GLY ARG LYS THR GLY GLN ALA PRO GLY PHE SER TYR THR ASP ALA ASN LYS ASN LYS GLY ILU THR TRP GLY 61 GLU GLU THR LEU MET GLU TYR LEU GLU ASN PRO LYS LYS TYR ILU pro gly thr lys met ilu phe ala gly ilu lys lys lys gly glu 91 ARG GLU ASP LEU ILU ALA TYR LEU LYS LYS ALA THR ASN GLU ***

COMPOSITION

6	ALA	A	3	GLN	0	6	LEU	L	1	SER	S
2	ARG	R	9	GLU	E	18	LYS	K	8	THR	T
5	ASN	N	14	GLY	G	2	MET	M	1	TRP	W
3	ASP	D	3	HIS	H	4	PHE	F	4	TYR	0
2	CYS	C	6	ILU	I	4	PRO	P	3	VAL	V

TOTAL NO. OF ACIDS $=104$

- MARGOLIASH, E., NEEDLEMAN,S.B. AND STEHART,J.H., ACTA CHEM. SCAND., VOL. 17, SUPPL.1, PP. 250-256, 1963 (PIG)

TUPPY H., AND PALEUS, S., ACTA CHEM. SCAND., VOL. 13, NO. 4, PP. 641-646, 1959, (HEME ATTACHEMENT REGION ONLY - BOVINE)

YASUNOBU, K. T., NAKASHIMA, T., HIGA, H., MATSUBARA, H., AND BENSON, A. BIOCHIM. BIOPHYS. ACTA VOL. 78, PN1324 PP. 791-794, 1963 (BOVINE)

CYIOCHROME C - PSEUDOMONAS
HEME BONDED TO CYSTEINES AT POSITIONS 12 AND 15.
THE AMINO END IS NOT ACETYLATED.
123456789012345678901234567890
IEDPEVLFKNKGCVACHAIDTKMVGPAOKDV 31 A AKFAGQAGAEAELAQRIKNGSQGVWGPIP 61 MPPNAVSDDEAOTLAKWVLSOK
$\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$
1 GLU ASP PRO GLU VAL LEU PHE LYS ASN LYS GLY CYS VAL ALA CYS his ala ilu asp thr lys met val gly pro ala tyr lys asp val 31 ala ala lys phe ala gly gln ala gly ala glu ala glu leu ala GLN ARG ILU LYS ASN GLY SER GLN GLY VAL TRP GLY PRO ILU PRO 61 MET PRO PRO ASN ALA YAL SER ASP ASP GLU ALA GLín tif leu ala LYS TRP VAL LEU SER GLN LYS ***

COMPDSITION

13	ALA	A	5	GLN	Q	4	LEU	L	3	SER	5
1	ARG	R	5	GLU	E	8	LYS	K	2	THR	T
3	ASN	N	7	GLY	G	2	MET	M	2	TRP	W
5	ASP	D	1	HIS	H	2	PHE	F	1	TYR	0
2	CYS	C	3	ILU	I	6	PRO	P	7	VAL	V

- AMBLER, R. P., 8IOCHEM. J., VOL.89, P.349-378. 1963

CYTOCHROME C - TUNA FISH
ACETYL AT AMINO END.
HEME BONDED TO CYSTEINES AT POSITIONS 14 AND 17.
123456789012345678901234567890 1 GDVAK.GKK.TFVQK.CAQIC.HITVENGGK.HKIV.G.P. 31 NIL H.G L F.G R.K T(G.Q)A E G D.S O TID.A.N)K.S K.G I V W(N. 61 N.DIT L M E O.L E N P K K.OII.P.GIT KIM.IJF.A GIK K.K G E 91 R.Q DL(V.A)O.LKSTAS.
$\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$
1 GLY ASP VAL ALA LYS.GLY LYS LYS.THR PHE VAL GLN LYS.CYS ALA GLNICYS.HISJTHR VAL GLU ASN GLY GLY LYS.HIS LYSIVAL.GLY.PRO.

31 ASNJLEU TRP.GLY LEU PHE.GLY ARG.LYS THR(GLY.GLN)ALA GLU GLY TYR.SER TYR THR(ASP.ALA.ASN)LYS.SER LYS.GLY ILU VAL TRP(ASN. 61 ASN, ASPITHR LEU MET GLU TYR.LEU GLU ASN PRO LYS LYS.TYRIILU. PRO.GLYJTHR LYS.MET. ILUJPHE.ALA GLY ILU LYS LYS.LYS GLY GLU 91 ARG.GLN ASP LEU(VAL.ALA)TYR.LEU LYS SER THR ALA SER ***

COMPOSITION

7	ALA	A	4	GLN	0	6	LEU	L	4	SER	S
2	ARG	R	5	GLU	E	16	LYS	K	7	THR	1
6	ASN	N	13	GLY	G	2	MET	M	2	TRP	W
4	ASP	D	2	HIS	H	3	PHE	F	5	TYR	0
2	CYS	C	4	ILU	I	3	PRO	P	6	VAL	v

TOTAL ND. OF ACIDS $=103$
*KREIL,G., Z. PHYSIOL. CHEM., BO. 334, PP.154-166, 1963

```
CYTOCHROME C - BOMBYX MORI (SILKWORM)
```

HEME BONDED TO CYSTEINES AT POSITIONS 4 AND 7 OF FRAGMENT.
12345678901
/VQRCAQCHT(V,EI/

1	2	3	4	5	6	7	8	9	10	11

/// VAL GLN ARG CYS ALA GLN CYS HIS THR(VAL,GLU)///

COMPOSITION OF FRAGMENT

| 1 ALA A | 2 GLN Q | 0 LEU L | 0 SER | S | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 ARG R | 1 GLU E | 0 LYS | K | 1 THR | T |
| 0 ASN N | 0 GLY G | 0 MET M | 0 TRP | W | |
| 0 ASP D | 1 HIS H | 0 PHE F | 0 TYR | 0 | |
| 2 CYS C | 0 ILU I | 0 PRO P | 2 VAL | V | |

ACETYL AT AMINO END.
123456789012345678901224567890 1 GDVEKGKKIIFII.T.K.C.S.Q.C.H.T.V.E.K.G.G.K.HIK T G P 31 NLH.GLF.GRKTGOAVGO.SO.TAANKN.KGII H.G G1 D DTLMED.LENPKKD.IPGTKM.VF.TGL.SKKKE 91 RTNL.I A D.LKEKTAA
$\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$
1 GLY ASP VAL GLU LYS GLY LYS LYS ILU PHEIILU.THR.LYS.CYS.SER. GLN.CYS.HIS.THR.VAL.GLU.LYS.GLY.GLY.LYS.HISILYS THR GLY PRO 31 ASN LEU HIS.GLY LEU Phe.gly arg lys thr gly gln ala val gly TYR.SER TYR.THR ALA ALA ASN LYS ASN.LYS GLY ILU ILU TRP.GLY 61 ASP ASP THR LEU MET GLU TYR.LEU GLU ASN PRO LYS LYS TYR.ILU PRD GLY THR LYS MET.VAL PHE.thr gly LEU.SER LYS LYS LYS GLU 91 ARG THR ASN LEU.ILU ALA TYR.LEU LYS GLU LYS THR ÁLA ALA ***

COMPOSITIDN

6	ALA	A	2	GLN	Q	7	LEU	L	3	SER	S
2	ARG	R	6	GLU	E	18	LYS	K	10	THR	T
5	ASN	N	13	GLY	G	2	MET	M	1	TRP	W
3	ASP	D	3	HIS	H	3	PHE	F	5	TYR	0
2	CYS	C	6	ILU	I	3	PRO	P	4	VAL	v
						TOTAL NO. DF ACIDS $=104$					

[^1]CYTOCHROME - C RHODOSPIRILLUM RUBRUM

HEME BONDED TO CYSTEINES AT POSITIONS 1 AND 4 OF FRAGMENT.

$$
1234567890123
$$

/CLACHTFBZGANK/

$\begin{array}{lllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13\end{array}$
 /// CYS LEU ALA CYS HIS THR PHE ASX GLX GLY ALA ASN LYS ///

COMPOSITION OF FRAGMENT

2	ALA	A	0	GLN	0	1	LEU	L	0	SER	5
0	ARG	R	0	GLU	E	1	LYS	K	1	THR	T
1	ASN	N	1	GLY	G	0	MET	M	0	TRP	W
0	ASP	D	1	HIS	H	1	PHE	F	0	TYR	0
2	cys	C	0	ILU	I	0	PRO	P	0	VAL	V
1	ASX	B	1	GLX	2						
				TAL	NO.	DS	IN			13	

- TUPPY H., AND PALEUS, S.. ACTA CHEM. SCAND., VOL. 13. NO.4, PP. 641-646, 1959

CYTOCHRDME C - SALMON

HEME BONDED TO CYSTEINES AT POSITIONS 4 AND 7 OF FRAGMENT.

12345678901
/VOKCAOHCT(V,E)/

1	2	3	4	5	6	7	8	9	10	11

/// VAL GLN LYS CYS ALA GLN CYS HIS THR(VAL,GLU)///

COMPOSITION OF FRAGMENT

1	àla	$\dot{\text { A }}$	2	GLiv	Q	0	LEv	4	0	SER	S
0	ARG	R	1	gLu	E	1	LYS	K	1	THR	I
0	ASN	N	0	GLY	G	0	MET	M	0	TRP	W
0	ASP	D	1	HIS	H	0	PHE	F	0	TYR	0
2	CYS	C	0	ILU	I	0	PRO	P	2	VAL	v
			TOTAL NO. OF ACIDS IN								

* TUPPY H., AND PALEUS, S., ACTA CHEM. SCAND., VOL. 9, P.353-364, 1955

123456789012345678901234507890 1 VLSPADKTNVKAAHGKVGAHAGEOGAEALE 31 RMFLSFPTTKTOFPHFDLSHGSAOVKGHGK 61KVADALTNAVAHVDDMPNALSALSDLHAHK 91 LRVDPVNFKLLSHCLLVTLAAHLPAEFTPA 121 VHASLDKFLASVSTVLTSKOR*

$\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$

1 Val leu Ser pro ala asp lys thr asn val lys ala ala trp gly lys val gly ala his ala gly glu tyr gly ala glu ala leu glu 31 ARG MET PHE LEU SER PHE PRO THR THR LYS THR TYR PHE PRO HIS PHE ASP LEU SER HIS GLY SER ALA GLN VAL LYS GLY HIS GLY LYS 61 lys val ala asp ala leu thr asn ala val ala his val asp asp met pro asn ala leu ser ala leu Ser asp leu his ala his lys 91 LEU ARG VAL ASP PRO VAL ASN PHE LYS LEU LEU SER HIS CYS LEU leu val thr leu ala ala his leu pro ala glu phe thr pro ala 121 VAL HIS ALA SER LEU ASP LYS PHE LEU ALA SER VAL SER THR VAL LEU THR SER LYS TYR ARG ***

COMPOSITION

21	AlA	A	1	GLN	Q	18	LEU	L	11	SER	S
3	ARG	R	4	GLU	E	11	LYS	K	9	THR	T
4	ASN	N	7	GLY	G	2	MET	M	1	TRP	W
8	ASP	D	10	HIS	H	7	PHE	F	3	TYR	0
1	CYS	c	0	ILU	1	7	PRO	P	13	VAL	V
						TOTAL NO. OF ACIDS $=141$					

```
* HILL,R.J., AND KONIGSBERG, W., J. BIOL. CHEM., VOL. 237. NO.10.
    PP. 3151-3156, OCT., 1962
    BRAUNITZER, G., GEHRING-MULLER, R., HILSCHMANH, No, HILSE, K.,
    HOBOM, G., RUDLDFF, V., AND WITTMANN-LIEBOLD, B.:
    2. PHYSIOL. CHEM., VOL. BD 325, PP.283-286, 1961
```

THE SAME SEQUENCE, HITHOUT DISTINGUISHING AMINES, ALSO
REPORTED IN THE ARTICLE.

