204 research outputs found
Radiological Risks of Neutron Interrogation of Food
In recent years there has been growing interest in the use of neutron scanning techniques for security. Neutron techniques with a range of energy spectra including thermal, white and fast neutrons have been shown to work in different
scenarios. As international interest in neutron scanning increases the risk of activating cargo, especially foodstuffs must be considered.
There has been a limited amount of research into the activation of foods by neutron beams and we have sought to improve the amount of information available. In this paper we show that for three important metrics; Activity, Ingestion
Dose and Time to Background there is a strong dependence on the food being irradiated and a weak dependence on the energy of irradiation.
Previous studies into activation used results based on irradiation of pharmaceuticals as the basis for research into activation of food. The earlier work reports that 24Na production is the dominant threat which motivated the search for 23(n;\gamma)24Na in highly salted foods. We show that 42K can be more significant than 24Na in low
salt foods such as Bananas and Potatoes
Neutron-induced dpa, transmutations, gas production, and helium embrittlement of fusion materials
In a fusion reactor materials will be subjected to significant fluxes of
high-energy neutrons. As well as causing radiation damage, the neutrons also
initiate nuclear reactions leading to changes in the chemical composition of
materials (transmutation). Many of these reactions produce gases, particularly
helium, which cause additional swelling and embrittlement of materials. This
paper investigates, using a combination of neutron-transport and inventory
calculations, the variation in displacements per atom (dpa) and helium
production levels as a function of position within the high flux regions of a
recent conceptual model for the "next-step" fusion device DEMO. Subsequently,
the gas production rates are used to provide revised estimates, based on new
density-functional-theory results, for the critical component lifetimes
associated with the helium-induced grain-boundary embrittlement of materials.
The revised estimates give more optimistic projections for the lifetimes of
materials in a fusion power plant compared to a previous study, while at the
same time indicating that helium embrittlement remains one of the most
significant factors controlling the structural integrity of fusion power plant
components.Comment: 9 pages, 9 figure
Recommended from our members
ENDF/B-VII.0 Data Testing for Three Fast Critical Assemblies
In this report we consider three fast critical assemblies, each assembly is dominated by a different nuclear fuel: Godiva (U235), Jezebel (Pu239) and Jezebel23 (U233) [1]. We first show the improvement in results when using the new ENDF/B-VII.0 data [2], rather than the older, now frozen, ENDF/B-VI.8 data [3]. We do this using what we call a one code/ multiple library approach, where results from one code (MCNP) are compared using two different data libraries (ENDF/B-VII.0 and VI.8). Next we show that MCNP results are not specific to this one code by using what we call a one data library/multiple code approach; for this purpose we invited many codes to submit results using the ENDF/B-VII.0 data; the most detailed results presented in this report compare MCNP and TART. The bottom line is that we have shown that using the new ENDF/B-VII.0 data library with a variety of transport codes, for the first time we are able to reproduce the expected K-eff values for all three assemblies to within the quoted accuracy of the models, namely 1.0 +/- 0.001. This is a BIG improvement compared to the results obtained using the older ENDF/B-VI.8 data library. Another important result of this study is that we have demonstrated that currently there are many computer codes that can accurately use the new ENDF/B-VII.0 data
Investigating the Superconducting Properties and Surface Morphology of Sputtered Nb Films on Cu Due to Laser Treatment
Bulk niobium is currently the material of choice for superconducting radio frequency (SRF) cavities and is a well matured process. However, it is possible that SRF cavities could be further improved beyond bulk Nb by sputtering thin Nb films onto Cu cavities. Copper has a greater thermal conductivity than Nb and is also easier to machine, while sputtering films on the surface reduces the amount of Nb used to fabricate the whole cavity. However, sputtering Nb on Cu produces other issues, for example, the surface quality of the Cu affects the quality of the Nb deposited on the surface and therefore the superconducting parameters. As the Nb on the surface is not perfect, the magnetic field produced by the RF can enter the cavity earlier than expected, producing RF losses, which can in turn lead to a quench. One approach is to treat the Nb post deposition by irradiating the surface using a laser to polish the surface of the Nb and increase the surface magnetic field that the cavity can maintain while remaining in the Meissner state. A magnetic field penetration experiment designed and built at Daresbury Laboratory has been used to measure the field of full flux penetration to characterize the effect of the laser treatment on the superconducting properties of the Nb. Surface characterization and the response of the Nb in a dc magnetic field have also been performed to try and provide an explanation for the change in the superconducting properties. The results demonstrate that the laser treatment can lead to an increase in the magnetic field at which the flux penetrates from one side of the sample to the other, thus it could potentially improve the performance of Nb coated RF cavities
From cutting-edge pointwise cross-section to groupwise reaction rate: A primer
The nuclear research and development community has a history of using both integral and differential experiments to support accurate lattice-reactor, nuclear reactor criticality and shielding simulations, as well as verification and validation efforts of cross sections and emitted particle spectra. An important aspect to this type of analysis is the proper consideration of the contribution of the neutron spectrum in its entirety, with correct propagation of uncertainties and standard deviations derived from Monte Carlo simulations, to the local and total uncertainty in the simulated reactions rates (RRs), which usually only apply to one application at a time. This paper identifies deficiencies in the traditional treatment, and discusses correct handling of the RR uncertainty quantification and propagation, including details of the cross section components in the RR uncertainty estimates, which are verified for relevant applications. The methodology that rigorously captures the spectral shift and cross section contributions to the uncertainty in the RR are discussed with quantified examples that demonstrate the importance of the proper treatment of the spectrum profile and cross section contributions to the uncertainty in the RR and subsequent response functions. The recently developed inventory code FISPACT-II, when connected to the processed nuclear data libraries TENDL-2015, ENDF/B-VII.1, JENDL-4.0u or JEFF-3.2, forms an enhanced multi-physics platform providing a wide variety of advanced simulation methods for modelling activation, transmutation, burnup protocols and simulating radiation damage sources terms. The system has extended cutting-edge nuclear data forms, uncertainty quantification and propagation methods, which have been the subject of recent integral and differential, fission, fusion and accelerators validation efforts. The simulation system is used to accurately and predictively probe, understand and underpin a modern and sustainable understanding of the nuclear physics that is so important for many areas of science and technology; advanced fission and fuel systems, magnetic and inertial confinement fusion, high energy, accelerator physics, medical application, isotope production, earth exploration, astrophysics and homeland security
Filamentation of a relativistic proton bunch in plasma
We show in experiments that a long, underdense, relativistic proton bunch propagating in plasma undergoes the oblique instability, which we observe as filamentation. We determine a threshold value for the ratio between the bunch transverse size and plasma skin depth for the instability to occur. At the threshold, the outcome of the experiment alternates between filamentation and self-modulation instability (evidenced by longitudinal modulation into microbunches). Time-resolved images of the bunch density distribution reveal that filamentation grows to an observable level late along the bunch, confirming the spatiotemporal nature of the instability. We provide a rough estimate of the amplitude of the magnetic field generated in the plasma by the instability and show that the associated magnetic energy increases with plasma density
TALYS/TENDL verification and validation processes