SCHROEDER,W.A., J.R.SHELTON, J.B.SHELTON, AND J.CORMICK BIOCHEMISTRY, VOL. 2, NO.6, PP.1353-1357, NOV.-DEC., 1963

FETAL ALPHA CHAIN IS VERY PROBABLY IDENTICAL HITH ADULT ALPHA CHAIN. TRYPTIC AND CHYMOTRYPTIC PEPTIDES, MOST OF WHICH WERE COMPLETELY SEQUENCED, WERE SHOWN TO FIT EXACTLY INTO THE ADULT ALPHA CHAIN SEQUENCE.
hemoglobin beta - human
1234567890123456789012234567890 IVHLTPEEKSAVTALWGKVDVDEVGGEALGR 31 LLVVOPMTERFFESFGDLSTPDAVMGDPKV 61KAHGKKVLGAFSDGLAHLDDLKGTFATLSE 91 LHCDKLHVDPEDFRLLGDVLVCVLAHHFGK 121 EFTPPVEAAOEKVVAGVADALAHKOH* $\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$

1 Val his leu thr pro glu glu lys ser ala val thr ala leu trp GLY LYS VAL ASP VAL ASP GLU YAL GLY GLY GLU ALA LEU GLY ARG 31 LeU LEU VAL VAL TYR PRO TRP THR GLU ARG PHE PHE GLU SER PHE GLY ASP LEU SER THR PRO ASP ALA VAL MET GLY ASP PRO LYS VAL 61 LYS ALA HIS GLY LYS LYS VAL LEU GLY ALA PHE SER ASP GLY LEU ALA HIS LEU ASP ASP LEU LYS GLY THR PHE ALA THR LEU SER GLU 91 LEU HIS CYS ASP LYS LEU HIS VAL ASP PRO GLU ASP PHE ARG LEU LEU GLY ASP VAL LEU VAL CYS VAL LEU ALA HIS HIS PHE GLY LYS izi glu phe thr pro prú yal glu ala ála tyr glu lýs val val ala GLY VAL ALA ASP ALA LEU ALA HIS LYS TYR HIS ***

COMPOSITION

15	ALA	A	0	GLN	0	18	LEU	L	5	SER	S
3	ARG	R	11	GLU	E	11	LYS	K	7	THR	T
0	ASN	N	13	GLY	G	1	MET	M	2	TRP	W
13	ASP	D	9	HIS	H	8	PHE	F	3	TYR	0
2	CYS	C	0	ILU	I	7	PRO	P	18	VAL	V

- BRAUNITZER, G., GEHRING-MULLER, R., HILSCHMANN, N., HILSE; K., HOBOM, G., RUDLOFF, V., AND HITTMANN-LIEBOLD, B., Z. PHYSIOL. CHEM., VOL. BD 325, PP. 283-286, 1961

HEMOGLOBIN GAMMA - HUMAN

IGHFTEEDKATITSLWGKVNVEDAGGETLGR 31 LLVVOPWTQRFFDSFGNLSSASAIMGNPKV 61KAHGKKVLTSLGDAIKHLDDLKGTFAQLSE 91 LHCDKLHVDPENFKLLGNVLVTVLAIHFGK 121 EFTPEVQASHQKMVTGVASALSSRDH*
$\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$
1 GLY HIS PHE THR GLU GLU ASP LYS ALA THR ILU THR SER LEU TRP gly lys val asn val glu asp ala gly gly glu thr leu gly arg 31 LeU LEU VAL VAL TYR PRO TRP THR GLN ARG PHE PHE ASP SER PHE gly asn leu Ser ser ala ser ala ilu met gly asn pro lys val 61 LyS ALA HIS GLY LYS LYS VAL LEU THR SER LEU GLY ASP ALA IlU Lys his leu asp asp leu lys gly thr phe ala gln leu ser glu 91 LEU HIS CYS ASP LYS LEU HIS VAL ASP PRO GLU ASN PHE LYS LEU leu gly asn val leu val thr val leu ala ilu his phe gly lys 121 GLU PHE THR PRO GLU VAL GLN ALA SER TRP GLN LYS MET VAL THR GLY VAL ALA SER ALA LEU SER SER ARG TYR HIS ***

COMPOSITION

11	ALA	A	4	GLN	0	17	LEU	L	11	SER	S
3	ARG	R	8	GLU	E	12	LYS	K	10	THR	T
5	ASN	N	13	GLY	G	2	MET	M	3	TRP	W
8	ASP	D	7	HIS	H	8	PHE	F	2	IYR	0
1	CYS	C	4	ILU	I	4	PRO	P	13	VAL	V

* SCHROEDER,W.A., SHELTON, J.R., SHELTON,J.B., CORMICK, J., AND JONES,R.T., BIOCHEMISTRY, VOL.2, NO.5, PP.992-1008, SEPT.-OCT., 1963

HEMOGLOBIN BETA - GORILLA
123456789012345678901234567890 1VHLTPEEKSAVTALWGKVDVDEVGGEALGR 31 LLVVOPWTERFFESFGDLSTPDAVMGDPKV 61KAHGKKVLGAFSDGLAHLDDLKGTFATLSE 91 LHCDKLHVDPEDFLLLGDVLVCVLAHHFGK 121 EFTPPVEAADEKVVAGVADALAHKOH*
$\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$
1 Val his leu thr pro glu glu lys ser ala val thr ala leu trp GLY LYS VAL asp Val asp glu val gly gly glu ala leu gly arg

31 LeU LEU VAL VAL tYR pro trp thr glu arg phe phe glu ser phe GLY ASP LEU SER THR PRD ASP ALA VAL MET GLY ASP PRO LYS VAL

61 LYS ALA HIS GLY LYS LYS VAL LEU GLY ALA PHE SER ASP GLY LEU ala his leu asp asp leu lys gly thr phe ala thr leu ser glu

91 LEU HIS CYS ASP LYS LEU HIS VAL ASP pRO GLU ASP PHE LEU LEU lev gly asp yal lev val cys val leu ala his his phe gly lys

121 GLU PHE THR PRO PRO VAL GLU ALA ALA TYR GLU LYS VAL VAL ALA gly val ala asp ala leu ala his lys tyr his ***

COMPOSITION

15	ALA	A	0	GLN	0	19	LEU	L	5	SER	S
2	ARG	R	11.	GLU	E	11	LYS	K	7	THR	T
0	ASN	N	13	GLY	G	1	MET	M	2	TRP	H
13	ASP	D	9	HIS	H	8	PHE	F	3	IYR	0
2	CYS	C	0	ILU	I	7	PRO	p	18	VAL	v
						TOTAL NO. OF ACIDS $=146$					

[^2]HEMOGLOBIN BETA - HORSE

1 VELSGEEKAAL(Y,A,L,H,DIKVDEEEVGIG•E.AILGR $31 L L V V O P H T E R F(F, E$.S.F.G.D.L.S.G.P.D.A.VIMIG.D.PIK V 61KAHGKKVLHSFGEGVHHIL.D.D.LIKGTG AIA.L.S.E. 91 L.H.C.D.K.L.H.V.D.P.E.D.FIRLLGDVLALVYARHFGK 121 DFTPELEASOEKVVAGYADALAHKAHA

$$
\begin{array}{lllllllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15
\end{array}
$$

1 val glu leu ser gly glu glu lys ala ala leuivaloalagleu,trp, ASPILYS VAL ASP GLU GLU GLU VAL GLY(GLY.GLU.ALA)LEU GLY ARG

31 LEU LEU VAL VAL TYR PRO TRP THR GLU ARG PHEIPHE.GLU.SER.PHE. GLY.ASP.LEU.SER.GLY.PRO.ASP.ALA.VALIMETIGLY.ASP.PROILYS VAL

61 LYS ALA HIS GLY LYS LYS VAL LEU HIS SER PHE GLY GLU GLY VAL HIS HISILEU.ASP.ASP.LEUILYS GLY THR PHE ALAIALA.LEU.SER.GLU.

91 LEU.HIS.CYS.ASP.LYS.LEU.HIS.VAL.ASP.PRO.GLU.ASP.PHESARG LEU LEU GLY ASP VAL LEU ALA LEU VAL VAL ALA ARG HIS PHE GLY LYS

121 aSp phe thr pro glu leu glu ala ser tyr glu lys val val ala GLY VAL ALA ASP ALA LEU ALA HIS LYS TYR HIS **

COMPOSITION

- SMITH, D. B. CAN. J. BIOCHEM. VOL. 42 , NO.5. PP. 755-762. 1964

HEMOGLOBIN ALPHA - HORSE

IVLSAADKTNVKAAWSKVGGHAGEOGAEALE 31 RMFLGFPTTKTOFPHFDLSHGSAQVKAHGK 61KVADGLTLAVGHLDDLPGALSNLSDLHAHK 91 LRVDPVNFKLLSHCLLSTLAVHLPNOFTPA 121 VHASLDKFLSSVSTVLTSKOR*

$$
\begin{array}{lllllllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15
\end{array}
$$

1 Val leu ser ala ala asp lys thr asn val lys ala ala trp ser lys val gly gly his ala gly glu tyr gly ala glu ala lev glu 31 ARG MET PHE LEU GLY PHE PRO THR THR LYS THR TYR PHE PRO HIS phe asp leu ser his gly ser ala gln val lys ala his gly lys 61 LyS val ala asp gly leu thr leu ala val gly his leu asp asp leu pro gly ala leu ser asn leu ser asp leu his ala his lys 91 LEU ARG VAL ASP PRO VAL ASN PHE LYS LEU LEU SER HIS CYS LEU LEU SER THR LEU ALA VAL HIS LEU PRO ASN ASP PHE THP PRO ALA 121 VAL HIS ALA SER LEU ASP LYS PHE LEU SER SER VAL SER THR VAL LEU THR SER LYS TYR ARG***

COMPOSITION

| 16 ALA A | 1 GLN Q | 21 LEU L | 13 SER | S |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 3 ARG R | 3 GLU E | 11 LYS K | 9 THR | T |
| 4 ASN N | 10 GLY G | 1 MET M | 1 TRP | W |
| 9 ASP D | 10 HIS H | 7 PHE F | 3 TYR | 0 |
| 1 CYS C | 0 ILU 1 | 6 PRO P | 12 VAL V | |

TOTAL NO. OF ACIDS $=141$

- BRAUNITZER, G. ANL MAISUDA, G., J. BIOCHEM. (TOKYO), VOL.53, ND.3, PP. 262-263, 1963 THIS SEQUENCE WAS DETERMINED PARTIALLY BY HOMOLOGY WITH HUMAN ALPHA.
hemoglobin beta - Lemur fulvus
12345678901234567899012344567890
1TLLSAEEDAHVTSLWGKVNVEKVGGEALGR
$31 L L V V\{O, P, H, T, E, R, F, F, E, S, F, G, D=L, S, S, P, S, A, V, M, G, D, P, K, V$. $61 K, A, H, G, K, K, V, L, S, A, F, S, E, G=L, H, H, L, D, D, L, K, G, T, F, A, A, L, S, E$, $91 L, H, C, V, A, L, H, V, D, P, E, D, F, K, L, L, G, D, S, L, S, D, V, L, A, D, H, F, G, K)$

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

1 THR LEU LEU SER ALA GLU GLU aSp ala his val thr ser leu trp GLy lys val asn val glu lys val gly gly glu ala leu gly arg

31 LEU LEU VAL VALITYR,PRO,TRP,THR,GLU,ARG,PHE,PHE,GLU,SER,PHE, $G L Y, A S P=L E U, S E R, S E R, P R O, S E R, A L A, V A L, M E T, G L Y, A S P, P R O, L Y S, V A L$,

61 LYS,ALA,HIS,GLY,LYS,LYS,VAL, LEU,SER,ALA,PHE,SER,GLU,GLY=LEU, HIS,HIS,LEU, ASP,ASP,LEU,LYS,GLY,THR,PHE,ALA,ALA,LEU,SER,GLU,

91 LEU,HIS,CYS,VAL,ALA,LEU,HIS,VAL,ASP,PRO,GLU,ASP,PHE,LYS,LEU, LEU,GLY,ASP,SER,LEU,SER,ASP,VAL,LEU,ALA,ASP,HIS,PHE,GLY,LYS)

121 KXX XXX VAL VAL AiLA GLY VAL(ALA,ASP,ALA,LEU,ALA,HIS,LYS,TYR,HIS)*** COMPOSITION

14	ALA	A	0	GLN	0	19	LEU	L	11	SER	5
2	ARG	R	9	GLU	E	10	LYS	K	4	THR	T
1	ASN	N	12	GLY	G	1	Met	M	2	TRP	ω
11	ASP	D	9	HIS	H	7	PHE	F	2	TYR	0
1	CYS	C	0	ILU	I	4	PRO	P	15	VAL	v
12	XxX	X									

TOTAL NO. OF ACIDS $=146$
BUETTNER-JANUSCH, J. AND HILL, R. L., SCIENCE, VOL. 147, PP. 836-842, FEB. 19, 1965

Normal adult human hemoglobin (hemoglobin A) contains two pairs of polypeptide chains, termed alpha and beta. Each pair is identical. Some modified beta chains have been given other Greek letters, for example, normal fetal hemoglobin is composed of two alpha chains and two "gamma" chains. Usually, however, altered hemoglobins are different in only a single amino acid. A number of hemoglobins bearing these altered amino acid sequences in their polypeptide chains have been described. For example, one of the early reports by Ingram (1957) shows the chemical difference between normal human hemoglobin and sickle cell hemoglobin. By comparison of amino acid sequences of tryptic peptide digests of the two hemoglobins, it was established that hemoglobin A (normal) contains a GLU residue in the locus where hemoglobin S (sickle cell) contains VAL. This replacement of two charged GLU residues for two uncharged VAL residues in the hemoglobin tetramer is sufficient to account for the "sickling" phenomenon in the abnormal hemoglobin. Listed below are a number of known amino acid replacements in abnormal human hemoglobins.

HEMOGLOBIN		CHANGES		REFERENCE
NAME	CHAIN	POS. FRO	ROM TO	
A NORMAL				
F NORMAL FETAL	BETA	(CALLED	GAMMA)	1
I	ALPHA	16	LYS-ASP	2
NORFOLK	ALPHA	57	GLY-ASP	3
M BOSTON	ALPHA	58	HIS-TYR	4
M SASKATOON	BETA	63	HIS-TYR	4
M MILWAUKEE	BETA	67	VAL-GLU	4
D PUNJAB	BETA	121	GLU-GLN	5
G SAN JOSE	BETA	7	GLU-GLY	6
ZURICH	BETA	63	HIS-ARG	7
C	BETA	6	GLU-LYS	8
0 ARABIA	BETA	121	GLU-LYS	9
- 0 INDONESIA	ALPHA	116	GLU-LYS	9
X	ALPHA and BETA	68 6	ASN-LYS GLU-LYS	10
S	BETA	6	GLU-VAL	11
D IBADAN	BETA	87	THR-LYS	12
F TEXAS	GAMMA	5 or 6	GLU-LYS	13
KENWOOD	BETA	143	HIS-ASP	14
G	BETA	7	GLU-GLY	15

1. Rhinesmith, H. W., Schroeder, W. A., and Pauling, L., J. Am. Chem. Soc., Vol. 79, p. 4682, 1957
Rhinesmith, H. W., Schroeder, W. A., and Martin, N., J. Am. Chem. Soc., Vol. 80, p. 3358, 1958
2. Murayama, M., Fed. Proc., Vol. 19, p. 78, 1960
3. Baglioni, C., J. Biol. Chem., Vol. 237, pp. 69-74, 1962
4. Gerald, P. S. and Efron, M. L., Proc. Natl. Acad. Sci. U.S., Vol. 47, pp. 1758-1767, 1958
5. Baglioni, C., Biochim. Biophys. Acta, Vol. 59, pp. 437-440, 1962
6. Hill, R. L. and Schwartz, H. C., Nature, Vol. 184, pp. 641-642, 1959
7. Muller, C. J. and Kingma, S., Biochim. Biophys. Acta, Vol. 50, p. 595, 1961
8. Hunt, J. A. and Ingram, V. M., Nature, Vol. 184, p. 640, 1959 Ingram, V. M., Nature, Vol. 180, pp. 326-328, 1957
9. Baglioni, C. and Lehmann, H., Nature, Vol. 196, pp. 229-232, 1962
10. Baglioni, C. and Ingram, V. M., Nature, Vol. 189, pp. 465-467, 1961
11. Ingram, V. M., Nature, Vol. 180, pp. 326-328, 1957
12. Watson-Williams, E. J., Nature, Vol. 205, pp. 1273-1276, 1965
13. Schneider, R. G., Science, Vol. 148, pp. 240-242, 1965
14. Beale, D. and Lehmann, H., Nature, Vol. 207, pp. 249-261, 1965
15. Hill, R. L., Swenson, R. T., and Schwartz, H. C., J. Biol. Chem., Vol. 235, pp. 3182-3187, 1960

MYOGLOBIN - WHALE

1 VLSEGEWQLVLHVWAKVEADVAGHGQDILI 31 RLFKSHPETLEKFDRFKHLKTEAEMKASED 61LKKHGVTVLTALGAILKKKGHHEAELKPLA 91 QSHATKHKIPIKOLEFISEAIIHVLHSRHP 121 GNFGADAOGAMNKALELFRKDIAAKOKELG 151 OQG*
$\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$
1 val leu ser glu gly glu trp gln leu val leu his val trp ala lys val glu ala asp val ala gly his gly gln asp ilu leu ilu

31 ARG LEU PHE LYS SER HIS PRO GLU THR LEU GLU LYS PHE ASP ARG phe lys his leu lys thr glu ala glu met lys ala ser glu asp 61 Leu lys lys his gly val thr val leu thr ala leu gly ala ilu LEU LYS LYS LYS GLY HIS HIS GLU ALA GLU LEU LYS PRO LEU ALA 91 GLN SER HIS ALA THR LYS HIS LyS ilu pro ilu lys tyr leu glu phe ilu ser glu ala ilu ilu his val leu his ser arg his pro 121 gly asn phe gly ala asp ala gln gly ala met asn lys ala leu glu leu phe arg lys asp ilu ala ala lys tyr lys glu leu gly 151 TYR GLN GLY ***

COMPOSITION

- EDMUNDSON, A. B., NATURE, VOL. 205, NO.4974, PP.883-887, FEBRUARY 27, 1965

DIheme peptide - chromatium

THE PEPTIDE CONTAINS THO HEME GROUPS. THE FIRST IS COVALENTLY BONDED TO CYSTEINES 5 AND 8. THERE IS ONLY ONE OTHER CYSTEINE AVAILABLE FOR THE OBSERVED COVALENT BONDING OF THE SECOND HEME.

$$
\begin{aligned}
& 123456789012345678901234567 \\
& \text { /FAGKCSOCHTLVADEGSAKCHTFDEGS/ }
\end{aligned}
$$

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

/// phe ala gly lys cys ser gln cys his thr leu val ala asp glu GLY SER ALA LYS CYS HIS THR PHE ASP GLU GLY SER ///

COMPOSITION

| 3 ALA A | 1 GLN 0 | 1 LEU L | 3 SER | S | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 ARG R | 2 GLU E | 2 LYS K | 2 THR | T | |
| 0 ASN N | 3 GLY G | 0 MET M | 0 | TRP | H |
| 2 ASP D | 2 HIS H | 2 PHE F | 0 | TYR | 0 |
| 3 CYS C | 0 ILU I | 0 PRO P | 1 VAL | | |

TOTAL ND. OF ACIDS IN FRAGMENT $=27$

* DUS,K., BARTS'CH, R.G., AND KAMEN,M.D.: J. BIOL. CHEM., VOL. 237_{7} NO.10. PP. 3083-3093, OCT., 1962

FERREDOXIN - CLOSTRIDIUM PASTEURIANUM

THE PROTEIN CONTAINS 7 SULPHIDE AND 7 IRON ATOMS PER MOLECULE. It DOES NOT CONTAIN HEME.

$$
\begin{array}{rllllllllllllllllllllllllllllll}
& 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 \\
1 & A & O & K & I & A & D & S & C & V & S & C / G & A & C / A & S & E & C & P & V & N & A & I & S & O & G & D & S & I & F
\end{array}
$$

$\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$
1 ALA TYR LYS ILU ALA ASP SER CYS VAL SER CYS/GLY ALA CYS/ALA SER GLU CYS PRO VAL ASN ALA ILU SER GLN GLY ASP SER ILU PHE/

31 VAL ILU ASP ALA ASP THR CYS ILU ASP CYS GLY ASN CYS ALA ASN VAL CYS PRO VAL GLY ALA PRO VAL GLN GLU **:

COMPOSITION

[^3]AZURIN - PSEUDOMONAS FLUORESCENS
THE BLUE PROTEIN CONTAINS ONE COPPER ATOM PER MOLECULE.
123456789012345678901243567890
1 AECSVDIOGNDQMOFNTNAITVDKSCKOFT
$31 V N L S H P G N L P K N V M G H N W V L S T A A D M O G V V$ 61 TDGMASGLDKDOLKPDDSRVIAHTKLIGSG 91EKDSVTFDVSKLKEGEQDMFFCTFPGHSAL 121 MKGTLTLK*
$\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$
1 ALA GLU CYS SER VAL ASP ILU GLN GLY ASN ASP GLN MET GLN PHE ASN THR ASN ALA ILU THR VAL ASP LYS SER CYS LYS GLN PHE THR 31 VAL ASN LEU SER HIS PRO GLY ASN LEU PRO LYS ASN VAL MET GLY his asn trp val leu ser thr ala ala asp met gln gly val val

61 THR ASP GLY MET ALA SER GLY LEU ASP LYS ASP TYR LEU LYS PRO ASP ASP SER ARG VAL ILU ALA HIS THR LYS LEU ILU GLY SER GLY

91 GLU LYS ASP SER VAL THR PHE ASP VAL SER LYS LEU LYS GLU GLY GLU GLN TYR MET PHE PHE CYS THR PHE PRO GLY HIS SER ÁÁ LEU 121 MET LYS GLY THR LEU THR LEU LYS ***

COMPOSITION

7	AlA	A	6	GLN	0	10	LEU	L	10	SER	S
1	ARG	R	4	GLU	E	11	LYS	K	10	THR	T
7	ASN	N	11	GLY	G	6	MET	M	1	TRP	W
11	ASP	D	4	HIS	H	6	PHE	F	2	TYR	0
3	CYS	C	4	ILU	I	4	PRO	p	10	VAL	v

* AMBLER,R.P.,AND BROWN.L.H., J. MOL. BIOL., VOL. 9, NO.3, PP. 825-828, SEPT.g 1964

RIBONUCLEASE - BOVINE
DISULPHIDE BONDS ARE FORMED BETHEEN CYSTEINES AT POSITIONS 26 AND 84, 40 AND 95, 58 AND 110. AND 65 AND 72.

1234567890123456789012345067890
IKETAAAKFERQHMOSSTSAASSSNOCNOMM 31 K SRNLTKDRCKPVNTFVHESLADVQAVCSQ 61KNVACKNGQTNCOQSOSTMSITDCRETGSS 91 KOPNCAOKTTOANKHIIVACEGNPOVPVHF 121 D A S V*
$\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$
1 lys glu thr ala ala ala lys phe glu arg gln his met asp ser SER THR SER ALA ALA SER SER SER ASN TYR CYS ASN GLN MET MET 31 LYS SER ARG ASN LEU THR LYS ASP ARG CYS LYS PRO VAL ASN THR phe val his glu ser leu ala asp val gln ala val cys ser gln 61 LYS ASN VAL ALA CYS LYS ASN GLY GLN THR ASN CYS TYR GLN SER TYR SER THR MET SER ILU THR ASP CYS ARG GLU THR GLY SER SER 91 LYS TYR PRO ASN CYS ALA TYR LYS THR THR GLN ALA ASN LYS HIS IlU ilu val ala cys glu gly asn pro tyr val pro val his phe 121 ASP ALA SER VAL ***

COMPOSITION

* SMYTH, D.G., STEIN,W.H. AND MODRE, S., J. BIOL. CHEM., VOL.238, NO.1, PP. 227-234, JAN., 1963

TRYPSIN INHIBITOR - BOVINE

DISULPHIDE BONDS ARE FORMED BETHEEN CYSTEINES AT POSITIONS 5-55, 14-38, AND 30-51.

123456789012345678901234567890
IRPDFCLEPPOTGPCKARIIROFONAKAGLC 31 OTFVOGGCRAKRNNFKSAEDCMRTCGGA*
$\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$
1 ARG PRO ASP PHE CYS LEU GLU PRO PRO TYR THR GLY PRO CYS LYS ala arg ilu ilu arg tyr phe tyr asn ala lys ala gly leu cys 31 GLN THR PHE VAL TYR GLY GLY CYS ARG ALA LYS ARG ASN ASN PHE LYS SER ALA GLU ASP CYS MET ARG THR CYS GLY GLY ALA ***

COMPOSITION

6	ALA	A	1	GLN	0	2	LEU	L	1	SER	S
6	ARG	R	2	GLU	E	4	LYS	K	3	THR	T
3	ASN	N	6	GLY	G	1	MET	M	0	TRP	W
2	ASP	D	0	HIS	H	4	PHE	F	4	TYR	0
6	CYS	C	2	ILU	I	4	PRO	P	1	VAL	v
						TOTAL NO. OF ACIDS $=58$					

[^4]DLOUHA, V., POSPISILOVA, D., MELOUN, B. AND SORM, F., COLLECTION CZECH. CHEM. COMMUN., VOL. 30, PP.1311-1325, 1965

THE SEQUENCE REPORTED HERE DIFFERS FROM THE ABDVE IN HAVING THE ILU (I) DELETED AT POSITION 19.

CHAUVET, J., NOUVEL, G., AND ACHER, R., BIOCHIM. BIOPHYS. ACTA, VOL. 92, PP. 200-201, 1964

THE SEQUENCE REPORTED HERE DIFFERS FROM THE ABOVE IN THE FOLLOWING RESPECTS.
THE ARG (R) FROM POSITION 42 HAS BEEN REMOVED AND INSERTED BETWEEN POSITIONS 20 AND 21. THE GLN (Q) AT POSITION 31 HAS BEEN DELETED AND A GLU (E) ADDED BETHEEN POSITIONS 32 AND 33.

KASSELL, B., AND LASKOWSKI, M., BIOCHEM. BIOPHYS. RES. CUMMUN. VOL 20, NO.4, PP.463-468, 1965

TOBACCO MOSAIC VIRUS
ACETYL - AT AMINO END
1234567890123456789012234567890
ISOSITTPSQFVFLSSAWADPIELINLCTNA $31 L G N Q F Q T Q Q A R T V Q V R Q F S Q V W K P S P Q V T V$ 61 RFPDSDFKVORONAVLDPLVTALLGAFDTR 91 NRIIQVQDOANPTTAQTLDATRRVDDATVA 121 IRSADINLIVELIRGTGSGNRSSFESSSGL 151 VWTSGPAT•
$\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$
1 SER TYR SER ILU THR THR PRO SER GLN PHE VAL PHE LEU SER SER ala trp ala asp pro ilu glu leu ilu asn leu cys thr asn ala

31 LEU GLY ASN GLN PHE GLN THR GLN GLN ALA ARG THR VAL GLN VAL ARG GLN PHE SER GLN VAL TRP LYS PRO SER PRO GLN VAL THR VAL

61 ARG PHE PRO ASP SER ASP PHE LYS VAL TYR ARG TYR ASN ALA VAL LEU ASP pro leu val thr ala leu leu gly ala phe asp thr arg

91 asn arg ilu ilu gln val gln asp gln ala asn pro thr thr ala GLN THR LEU ASP ala thr arg arg val asp asp ala thr val ala

121 IlU arg ser ala asp ilu asn leu ilu val glu leu ilu arg gly THR GLY SER TYR ASN ARG SER SER PHE GLU SER SER SER Gly LEU 151 VAL TRP THR SER GLY PRO ALA THR ***

COMPOSITION

14	ALA	A	13	GLN	0	12	LEU	L	16	SER	S
11	ARG	R	3	GLU	E	2	LYs ${ }^{\circ}$	K	16	THR	T
8	ASN	N	6	GLY	G	0	MET	M	3	TRP	H
10	ASP	D	0	HIS	H	8	PHE	F	4	TYR	0
1	CYS	C	9	ILU	I	8	PRO	P	14	VAL	V

- ANDERER, F.A., Z. NATURFORSCH., VOL. 17, PP.526-543, 1962 STRUCTURE REVISIONS AND CONFIRMATIONS.

ANDERER, FAA., UHLIG, H., WEBER, E•, AND SCHRAMM, G., NATURE, VOL. 186, NO.4729, PP.922-925, JUNE 18, 1960

FUNATSU, G., TSUGITA, A., AND FRAENKEL-CONRAT, Ho, ARCH. BIOCHEM. BIOPHYS.: VOL. 105, NO.1, PP.25-41, APR. 1964

TOBACCO MDSAIC VIRUS STRAIN DAHLMENSE
ACETYL- AT AMINO END

1SOSITSPSOFVFLSSVHADPIELLNVCTSS $31 L G N Q F Q T Q Q A R T T Q V Q Q F S E V W K P F P Q S T V$ 61 RFPGDVOKVORONAVLDPLITALLGTFDTR 91 NRIIEVENQQSPTTAETLDATRRVDDATVA 121 IRSANINLVNELVRGTGLONONTFESMSGL 151 VWTSAPAS•
$\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$
1 SER TYR SER ILU THR SER PRO SER GLN PHE VAL PHE LEU SER SER Val trp ala asp pro ilu glu leu leu asn val cys thr ser ser 31 LEU GLY ASN GLN PHE GLN THR GLN GLN ALA ARG THR THR GLN VAL GLN GLN PHE SER GLU VAL TRP LYS PRO PHE PRO GLN SER THR VAL 61 ARG PHE PRO GLY ASP VAL TYR LYS VAL TYR ARG TYR ASN ALA VAL LeU ASP PRO LEU ILU THR ALA LEU LEU GLY THR PHE ASP thr arg gi ásn arg ilu ilu glu val glu ásin glí glin ger pro thr thr ala GLU THR LEU ASP ALA THR ARG ARG VAL ASP ASP ALA THR VAL ALA 121 ILU ARG SER ala asn ilu asn leu val asn glu leu val arg gly thr gly leu tyr asn gln asn thr phe glu ser met ser gly leu 151 VAL TRP THR SER ALA PRO ALA SER ***

COMPOSITION

11	ALA	A	12	GLN	Q	13	LEU	L	16	SER	S
9	ARG	R	7	GLU	E	2	LYS	K	17	THR	T
10	ASN	N	6	GLY	G	1	MET	M	3	TRP	W
7	ASP	D	0	HIS	H	8	PHE	F	5	TYR	0
1	CYS	C	7	ILU	1	8	PRO	P	15	VAL	V

- WITTMANN-LIEBOLD,B. AND WITTMANN, H. G.: Z. VERERBUNGS.: VOL. 94, PP. 427-435, 1963

123456789012345678901234567890
ICGVPAIQPVLSGLSRIVGDEEAVPGSWPHO
$31 V$ SLUDKTGFHFCGGSLINENWVVTAAHCGV
61 TISDVVVAGEFDQGSSSEKIQKLKIAKVFK 91 NSKONSLTINNNITLLKLSTAASFSOTVSA 121 VCLPSASDDFAAGTTCVTTGWGLTROTNAN 151 TPDRLQQASLPLLSNTNCKKOWGTKIKDAM 181 CAGASGVSSCMGDSGGPLVGKKNGAWTLV 211GIVSWGSSTCSTSTPGVOARVTALVNWVQQ 241 LAAN•
$\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$
1 CyS gly val pro ala ilu gln pro val leu ser gly leu ser arg ILU VAL GLY ASP GLU GLU ALA VAL PRO GLY SER TRP PRO TRP GLN 31 VAL SER LEU GLN ASP LYS THR GLY PHE HIS PHE CYS GLY GLY SER LeU ilu asn glu asn trp val val thr ala ala his cys gly val 61 THR THR SER ASP VAL VAL VAL ALA GLY GLU PHE ASP GLN GLY SER Ser ser glu lys ilu gln lys leu lys ilu ala lys val phe lys 91 ASN SER LYS TYR ASN SER LEU THR ILU ASN ASN ASN ILU THR LEU leu lys leu ser thr ala ala ser phe ser gln thr val ser ala 121 VAL CYS LEU PRO SER ALA SER ASP ASP PHE ALA ALA GLY THR THR CYS VAL THR THR GLY TRP GLY LEU THR ARG TYR THR ASN ALA ASN 151 THR PRO ASP ARG LEU GLN GLN ALA SER LEU PRO LEU LEU SER ASN THR ASN CYS LYS LYS TYR TRP GLY THR LYS ILU LYS ASP ALA MET 181 ILU CYS ALA GLY ALA SER GLY VAL SER SER CYS MET GLY ASP SER GLY GLY PRO LEU VAL CYS LYS LYS ASN GLY ALA TRP THR LEU VAL 211 GLY ILU VAL SER TRP GLY SER SER THR CYS SER THR SER THR PRD gly val tyr ala arg val ihr ala leu val asn trp val gln gln 241 Thr LEU ALA ALA ASN ***

COMPOSITION

22	ALA	A	10	GLN	Q	19	Leu	L	28	SER	S
4	ARG	R	5	GLU	E	14	LYS	K	23	THR	T
14	ASN	N	23	GLY	G	2	MET	M	8	TRP	W
9	ASP	D	2	HIS	H	6	PHE	F	4	TYR	0
10	CYS	C	10	ILU	I	9	PRO	P	23	VAL	v

TOTAL NO. OF ACIDS $=245$

- HARTLEY, B.S. BRDWN, J.R., KAUFFMAN, D.L. AND SMILLIE, LeR-, NATURE, VOL.207, NO.5002, PP.1157-1159, SEPT.11. 1965

THIS SEQUENCE HAS BEEN CORRECTED BY DELETING SER (S) WHICH WAS AT POSITIUN 215.

BROHN, J.R., AND HARTLEY, B. S., BIDCHEM J., VOL. 89. 59P. 1963 THE ACTIVE SITE SERINE IS AT POSITION 195

KEIL, B., PRUSIK, Z., AND SORM, F., BIOCHIM. BIOPHYS ACTA. VOL. 78, P. 559-561. 1963

DISULPHIDE BRIDGES LINK POSITIONS 1-122. 42-58, 136-201, 168-182 AND 191-220.

KOSTKA, V-, MELOUN, B-, AND SORM,F•, COLLECTION CZECH. CHEM. COMMUN. VOL. 28, PP. 2779-2805, 1963.

HARTLEY,B.S., NATURE, VOL. 201, NO. 4962, PP. 1284-1287, MARCH 28, 1964

TRYPSINOGEN

1 VDDDDKIVGGOTCGANTVPOQVSLNSGOHF 31 CGGSLINSOWVVSAAHCOKSGIOVRLGEDN 61 INVVEGDEOFISASKSIVHPSON(P,L,T,NINND 91 I MLIKLKSAASLNSRVASISLPTSGASAGT 121 OCLISGWGNTKSSGTSOPDVLKCLKAPILS 151 DSSCKSAOPGOITSNMFCAGOLEGGKNSCO 181GDSGGPVVGSGKLQGIVSWGSGCAQKNKPG 211VOTKVCNOVSWIKOTIASN*

1 VAL ASP ASP ASP ASP LYS ILU VAL GLY GLY TYR THR CYS GLY ALA ASN THR VAL PRO TYR GLN VAL SER LEU ASN SER GLY TYR HIS PHE

31 CYS GLY GLY SER LEU ILU ASN SER GLN TRP VAL VAL SER ALA ALA HIS CYS TYR LYS SER GLY ILU GLN VAL ARG LEU GLY GLU ASP ASN

61 ILU ASN VAL VAL GLU GLY aSp glu gln phe ilu ser ala ser lys SER ILU VAL HIS PRO SER TYR ASN(PRO,LEU,THR,ASNIASN ASN ASP

91 Ilu met leu ilu lys leu lys ser ala ala ser leu asn ser arg VAL ALA SER ILU SER LEU PRO THR SER CYS ALA SER ALA GLY thr

121 GLN CYS LEU ILU SER GLY TRP GLY ASN THR LYS SER SER GLY THR SER TYR PRO ASP VAL LEU LYS CYS LEU LYS ALA PRO ILU LEU SER

151 ASP SER SER CYS LYS SER ALA TYR PRO GLY GLN ILU THR SER ASN met phe cys ala gly tyr leu glu gly gly lys asn ser cys gln 181 GLY ASP SER GLY GLY PRO VAL VAL CYS SER GLY LYS LEU GLN GLY ILU VAL SER TRP GLY SER GLY CYS ALA GLN LYS ASN LYS PRO GLY 211 VAL TYR THR LYS VAL CYS ASN TYR VAL SER TRP ILU LYS GLN THR ILU ALA SER ASN ***

COMPOSITION

| 14 ALA A | 10 GLN Q | 14 LEU L | 33 SER | S |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2 ARG R | 4 GLU E | 15 LYS K | 10 THR | T |
| 16 ASN N | 25 GLY G | 2 MET M | 4 TRP | H |
| 10 ASP D | 3 HIS H | 3 PHE F | 10 TYR | 0 |
| 12 CYS C | 15 ILU I | 9 PRO P | 18 VAL | V |

TOTAL NO. OF ACIDS $=229$

- WALSH, K.: AND NEURATH, H., PROC. NATL. ACAD. SCI. U.S.. VOL. 52, NO.4, PP.884-889, 1964

KAUFFMAN, D. L., J. MOL. BIOL., VOL.12, PP.929-932, 1965
DISULPHIDE BRIDGES WERE FOUND BETWEEN LINKS 13-143, 31-47 115-216, 122-189, 154-168, AND 179-203.
the active serine is at link 183.

PAPAIN

Abstract

1234567890123456789012234507890 1/IPEOVDWRQKGAVTPVKNOGSCGSCW/AFIII $31 R N T P O O E G V O R O C R S R E K G P O A A K T D G V R O$ 61VQPONQGALLOSIANQPSVVLOAAGKDFQL 91 ORGGIFVGPCGNKVDHAVAAVGONPGOILI 121 KNSWGTGWGENGOIRIKTGNLNQOSEQELL 151 DCDRRSOGCOPGDGW/SAL/VAOOGIHORGTG 181NSOGVCGLOTSSFOPVKN•

$\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$ 1/ILU PRO GLU TYR VAL ASP TRP ARG GLN LYS GLY ALA VAL THR PRO VAL LYS ASN GLN GLY SER CYS GLY SER CYS TRP/ALA PHE/ILU ILU/ 31 ARG ASN THR PRO TYR TYR GLU GLY VAL GLN ARG TYR CYS ARG SER ARG GLU LYS GLY PRO TYR ALA ALA LYS THR ASP GLY VAL ARG GLN 61 Val gln pro tyr asn gln gly ala ligu leu tyr ser ilu âlá ásin GLN PRO SER VAL Val LEU GLN ala ala gly lys asp phe gln leu 91 TYR ARG GLY GLY ILU PHE VAL GLY PRO CYS GLY ASN LYS VAL ASP his ala val ala ala val gly tyr asn pro gly tyr ilu leu ilu 121 LYS ASN SER TRP GLY THR GLY TRP GLY GLU ASN GLY TYR ILU ARG ILU LYS THR GLY ASN LEU ASN GLN TYR SER GLU GLN GLU LEU LEU 151 ASP CYS ASP ARG ARG SER TYR GLY CYS TYR PRO GLY ASP GLY TRP/ Ser ala leu/val ala gln tyr gly ilu his tyr arg gly thr gly 181 ASN SER TYR GLY VAL CYS GLY LEU TYR THR SER SER PHE TYR PRO VAL LYS ASN ***

COMPOSITION

13	ALA	A	12	GLN	0	10	LEU	L	12	SER
11	ARG	R	6	GLU	E	9	LYS	K	7	THR
12	ASN	N	27	GLY	G	0	MET	M	5	TRP
7	ASP	D	2	HIS	H	4	PHE	F	19	TYR
7	CYS	C	10	ILU	1	10	PRO	P	15	VAL

- LIGHT, A., FRATER, R., KIMMEL, J., AND SMITH, E.L., PROC. NATL. ACAD. SCI. U.S., VOL.52, NO.5, PP.1276-1283, NOV. 1964 DISULPHIDE BRIDGES ARE FORMED BETWEEN CYSTEINES AT POSITIONS 43 AND 152, 100 AND 186. AND 22 AND 159.

THE ACTIVE SULFHYDRYL GROUP IS AT POSITIDN 25.

LYSOZYME - CHICKEN
LYSOZYME HAS A BETA (1-4) GLUCOSAMINIDASE ACTIVITY WITH THE ABILITY TO HYDROLYSE A MUCOPOLYSACCHARIDE COMPDNENT OF SOME BACTERIAL CELL WALLS RELEASING N-ACETYL AMINO SUGARS DERIVED FROM GLUCOSAMINE AND MURAMIC ACID.

123456789012345678901234567890
1KVFGRCELAAAMKRHGLDNORGOSLGNWVC 31 AAKFESNFNTOATNRNTDGSTDOGILOINS 61RHWCNDGRTPGSRNLCNIPCSALLSSDITA 91 SVNCAKKIVSDGDGMNAWVAWRNRCKGTDV 1210 A W R G CRL*

$$
\begin{array}{lllllllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15
\end{array}
$$

1 lys val phe gly arg cys glu leu ala ala ala met lys arg his GLY LEU ASP ASN TYR ARG GLY TYR SER LEU GLY ASN TRP VAL CYS 31 ala ala lys phe glu ser asn phe asn thr gln ala thr asn arg ASN THR ASP GLY SER THR ASP TYR GLY ILU LEU GLN ILU ASN SER 61 ARG TRP TRP CYS ASN ASP GLY ARG THR PRO GLY SER ARG ASN LEU cys ásin ilu pro cys ser ala leu leu ser ser asp ilu thr áa 91 SER VAL ASN CYS ALA LYS LYS ILU VAL SER ASP GLY ASP GLY MET ASN ALA TRP VAL ALA TRP ARG ASN ARG CYS LYS GLY THR ASP VAL 121 GLN ALA TRP ILU ARG GLY CYS ARG LEU ***

COMPOSITION

| 12 ALA A | 3 GLN Q | 8 LEU L | 10 SER | S |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 11 ARG R | 2 GLU E | 6 LYS K | 7 THR | T |
| 13 ASN N | 12 GLY G | 2 MET M | 6 TRP | W |
| 8 ASP D | 1 HIS H | 3 PHE F | 3 TYR | 0 |
| 8 CYS C | 6 ILU I | 2 PRO P | 6 VAL | V |

TOTAL NO. OF ACIDS $=129$

- CANFIELD, R., J. BIOL. CHEM., VDL. 238, ND.8, PP. 2698-2707, AUG. 1963
-

CANFIELD, R., LIU,A.K., J. BIOL. CHEM., VOL. 240, NO.5, PP. 1997-2002, MAY 1965

ABDVE SEQUENCE CONFIRMED IN THIS WORK. DISULPHIDE BONDS ARE FOUND BETHEEN 6 AND 127, 30 AND 115, 64 AND 80, AND 76 AND 94.

JOLLES, J., JAUREGUI-ADELL, J., BERNIER, I., AND JOLLES, P., BIOCHIM. BIOPHYS. ACTA, VOL.78, PP.668-689, 1963

THIS SEQUENCE DIFFERS FROM THE ABOVE AS FOLLOWS, 40-GLN, 41-ALA, 42-THR, 43-THR, 46-ASP, 58-ASN, 59-ILU, 92-ASN, AND 93-VAL.

BLAKE, C.C.F., KOENING, D.F., MAIR, G.A., NORTH, A.C.T., PHILLIPS, D.C., AND SARMA, V.R., NATURE, ND. 4986 , PP. 757-761, MAY 22, 1965

A 2 angstrom resolution fourier synthesis has been performed BY X-RAY CRYSTALLOGRAPHIC METHODS. THE LOCATION OF THE FDUR DISULPHIDE BRIDGES HAS BEEN CONFIRMED. THE BINDING SITE OF THE INHIBITOR N-ACETYL-GLUCOSAMINE AND ITS DIMER HAS BEEN FOUND TO BE VERY EXTENSIVE INVOLVING RESIDUES AT POSITIONS $44,46,47,48,50,52,57,59,61-63,72,73,97,99-101$, 103, 107-110, 113, AND 114.

GLUCAGON - BDVINE

12345678901234567890123456789 1 HSOGTFTSDOSKOLDSRRAODFVOHLMNTE

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

1 HIS SER GLN GLY THR PHE THR SER ASP TYR SER LYS TYR LEU ASP SER ARG ARG ALA GLN ASP PHE VAL GLN TRP LEU MET ASN THR ***

COMPDSITION

| 1 ALA A | 3 GLN 0 | 2 LEU L | 4 SER | S | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 ARG R | 0 GLU E | 1 LYS K | 3 THR | T | |
| 1 ASN N | 1 GLY G | 1 MET M | 1 TRP | W | |
| 3 ASP D | 1 HIS H | 2 PHE F | 2 TYR | 0 | |
| 0 CYS C | 0 ILU I | 0 PRO P | 1 | VAL | V |

- BROMER, W.W., SINN, L.G., AND BEHRENS: D.K.. J. AM. CHEM. SOC.: VOL. 79, PP. 2807-2810, JUNE 5, 1957

THE C TERMINAL GLYCINE IS PRESENT AS THE AMIDE. THE TWO CYSTEINES ARE LINKED BY A DISULPHIDE BOND.

123456789
1COFONCPRG:
$\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$
1 CYS TYR PHE GLN ASN CYS PRO ARG GLY ***

COMPOSITION

0	ala	A	1	GLN	0	0	LEU	L	0	SER	S
1	ARG	R	0	GLU	E	0	LYS	K	0	THR	T
1	ASN	N	1	GLY	G	0	MET	M	0	TRP	W
0	ASP	D	0	HIS	H	1	PHE	F	1	TYR	0
2	CYS	C	0	ILU	I	1	PRO	P	0	VAL	v

- DU VIGNEAUD, V., LAWLER, H. C., AND POPENOE, E. A., J. AM. CHEM. SOC.: VOL. 75, PP. $4880-4881$, OCT. 5, 1953

ACHER, Re, AND CHAUVET, J., BIOCHIM. BIOPHYS. ACTA, VOL. 12, PP.487-488, 1953

THIS WORK CONFIRMED THE SEQUENCE ABOVE, HOWEVER GLU (E) AND ASP (D) WERE NOT DISTINGUISHED FROM GLN (Q) AND ASN (N).

LYSINE VASOPRESSIN - PIG

THE C TERMINAL GLYCINE IS PRESENT AS THE AMIDE. THE TWO CYSTEINES ARE LINKED BY A DISULPHIDE BOND.

123456789
1 C.O.F.Q.N.C.P.K.G.*
$\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$
1 CYS.TYR.PHE.GLN.ASN.CYS.PRD.LYS.GLY ***

COMPOSITION

0	ALA	A	1	GLN	0	0	LEU	L	0	SER	5
0	ARG	R	0	GLU	E	1	LYS	K	0	THR	T
1	ASN	N	1	GLY	G	0	MET	M	0	TRP	W
0	ASP	D	0	HIS	H	1	PHE	F	1	TYR	0
2	CYS	C	0	ILU	I	1	PRO	P	0	VAL	v

* POPENOE, E. A., LAWLER, H. C.. AND DU VIGNEAUD, Y., J. AM. CHEM. SOC., VOL.74, P.3713, JULY 20, 1952

```
OXYTOCIN - BOVINE
```

THE C TERMINAL GLYCINE IS PRESENT AS THE AMIDE. THE THO CYSTEINES ARE LINKED BY A DISULPHIDE BOND. OXYTOCIN IS THE PRINCIPAL UTERINE CONTRACTING AND MILK EJECTING HORMONE OF THE POSTERIOR PITUITARY.

123456789
1COIQNCPLG
$\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$
1 CYS TYR ILU GLN ASN CYS PRO LEU GLY

COMPOSITION

- DU VIGNEAUD. V., RESSLER, C., TRIPPETT, S.g J. BIOL. CHEM-y VOL. 205: PP.949-957, 1953

TUPPY, H. AND MICHL, H.: MONATSH. CHEM., VOL.84, PP. 1011-1020, 1953

HYPERTENSIN - BOVINE

1234567890

1 DRVDVHPFHL.
$\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$
1 ASP ARG VAL TYR VAL HIS PRO PHE HIS LEU ***

COMPOSITION

| 0 ALA A | 0 GLN 0 | 1 LEU L | 0 | SER | S |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 ARG R | 0 GLU E | 0 LYS K | 0 | THR | T |
| 0 ASN N | 0 GLY G | 0 MET M | 0 TRP | W | |
| 1 ASP D | 2 HIS H | 1 PHE F | 1 TYR | 0 | |
| 0 CYS C | 0 ILU I | I PRO P | 2 VAL | V | |

- ELLIOT, D. F., AND PEART, W. S., BIOCHEM. J.: VOL. 65, PP. 246-254, 1957

ALPHA MELANOCYTE-STIMULATING HORMONE - BOVINE, PIG, AND HORSE

ACETYL AT AMINO END.
C-TERMINAL VALINE IS AMINATED.

1234567890123
SOSMEHFRHGKPV.
$\begin{array}{lllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13\end{array}$
SER TYR SER MET GLU HIS PHE ARG TRP GLY LYS PRO VAL ***

COMPOSITION

0	ALA	A	0	GLN	Q	0	LEU	L	2	SER	S
1	ARG	R	1	GLU	E	1	LYS	K	0	THR	T
0	ASN	N	1	GLY	G	1	MET	M	1	TRP	W
0	ASP	D	1	HIS	H	1	PHE	F	1	TYR	0
0	CYS	c	0	ILU	I	1	PRO	P	1	VAL	v

- HARRIS, J. I. AND LERNER, A. B., NATURE, VOL. 179, NO.4574, PP.1346-1347, JUNE 29, 1957 (PIG)

LI, C. He, LABORATORY INVESTIGATION, VOL. 8, NO.2, PP. 574-587, 1959 (BOVINE)

DIXON, J. S. ANO LI, C. H., J. AM. CHEM. SOC., VOL.82, PP.4568-4572, SEPT. 5, 1960 (HORSE)

BETA MELANOCYTE-STIMULATING HORMONE - BOVINE

123456789012345678
1 DSGPOKMEHFRWGSPPKD*
$\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$
1 ASP SER GLY PRO TYR LYS MET GLU HIS PHE ARG TRP GLY SER PRO PRO LYS ASP ***

COMPOSITION

0	Ala	A	0	GLN	0	0	LEU	1	2	SER	S
1	ARG	R	1	GLU	E	2	LYS	K	0	THR	1
0	ASN	N	2	GLY	G	1	MET	M	1	TRP	W
2	ASP	D	1	HIS	H	1	PHE	F	1	TYR	0
0	CYS	C	0	ILU	I	3	PRO	P	0	VAL	V

* GESCHWIND, I.I., LI, C. H., AND BARNAFI, L., J. AM. CHEM. SOC. V VOL. 79, PP. 1003-1004, FEB. 20, 1957
beta melanocyte-stimulating hormdne - pig

123456789012345678
1 DEGPOKMEHFRWGSPPKD*
$\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$
1 ASP GLU GLY PRO TYR LYS met GLU his phe ARG TRP gly SER PRO PRO LYS ASP ***

COMPOSITION

0	Ala	A	0	GLN	0	0	LEU	L	1	SER	S
1	ARG	R	2	GLU	E	2	LYS	K	0	THR	T
0	ASN	N	2	GLY	G	1	MET	M	1	TRP	W
2	ASP	D	1	HIS	H	1	PHE	F	1	TYR	0
0	CYS	C	0	ILU	1	3	PRO	P	0	VAL	V

- HARRIS, J. I. AND ROOS, P., NATURE, VOL. 178, NO.4524, P. 90, JULY 14. 1956

GESCHWIND, I.I., LI, C. H., AND BARNAFI, L., J. AM. CHEM. SOC., VOL. 79, PP.620-625, FEB. 5, 1957

```
BETA MELANOCYTE-STIMULATING HORMONE - HORSE
```

123456789012345678
1 DEGPOKMEHFRWGSPRKD*
$\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$
1 ASP GLU GLY PRO TYR LYS MET GLU HIS PHE ARG TRP GLY SER PRO ARG LYS ASP ***

COMPOSITION

0	ALA	A	0	GLN	Q	0	LEU	L	1	SER	5
2	ARG	R	2	GLU	E	2	LYS	K	0	THR	T
0	ASN	N	2	GLY	6	1	MET	M	1	TRP	W
2	ASP	D	1	HIS	H	1	PHE	F	1	TYR	0
0	CYS	C	0	ILU	1	2	Prou	P	0	VAi	V

TOTAL NO. OF ACIDS $=18$

- DIXON, J. S. AND LI, C. H., GEN. COMP. ENDOCRINOL., VOL.1, PP.161-169, 1961

BETA MELANOCYTE-STIMULATING HORMONE - HUMAN

1234567890123456789012
1 AEKKDEGPORMEHFRWGSPPKD.
$\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$
1 ALA GLU LYS LYS ASP GLU GLY PRO TYR ARG mET GLU HIS PHE ARG TRP GLY SER PRO PRO LYS ASP ***

COMPOSITION

| 1 ALA A | 0 GLN 0 | 0 LEU L | 1 SER | S | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 ARG R | 3 GLU E | 3 LYS K | 0 | THR | T |
| 0 ASN N | 2 GLY G | 1 MET M | 1 TRP | W | |
| 2 ASP D | 1 HIS H | 1 PHE F | 1 TYR | 0 | |
| 0 CYS C | 0 ILU I | 3 PRO P | 0 | VAL | V |

- HARRIS, J. I., NATURE, VOL. 184, NO. 4681, PP. 167-169, JULY 18, 1959

BETA CORTICOTROPIN - PIG

 31 LAEAFPLEF。
$\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$
1 SER TYR SER MET GLU HIS PHE ARG TRP GLY LYS PRO VAL GLY LYS LYS ARG ARG PRO VAL LYS VAL TYR PRO GLY ALA GLU ASP ASP GLN 31 leu ala glu ala phe pro leu glu phe

COMPOSITION

3	ALA	A	1	GLN	0	2	LEU	L	2	SER	S
3	ARG	R	4	GLU	E	4	LYS	K	0	THR	T
0	ASN	N	3	GLY	G	1	MET	M	1	TRP	W
2	ASP	0	1	HIS	H	3	PHE	F	2	TYR	0
0	Crs	c	0	ILU	I	4	PRO	P	3	vali	V

- WHITE, W. F.. AND LANDMANN, H. A., J. AM. CHEM. SOC.. VOL. 77. PP. 1711-1712, MARCH 20, 1955

HOWARD, K. S., SHEPHERD, R. G., EIGNER, E. A., DAVIS, D. S., AND BELL. P. H., J. AM. CHEM. SOC.. VOL.77, PP. 3419-3420, JUNE 20, 1955

BELL, P. H., J. AM. CHEM. SOC., VOL.76, PP.5565-5567, NOV. 1954
THIS SEQUENCE DIFFERS FROM THAT SHOWN ABOVE BY REMOVING THE ASP (D) FROM POSITION 29 AND INSERTING IT BETWEEN POSITIONS 24 AND 25.

ALPHA CORTICOTROPIN - SHEEP AND BOVINE

1234567890123456789012345067890 ISOSMEHFRWGKPVGKKRRPVKVOPDGEAED 31 SAQAFPLEF-
$\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$
1 SER TYR SER MEt GLU HIS Phe aRG TRP GLY LYS PRO VAL GLY LYS LYS ARG ARG PRO VAL LYS YAL TYR PRO ASP GLY GLU ALA GLU ASP

31 SER ala gln ala phe pro leu glu phe

COMPOSITION

| 3 ALA A | 1 GLN Q | 1 LEU L | 3 | SER | S |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 ARG R | 4 GLU E | 4 LYS K | 0 | THR | T |
| 0 ASN N | 3 GLY G | 1 MET M | 1 TRP | H | |
| 2 ASP D | 1 HIS H | 3 PHE F | 2 TYR | 0 | |
| 0 CYS C | 0 ILU I | 4 PRO P | 3 VAL V | | |

TOTAL ND. OF ACIDS $=39$

- LI, C.H., GESCHWIND, I. I., COLE, D., RAACK, I. D., HARRIS, J.I., AND DIXÓN, J. S., NATURE, VOL.176, NO.4484, PP.687-689, OCT. 8,1955 (SHEEP)

LI, C. H., DIXON, J. S., AND CHUNG, D.: J. AM. CHEM. SOC., VOL. 80, P.2587, 1958 (BOVINE)

INSULIN A - BOVINE

123456789012345678901
1GIVEQCCASVCSLOQLENOCN*
$\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$
1 GLY ILU VAL GLU GLN CYS CYS ALA SER VAL CYS SER LEU TYR GLN LEU GLU ASN TYR CYS ASN ***

COMPOSITION

1	ALA	A	2	GLN	Q	2	LEU	L	2	SER	S
0	ARG	R	2	GLU	E	0	LYS	K	0	THR	T
2	ASN	N	1	GLY	G	0	MET	M	0	TRP	W
0	ASP	D	0	HIS	H	0	PHE	F	2	TYR	0
4	CYS	C	1	ILU	I	0	PRO	P	2	VAL	v

- SANGER, F. AND THOMPSON, E. O. P.. BIOCHEM J.. VOL.53, PP. 353-374, 1953

THE AMIDE GROUPS WERE SUBSEQUENTLY DETERMINED.

RYLE, A. P., SANGER, F., SMITH, L.F., AND KITAI, R., BIOCHEM. J., VOL. 60, PP. 541-556, 1955

INSULIN A - BONITO

123456789012345678901

1 GI(H,E,E,C(C,K,P,H)C,D,LIFELEDDCN-

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

1 GLY ILU(HIS,GLU,GLU,CYSICYS,LYS,PRO,HISICYS,ASP,LEU)PHE GLU LEU GLU ASP TYR CYS ASN ***

* KOTAKI, A.y J. BIOCHEM. (TOKYO), VOL.53. NO.1. PP.61-70, 1963

INSULIN A - HORSE

123456789012345678901
IGIVEQCCTGICSLOQLENOCN*
$\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$
1 GLy ilu val glu gln cys cys thr gly ilu cys ser leu tyr gln LEU GLU ASN TYR CYS ASN ***

COMPOSITION

0	ALA	A	2	GLN	0	2	LEU	L	1	SER
0	ARG	R	2	GLU	E	0	LYS	K	1	THR
2	ASN	N	2	GLY	G	0	MET	M	0	TRP
0	ASP	D	0	HIS	H	0	PHE	F	2	TYR
4	CYS	C	2	ILU	I	0	PRO	P	1	VAL

- HARRIS, J. I., SANGER, F., AND NAUGHTON, M. A., ARCH. BIOCHEM. BIOPHYS., VOL.65, PP.427-438, 1956

SOME EVIDENCE FOR THE SEQUENCE WAS DERIVED FROM HOMOLOGY WITH BOVINE INSULIN.

INSULIN A - SHEEP

123456789012345678901
1 GIVEQCCAGVCSLOQLENOCN:
$\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$
1 GLY ILU VAL GLU GLN CYS CYS ALA GLY VAL CYS SER LEU TYR GLN LEU GLU ASN TYR CYS ASN **

COMPOSITION

| 1 ALA A | 2 GLN 0 | 2 LEU L | 1 SER | S | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 ARG R | 2 GLU E | 0 LYS K | 0 THR | T | |
| 2 ASN N | 2 GLY G | 0 MET M | 0 | TRP | W |
| 0 ASP D | 0 HIS H | 0 PHE F | 2 TYR | 0 | |
| 4 CYS C | 1 ILU I | 0 PRO P | 2 VAL V | | |

* BROWN, H., SANGER, F., AND KITAI, R.. BIOCHEM. J., VOL. 60, PP. 556-565, 1955

SOME EVIDENCE FOR THE SEQUENCE WAS DERIVED FROM HOMOLOGY WITH BOVINE INSULIN.

INSULIN A - SPERM WHALE, FIN-WHALE, PIG, AND HUMAN

123456789012345678901
IGIVEQCCTSICSLOQLENOCN:
$\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$
1 GLY ILU VAL GLU GLN CYS CYS THR SER ILU CYS SER LEU TYR GLN LEU GLU ASN TYR CYS ASN ***

COMPOSITION

| 0 ALA A | 2 GLN Q | 2 LEU L | 2 SER | S | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 ARG R | 2 GLU E | 0 LYS K | 1 | THR | T |
| 2 ASN N | 1 GLY G | 0 MET M | 0 | TRP | W |
| 0 ASP D | 0 HIS H | 0 PHE F | 2 TYR | 0 | |
| 4 CYS C | 2 ILU 1 | 0 PRO P | 1 | VAL | V |

* BROWN, H., SANGER, F., AND KITAI, R., BIOCHEM. J., VOL. 60 , PP. 556-565, 1955 (PIG)

SUME EVIDENCE FOR THE SEQUENCE WAS DERIVED FROM HOMOLOGY WITH BOVINE INSULIN.

HARRIS, J. I., SANGER, F., AND NAUGHTON, M. A., ARCH. BIOCHEM. BIOPHYS., VOL.65, PP.427-438. 1956 (SPERM WHALE)

HAMA, H., TITANI, K., SAKAKI, S., AND NARITA, K., J. BIOCHEM. (TOKYO), VOL.56, NO.3, PP.285-293, 1964 (FIN-WHALE)

THIS WORK CONFIRMED THE SEQUENCE ABOVE, EXCEPT GLU (E) AND GLN (Q) WERE INTERCHANGED AT POSITIONS 15 AND 17.

```
NICOL, D. S. H. AND SMITH, L. F., NATURE, VOL.187, NO.4736,
    PP.483-485, AUG. 6, 1960 (HUMAN)
```

INSULIN A - SEI-Whale
1
123456789012345678901
IGIVEOCCASTCSLOQLENOCN*
$\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 6 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$
1 GLY ILU VAL GLU GLN CYS CYS ALA SER THR CYS SER LEU TYR GLN LEU GLU ASN TYR CYS ASN ***

COMPOSITION

| 1 ALA A | 2 GLN 0 | 2 LEU 1 | 2 SER | S |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 ARG R | 2 GLU E | 0 LYS K | 1 THR | T |
| 2 ASN N | 1 GLY G | 0 MET M | 0 TRP | W |
| 0 ASP D | 0 HIS H | 0 PHE F | 2 TYR | 0 |
| 4 CYS C | 1 ILU I | 0 PRO P | 1 VAL V | |

ISHIHARA, Y., SAITO, T., ITO, Y-, AND FUJIND, M., NATURE, VOL. 181, NO.4621, PP. 1461-1469, MAY 24, 1958 (SEI-WHALE)

INSULIN B - BOVINE, SHEEP, HORSE, HUMAN, PIG, AND SPERM WHALE
TWO DISULPHIDE BDNDS CONNECT THE A ANO B CHAINS. A7 IS BONDED TO B7 AND A20 IS BONDED TO B19. IN ADDITION THERE IS A BOND FROM AG TO All.

1234567890123456789012234567890
1FVNQHLCGSHLVEALOLVCGERGFFOTPKA -

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

1 phe val asn gln his leu cys gly ser his leu val glu ala leu TYR LEU VAL CYS GLY GLU ARG GLY PHE PHE TYR THR PRO LYS ALA

COMPOSITION

| 2 ALA A | 1 GLN 0 | 4 LEU L | 1 | SER | S |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 ARG R | 2 GLU E | 1 LYS K | 1 THR | T | |
| 1 ASN N | 3 GLY G | 0 MET M | 0 | TRP | W |
| 0 ASP D | 2 HIS H | 3 PHE F | 2 TYR | 0 | |
| 2 CYS C | 0 ILU I | 1 PRO P | 3 VAL | V | |

TOTAL NO. OF ACIDS $=30$

- RYLE, A. P., SANGER, F., SMITH, L.F., AND KITAI, R., BIOCHEM. J., VOL. 60, PP. 541-556, 1955 (BOVINE, SHEEP, AND PIG)

SANGER, F. AND TUPPY, H., BIOCHEM. J., VOL.49, PP.481-490, 1951 (BCVINE)
THE AMIDE GROUPS WERE SUBSEQUENTLY DETERMINED.

HARRIS, J. I., SANGER, F., AND NAUGHTON, M. A., ARCH. BIOCHEM. BIOPHYS., VOL.65, PP.427-438, 1956 (SPERM WHALE AND HORSE)

ISHIHARA, Y., SAIIO, T., ITO, Y., ANO FUJINO, M., NATURE, VOL. 181, NO.4621, PP. 1461-1469, MAY 24,1958 (SPERM AND SEI-WHALE)

NICOL, D. S. H. AND SMITH, L. F., NATURE, VOL. 187, ND.4736, PP.483-485, AUG. 6, 1960 (HUMAN)
hUMAN INSULIN B CHAIN IS IDENTICAL WITH ABOVE EXCEPT THAT POSITION 30 IS THR (T).

INSULIN B - BONITO

1 A A $N(P, H, L) C(G, S, H, L, V, E, A, L) O L(V, C, G, E) R G F F O Q P K$ O
$\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$
1 ALA ALA ASN(PRO,HIS,LEU)CYSIGLY,SER,HIS,LEU,VAL,GLU,ALA,LEU) TYR LEUIVAL,CYS,GLY,GLUIARG GLY PHE PHE TYR GLN PRO LYS ***

COMPOSITION

| 3 ALA A | 1 GLN 0 | 4 LEU L | 1 SER | S |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 ARG R | 2 GLU E | 1 LYS K | 0 THR | T |
| 1 ASN N | 3 GLY G | 0 MET M | 0 TRP | W |
| 0 ASP D | 2 HIS H | 2 PHE F | 2 TYR | 0 |
| 2 CYS C | 0 ILU I | 2 PRO P | 2 VAL | V |

TOTAL NO. DF ACIDS $=29$

- KOTAKI, A., J. BIOCHEM. (TOKYO), VOL.51, NO.4, PP.301-309, 1962

FIBRINOPEPTIDE A - BOVINE

FIBRINOPEPTIDES ARE THOSE PORTIONS OF VERTEBRATE FIBRINOGEN MOLECULES WHICH ARE PROTEOLYTICALLY REMOVED BY THE ENZYME THROMBIN. THEIR REMOVAL PERMITS SPONTANEOUS POLYMERIZATION OF THE PARENT MOLECULES TO FORM AM INSOLUBLE FIBRINOGEL. SINCE THE FUNCTION OF THE FIBRINOPEPTIDES IS RATHER NON-SPECIFIC, LARGE SEQUENCE CHANGES ARE OBSERVED AMONG CLOSELY RELATED SPECIES.

1234567890123456789

1 EDGSDPPSGDFLTEGGGVR/

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	GLU ASP	GLY	SER ASP	PRO PRO	SER GLY ASP	PHE LEU THR	GLU GLY							

COMPOSITION

0	ALA	A	0	GLN	0	1	LEU	L	2	SER	5
1	ARG	R	2	GLU	E	0	LYS	K	1	THR	T
0	ASN	N	5	GLY	G	0	MET	M	0	TRP	W
3	ASP	D	0	HIS	H	1	PHE	F	0	TYR	0
0	CYS	c	0	ILU	I	2	PRO	P	1	VAL	V

- DOOLIITLE, R. F. AND BLOMBACK, B., NATURE, VOL. 202, NO. 4928, PP. 147-152, APRIL 11, 1964

FIBRINOPEPTIDE A - SHEEP
$\begin{array}{lllllllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$

1 ADDSDPVGGEFLAEGGGVR/
$\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$
1 ala asp asp Ser asp pro val gly gly glu phe leu ala glu gly GLY GLY VAL ARG ///

COMPOSITION

| 2 ALA A | 0 GLN Q | 1 LEU L | 1 SER | S | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 ARG R | 2 GLU E | 0 LYS K | 0 | THR | T |
| 0 ASN N | 5 GLY G | 0 MET M | 0 | TRP | W |
| 3 ASP D | 0 HIS H | 1 PHE F | 0 | TYR | 0 |
| 0 CYS C | 0 ILU I | 1 PRO P | 2 VAL | V | |

- DOOLITTLE, R. F. AND BLOMBACK, B., NATURE, VOL. 202, NO. 4928, PP. 147-152, APRIL 11, 1964

FIBRINOPEPTIDE A - GOAT

1234567890123456789
1 ADDSDPVGGEFLAEGGGVR/
$\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$
1 ala asp asp ser asp pro val gly gly glu phe leu ala glu gly GLY GLY VAL ARG ///

COMPOSITION

2	ALA	A	0	GLN	0	1	LEU	L	1	SER	S
1	ARG	R	2	GLU	E	0	LYS	K	0	THR	T
0	ASN	N	5	GLY	G	0	MET	M	0	TRP	W
3	ASP	D	0	HIS	H	1	PHE	F	0	IYR	0
0	cys	C	0	ILU	I	1	PRO	P	2	VAL	V

- DCOLITTLE, R. F. AND BLOMBACK, B., NATURE, VOL. 202, NO. 4928, PP. 147-152, APRIL 11, 1964

FIBRINOPEPTIDE A - REINDEER

12345678990123456789
1 ADGSDPAGGEF(L,A,E,G,G,G,V)R/
$\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$
1 ALA ASP GLY SER ASP PRO ALA GLY GLY GLU PHEILEU, ALA,GLU,GLY, GLY,GLY,VALIARG ///

COMPOSITION

| 3 ALA A | 0 GLN Q | 1 LEU L | 1 SER | S | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 ARG R | 2 GLU E | 0 LYS K | 0 | THR | T |
| 0 ASN N | 6 GLY G | 0 MET M | 0 | TRP | H |
| 2 ASP D | 0 HIS H | 1 PHE F | 0 | TYR | 0 |
| 0 CYS C | 0 ILU 1 | 1 PRO P | 1 VAL | V | |

TOTAL NO. OF ACIDS $=19$

- DOOLITTLE, R. F. AND BLOMBACK, B., NATURE, VOL. 202, NO. 4928, PP. 147-152, APRIL 11, 1964

```
PIBRINOPEPTIDE A - PIG
```

12345678901234567

IAEVQDKGEFLAEGGGVR/

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

1 ALA GLU VAL GLN ASP LYS GLY GLU PHE LEU ALA GLU GLY GLY GLY VAL ARG ///

COMPOSITION

2	ALA	A	1	GLN	0	1	LEU	L	0	SER	S
1	ARG	R	3	GLU	E	1	LYS	K	0	THR	1
0	ASN	N	4	GLY	G	0	MET	M	0	TRP	W
1	ASP	D	0	HIS	H	1	PHE	F	0	TYR	0
0	CYS	C	0	ILU	I	0	PRO	P	2	VAL	v

* DOOLITTLE, R. F. AND BLOMBACK, B., NATURE, VOL. 202, NO. 4928, PP. 147-152, APRIL 11, 1964

FIBRINOPEPTIDE A - HUMAN

1234567890123456
1ADSGEGDFLAEGGGVR/
$\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$
1 ala asp ser gly glu gly asp phe leu ala glu gly gly gly val ARG ///

COMPOSITION

2	ALA	A	0	GLN	Q	1	LEU	L	1	SER
1	ARG	R	2	GLU	E	0	LYS	K	0	THR
0	ASN	N	5	GLY	G	0	MET	M	0	TRP
2	ASP	D	0	HIS	H	1	PHE	F	0	TYR
0	CYS	C	0	ILU	I	0	PRO	P	1	VAL

- DOOLITTLE, R. F. AND BLOMBACK, B. . NATURE,*VOL. 202. NO. 4928, PP. 147-152, APRIL 11, 1964

PHOSPHD-SERINE OCCURS AT POSITION 3 IN ABOUT HALF THE MOLECULES. A MINOR COMPONENT FRAGMENT, WITH THE N TERMINAL ALANINE MISSING, HAS BEEN DETECTED IN ALL INDIVIDUALS.

```
    1234567890142 3456
IVDPGETSFL(T,E,G,G)DAR/
    1
l VAL ASP PRO GLY GLU THR SER PHE LEU(THR,GLU,GLY,GLYIASP ALA
ARG ///
```


COMPOSITION

1	ALA	A	0	GLN	0	1	LEU	L	1	SER	S
1	ARG	R	2	GLU	E	0	LYS	K	2	THR	T
0	ASN	N	3	GLY	G	0	MET	M	0	TRP	W
2	ASP	D	0	HIS	H	1	PHE	F	0	TYR	0
0	CYS	C	0	ILU	1	1	PRO	P	1	VAL	v

- DOOLITTLE, R. F. AND BLOMBACK, B., NATURE, VOL. 202, NO. 4928, PP. 147-152, APRIL 11, 1964

FIBRINOPEPTIDE B - BOVINE

PYRROLIDONE CARBOXYLIC ACID - AT AMINO END SO4 ATTACHED TO TYROSINE AT POSITION 5

123456789012234567890
IFPTDODEGODDRPKVGLGAR/
$\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$
1 PHE PRO THR ASP TYR ASP GLU GLY GLN ASP ASP ARG PRO LYS VAL gly leu gly ala arg ///

COMPOSITION

1	ALA	A	1	GLN	0	1	LEU	L	0	SER	S
2	ARG	R	1	GLU	E	1	LYS	K	1	THR	T
0	ASN	N	3	GLY	G	0	MET	M	0	TRP	W
4	ASP	D	0	HIS	H	1	PHE	F	1	TYR	0
0	CYS	c	0	ILU	I	2	PRO	P	1	val	v

- DOOLITTLE, R. F. AND BLOMBACK, B., NATURE, VOL. 202, NO. 4928, PP. 147-152, APRIL 11, 1964

SU4 ATTACHED TO TYROSINE AT POSITION 5

12345678901234567890
1GOLDODEVDDNRAKLPLDAR/
$\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$
1 GLY TYR LEU ASP TYR ASP GLU VAL ASP ASP ASN ARG ALA LYS LEU PRO LEU ASP ALA ARG ///

COMPOSITION

2	ALA	A	0	GLN	0	3	LEU	L	0	SER	S
2	ARG	R	1	GLU	E	1	LYS	K	0	THR	T
1	ASN	N	1	GLY	G	0	MET	M	0	TRP	W
5	ASP	D	0	HIS	H	0	PHE	F	2	TYR	0
0	CYS	C	0	ILU	1	1	PRO	P	1	VÀi	V

* DCOLIITLE, R. F. AND BLOMBACK, B., NATURE, VOL. 202, NO. 4928, PP. 147-152, APRIL 11, 1964

```
FIBRINOPEPTIDE B - GOAT
```

SO4 ATTACHED TO TYROSINE AT POSITION 5

12345678901234567890
IGOLDODEVDDNRAKLPLDAR/
$\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$
1 GLY TYR LEU ASP TYR ASP GLU VAL ASP ASP ASN ARG ALA LYS LEU PKO LEU ASP ALA ARG ///

COMPOSITION

| 2 ALA A | 0 GLN 0 | 3 LEU L | 0 | SER | S |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 ARG R | 1 GLU E | 1 LYS K | 0 | THR | T |
| 1 ASN N | 1 GLY G | 0 MET M | 0 | TRP | H |
| 5 ASP D | 0 HIS H | 0 PHE F | 2 TYR | 0 | |
| 0 CYS C | 0 ILU I | 1 PRO P | 1 VAL | V | |

- DOOLITTLE, R. F. AND BLOMBACK, B., NATURE, VOL. 202. NO. 4928; PP.147-152, APRIL 11, 1964

FIBRINOPEPTIDE B - REINDEER

> PYRROLIDONE CARBOXYLIC ACID - AT AMINO END SO4 ATTACHED TO TYROSINE AT POSITION 4
> A MUTANT HAS BEEN FOUND WHERE GLYCINE REPLACES HISTIDINE IN POSITION 9.

1234567890123456789
1 LADODEV(E,H,D)RAKLHLDAR/
$\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$
1 LeU ala asp tyr asp glu valiglu.his,aspiarg ala lys leu his LEU ASP ALA ARG///

COMPOSITION

| 3 ALA A | 0 GLN Q | 3 LEU L | 0 | SER | S |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 ARG R | 2 GLU E | 1 LYS K | 0 | THR | T |
| 0 ASN N | 0 GLY G | 0 MET M | 0 | TRP | W |
| 4 ASP D | 2 HIS H | 0 PHE F | 1 TYR | 0 | |
| 0 CYS C | 0 ILU I | 0 PRO P | 1 VAL | V | |

* DOOLITTLE, R. F. AND BLOMBACK, B., NATURE, VOL. 202,

NO. 4928, PP. 147-152, APRIL 11, 1964

FIBRINOPEPTIDE B - PIG

SO4 ATTACHED TO TYROSINE AT POSITION 4

1234567890123456789
IAIDODEDEDGRPKVHVDAR/
$\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$
1 ALA ILU ASP TYR ASP GLU ASP GLU ASP GLY ARG PRO LYS VAL HIS VAL ASP ALA ARG ///

COMPOSITION

| 2 ALA A | 0 GLN 0 | 0 LEU L | O SER | S | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 ARG R | 2 GLU E | 1 LYS K | 0 | THR | T |
| 0 ASN N | 1 GLY G | 0 MET M | 0 | TRP | W |
| 5 ASP D | 1 HIS H | 0 PHE F | 1 TYR | 0 | |
| 0 CYS C | 1 ILU I | 1 PRO P | 2 VAL | V | |

- DOOLITTLE, R. F. AND BLOMBACK, B., NATURE, VOL. 202, NO. 4928, PP. 147-152, APRIL 11, 1964

FIBRINOPEPTIDE B - HUMAN

PYRROLIDONE CARBOXYLIC ACID - AT AMINO END PHOSPHO-SERINE OCCURS IN POSITION 11.

1234567890123
1GVNDNEEGFFSAR/
$\begin{array}{lllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13\end{array}$
1 GLY VAL ASN ASP ASN GLU GLU GLY PHE PHE SER ALA ARG ///

COMPOSITION

1	ALA	A	0	GLN	0	0	LEU	L	1	SER	S
1	ARG	R	2	GLU	E	0	LYS	K	0	THK	T
2	ASN	N	2	GLY	G	0	MET	M	0	TRP	W
1	ASP	D	0	HIS	H	2	PHE	F	0	TYR	0
0	cys	c	0	110	I	0	PRO	P	1	VAL	v

- DOOLITTLE, R. F. AND BLOMBACK, B., NATURE, VOL. 202, NO. 4928, PP. 147-152, APRIL 11, 1964

SU4 ATTACHED TO TYROSINE AT POSITION 4

1234567890123
1 A D D OID,E,P,L,D,VIDAR/
$\begin{array}{lllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13\end{array}$
1 ALA ASP ASP TYR(ASP,GLU,PRO,LEU,ASP,VAL)ASP ALA ARG ///

COMPOSITION

2	ALA	A	0	GLN	0	1	LEU	L	0	SER	S
1	ARG	R	1	GLU	E	0	LYS	K	0	THR	T
0	ASN	N	0	GLY	G	0	MET	M	0	TRP	W
5	ASP	D	0	HIS	H	0	PHE	F	1	TYR	0
0	CYS	C	0	ILU	I	1	PRO	P	1	VAL	V

- DCOLITILE, R. F. AND BLOMBACK, B., NATURE, VOL. 202, NO. 4928, PP. 147-152, APRIL 11, 1964

Immunoglobulins are serum proteins distinguishable by electrophoretic mobilities, sedimentation coefficients and differential solubilities in variable ethanol-salt solutions. Of these, the gamma globulins are associated with normal antibody function. A proposal for the structure of gamma globulin has been made by Porter (1959) and Fleishman et al, (1963).

Ganma globulin is thought to be a tetramer consisting of two pairs of identical polypeptide chains held in a particular configuration by disulfide bonds. There are two L (m.w. 20-25,000 each) and two H chains (m.w. 50,000-55,000 each). Because of the chemical problems associated with elucidation of gamma globulin structure, attention has turned to the abundantly produced, structurally similar giobulins found in multiple myeloma.

Bence-Jones proteins are found exclusively in the urine of all multiple myeloma patients, and probably represent abnormal protein synthesized by the multiple myeloma tumor cell. They are thought to be made exclusively of L chains, related to gamma globulins, (Edelman and Gally, 1962, S. Cohen, 1963, Putnam 1962). It is thought that determination of the amino acid sequence of a particular individual's Bence-Jones protein would reflect a homologous sequence in that individual's antibody structure, thereby partially elucidating the structure of gamma globulin.

Cohen, S. Biochem. J. Vol. 89, p. 334 (1963)
Edelman, G. M. and Gally, J. A. J. Exp. Med. Vol. 116, p. 207 (1962)
Fleishman, J. B. et al. Biochem. J. Vol. 88, p. 220 (1963)
Porter, R. R. Biochem. J. Vol. 73, p. 119 (1959)
Putnam, F. W. Biochim. Biophys. Acta. Vol. 63, p. 539 (1962)


```
    I D(T,S,S,S,E,E,P,M,I)L S(S,G,A,V)D R(D,T,T,S,S,E,E,A,V,I,I,I,
    31 F,C)L(O,D,W,E,E,P,G)K K A P KLLLI O DA S KLEES,P,G,A,V)
    G1 R F S(D,T,T,S,G,G,G)F T(D,S,S,E,E,P,I,L)I A T O(D,D,T,E,E,P,
    91 L,L,C,O,F,F)G(T,G,G)K V D F K R T(S,P,A,A,V)V F I(D,S,E,E,P,
    121 P,F)L K S(T,S,G,A)V(V,C)L L D(D,P,F)O R E A K V E WK V(D,D,
    151 D,S,S,E,E,G,A,L)E S(D,T,S,E,E,V)K D(T,S)O S S STLLLTLS
    I甘1 K A D OEKHKKL OAC EV(T,E,G,H)L S(T,S,P,VIK S F D R G
    211 E C *
```

 \(\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}\)
 1 ASP(THR,SER,SER,SER,GLU,GLU,PRO,MET,ILU)LEU SER(SER,GLY,ALA, VAL)ASP ARG(ASP,THR,THR,SER,SER,GLU,GLU,ALA,VAL,ILU,ILU,ILU,
 31 PHE,CYSILEU(TYR,ASP,TRP,GLU,GLU,PRO,GLYILYS LYS ALA PRO LYS
 leu leu ilu tyr asp ala ser lys leu glu(ser, pro,gly,ala, val)
 61 ARG PHE SER(ASP,THR,THR,SER,GLY,GLY,GLY)PHE THR(ASP,SER,SER, GLU,GLU,PRO, ILU,LEU)ILU ALA THR TYR(ASP,ASP,THR,GLU,GLU,PRO,
 91 LEU,LEU,CYS,TYR,PHE,PHEIGLY(THR,GLY,GLYILYS VAL ASP PHE LYS ARG THR(SER,PRO,ALA,ALA,VALIVAL PHE ILUIASP,SER,GLU,GLU,PRO,

121 PRO, PHEILEU LYS SER(THR,SER,GLY,ALAIVALIVAL,CYSILEU LEU ASP (ASP,PRO, PHEITYR ARG GLU ALA LYS VAL GLU TRP LYS VALIASP,ASP; 151 ASP, SER,SER,GLU,GLU,GLY,ALA,LEUIGLU SERIASP, THR, SER, GLU,GLU, VALILYS ASP(THR, SER)TYR SER SER SER THR LEU LEU THR LEU SER 181 LYS ALA ASP TYR GLU LYS HIS LYS LEU TYR ALA CYS GLU VALITHR, GLU,GLY,HISILEU SERITHR, SER,PRO, VALILYS SER PHE ASP ARG GLY 211 GLU CYS

COMPOSITION

| 13 ALA A | 0 GLN Q | 17 LEU L | 29 SER | S |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 5 ARG R | 24 GLU E | 14 LYS K | 17 THR | T |
| 0 ASN N | 13 GLY G | 1 MET M | 2 TRP | W |
| 20 ASP D | 2 HIS H | 10 PHE F | 8 TYR | O |
| 5 CYS C | 8 ILU I | 11 PRO P | 13 VAL | |

TOTAL NO. OF ACIDS $=212$

- HILSCHMANN, N. AND CRAIG, L.C., PROC. NATL. ACAD. SCI. U.S., VOL.53, NO.6, PP. 1403-1409, 1965

PAGE

ACHER, R.	TI	$\begin{aligned} & \text { BOPA } \\ & \text { BOAR } \end{aligned}$	$\begin{aligned} & 5.001 \\ & 8.101 \end{aligned}$
AMBLER, R. P.	CY	PS	1.006
	AZ	PS	3.003
ANDERER, F* A*	TM	TM	6.001
ANSFIELD, M* J.	TI	BOPA	5.001
BAHL, O. P.	CY	RS	1.009
BAGLIONI, C.	GL	HUH	2.020
BARNAFI, Le	TN	BOBM	8.102
	TN	PGBM	8.203
BARTSCH, Re G*	DH	CH	3.001
BEALE, ${ }^{\text {P }}$	GL	HUH	2.020
BEHRENS: O. K.	GN	BO	8.001
BELL, P. H ¢	TN	PGAC	8.206
BENSON, A°	CY	PG	1.005
	FE	CP	3.002
BERNIER, I	LS	CH	7.201
BLAKE, C. C. Fo	LS	CH	7.201
BLOMBACK, B.	FB	BOA	9.001
	FB	SHA	9.002
	FB	GTA	9.003
	FB	RDA	9.004
	FB	PGA	9.005
	FB	HUA	9.006
	FB	RTA	9.007
	FB	BOB	9.101
	FB	SHB	9.102
	FB	GTB	9.103
	FB	RDB	9.104
	FB	PGB	9.105
	FB	HUB	9.106
	FB	RTB	9.107
BRAUNITZER, G*	GL	HUHA	2.001
	GL	HUHB	2.002
	GL	HOHA	2.006
BROMER, W* W.	GN	BO	8.001
BROWN, $\mathrm{He}^{\text {c }}$	IS	SHA	8.304
	IS	WPA	8.305
BROWN, J. Ri	TR	BOCH	7.001
BROWN, L• He	AZ	PS	3.003
BUETTNER-JANUSCH, J.	GL	LEHB	2.007
CANFIELD, R.	LS	CH	7.201
CHAUVET, Jo	TI	BOPA	5.001
	PR	BOAR	8.101
CHUNG, D.	TN	SBAC	8.207
COHEN, S*			10.000
COLE, D.	TN	SBAC	8.207
CORMICK, J.	GL	HUHA	2.001
	GL	HUHG	2.003
CRAIG, L. C.	BJ	HU	10.001
DAVIS, D. S*	TN	PGAC	8.206
DIXON, J. S.	TN	BPAM	8.201
	TN	HOBM	8.204
	TN	SBAC	8.207
DLOUHA, V.	TI	BOPA	5.001


```
HOBOM, G.
HOWARD, K. S.
HUNT, J. A.
INGRAM, V. M.
ISHIHARA, Y0
ITO, Y.
JAUREGUI-ADELL: J.
JOLLES, J.
JOLLES, P.
JONES, R. T.
KAMEN, M* D.
KASSELL, Be
KAUFFMAN* D. L.
KEIL, B.
KIMMEL, J.
KINGMA, S.
KITAI, R.
KOENING, D. F.
KONIGSBERG, W.
KOSTKA, V*
KOTAKI, A.
KREIL; G*
LANDMANN, W. A.
LASKOWSKI, M*
LAWLER, H. C.
LEHMANN, H.
LERNER, A* B.
LI& C. H*
LIGHT, A.
LIU, A. K.
MAIR, G. A.
MARGOLIASH. E.
MARTIN, N.
MATSUBARA* H.
MATSUDA, G*
MELOUN, B.
MICHL, H.
```

GL HUHA 2.001
GL HUHB 2.002
TN PGAC 8.206
GL HUH 2.020
GL HUH 2.020
IS WHA 8.306
IS BOB B. 321
IS WHA 8.306
IS BOB 8.321
LS CH 7.201
LS CH 7.201
LS CH 7.201
GL HUHG 2.003
DH CH 3.001
TI BOPA 5.001
TR BOCH 7.001
TR BOTR 7.002
TR BOCH 7.001
PA PA 7.101
GL HUH 2.020
IS BOA 8.301
IS SHA 8.304
IS WPA 8.305
IS BOB 8.321
LS CH 7.201
GL HUHA 2.001
TR BOCH 7.001
IS BNA 8.302
IS BNB 8.322
CY HO 1.003
CY TF 1.007
TN PGAC 8. 206
TI BOPA 5.001
PR BOAR 8.101
PR PGLS 8. 102
GL HUH 2.020
TN BPAM 8.201
TN BPAM 8. 201
TN BOBM 8. 202
TN PGBM 8. 203
TN HOBM 8. 204
TN SBAC 8. 207
PA PA 7.101
LS CH 7.201
LS CH 7.201
CY CH 1.002
CY HO 1.003
CY PG 1.005
GL HUH 2.020
CY HU 1.004
CY PG 1.005
GL HOHA 2.006
TI BOPA 5.001
TR BOCH 7.001
PR BOOX 8. 103

MOORE, S.		BO	4.001
MOWER, H* F.	FE	CP	3.002
MULLER, C. J.	GL	HUH	2.020
MURAKAMI, H*	CY	BY	1.001
MURAYAMA: M*	GL	HUH	2.020
NAKASHIMA, T.	CY	PG	1.005
	FE	CP	3.002
NARITA, K.	CY	BY	1.001
	15	WPA	8.305
NAUGHTON, M* A.	15	HOA	8.303
	15	WPA	8.305
	15	BOB	8.321
NEEDLEMAN, S. Be	CY	CH	1.002
	CY	PG	1.005
NEURATH, H_{0}	TR	BOTR	7.002
NICOL, D. S* H*	15	WPA	8.305
	IS	BOB	8.321
NORTH, A. C. T.	LS	CH	7.201
NOUVEL, G*	TI	BOPA	5.001
PALEUS, S*	CY	PG	1.005
	CY	RR	1.010
	CY	SM	1.011
PAULING, L.	GL	HUH	2.020
PHILLIPS, D. C.	LS	CH	7.201
PEART, W* So	PR	BOHY	8.104
PORTER, R, R.			10.000
POPENOE, E* A.	PR	BOAR	8.101
	PR	PGLS	8.102
POSPISILOVA, D*	TI	BOPA	5.001
PRUSIK, Z .	TR	BOCH	7.001
PUTNAM F* W.			10.000
RAACK, I* D.	TN	SBAC	8.207
RADICEVIC, M.	TI	BOPA	5.001
RESSLER, Co	PR	B00x	8.103
RHINESMITH, H. W.	GL	HUH	2.020
ROOS, $\mathrm{P}^{\text {c }}$	TN	PGBM	8.203
RUDLOFF, V.	GL	HUHA	2.001
	GL	HUHB	2.002
RYLE, A* P*	IS	BOA	8.301
	15	BOB	$8 \cdot 321$
SAITO, T.	15	WHA	8.306
	15	BOB	8.321
SAKAKI, S*	15	WPA	8.305
SANGER, F*	15	BOA	8.301
	15	HOA	8.303
	15	SHA	8.304
	15	WPA	8.305
	IS	BOB	$8 \cdot 321$
SARMA, V_{0} Re	LS	CH	7.201
SCHNEIDER, R• G*	GL	HUH	2.020
SCHRAMM* G*	TM	TM	6.001
SCHROEDER, W. A.	GL	HUHA	2.001
	GL	HUHG	2.003
	GL	HUH	2.020
SCHWARTZ, H* C.	GL'	HUH	2.020

SHELTON, J. B.	$\begin{aligned} & \text { GL } \\ & \text { GL } \end{aligned}$	HUHA HUHG	$\begin{aligned} & 2,001 \\ & 2,003 \end{aligned}$
SHELTON, J. Re	GL	HUHA	2.001
	GL	HUHG	2.003
SHEPHERD, R. G*	TN	PGAC	8.206
SINN, L* G*	GN	BO	8.001
SMILLIE, L. B.	TR	BOCH	7.001
SMITH, D. B.	GL	HOHB	2.005
SMITH, E* L.	CY	HO	1.003
	CY	HU	1.004
	CY	RS	1.009
	PA	PA	7.101
SMITH, Le F.	IS	BOA	8.301
	IS	WPA	8.305
	IS	BOB	8.321
SMYTH, D* Ge	RN	BO	4.001
SORM, F.	TI	BOPA	5.001
	TR	BOCH	7.001
STEIN, W* H.	RN	BO	4.001
STEWART, J. W.	CY	CH	1.002
	CY	PG	1.005
SWENSON, R. T.	GL	HUH	2.020
TANAKA, MO	FE	CP	3.002
THOMPSON, E. O. Pe	15	BOA	8.301
TITANI, K.	CY	BY	1.001
	IS	WPA	8.305
TRIPPETT, S*	PR	B00X	8.103
TSUGITA, A*	TM	TM	6.001
TUPPY, $\mathrm{H}^{\text {e }}$	CY	HO	1.003
	CY	PG	1.005
	CY	SW	1.008
	CY	RR	1.010
	CY	SM	1.011
	PR	B00X	8.103
	IS	BOB	8.321
UHLIG, H_{6}	TM	TM	6.001
WALSH, K.	TR	BOTR	7.002
WATSON-WILLTAMS. E. J.	GL	HUH	2.020
WEBER, E*	TM	TM	6.001
WHITE, W. F.	TN	PGAC	8.206
WITTMANN, H. G*	TM	TMD	6.002
WITTMANN-LIEBOLD, B.	GL	HUHA	2.001
	GL	HUHB	2.002
	TM	TMD	6.002
YAOI, Y 。	CY		1.001
YASUNOBU, K. T*	CY	PG	1.005
	FE	CP	3.002
ZUCKERKANDL E	GL	GOHB	2.004

[^0]: - ASTERISK before reference indicates that the SEQUENCE WAS COPIED FROM, AND PRODFREAD AGAINST. THE ORIGINAL ARTICLE.
 = BEFORE REFERENCE INDICATES THAT WE HAVE NOT SEEN THE ORIGINAL ARTICLE.

 NO MARK BEFORE REFERENCE INDICATES OTHER GROUPS WHICH HAVE ALSO REPORTED WORK ON THE SAME PROTEIN.

[^1]: * BAHL, D. P. AND SMITH, E. L., J. BIOL. CHEM., VOL. 240, NO.9, PP. 3585-3593, SEPT., 1965

[^2]: $=$ ZUCKERKANDL, E., SCIENTIFIC AMERICAN, VOL. 212. NO. 5,
 PP. 110-118; MAY 1965

[^3]: - TANAKA, M., NAKASHIMA,T., BENSON,A., MOMER,H.F.,AND YASUNOBU,K.T., BIOCHEM. BIOPHYS. RES. COMMUN., VOL. 16, NO.5, PP.422-427, 1964

[^4]: - KASSELL, B., RADICEVIC, M., ANSFIELD, M. J., AND LASKOHSKI, M., BIOCHEM. BIOPHYS. RES. COMMUN., VOL. 18, NO.2, PP.255-258, 1965

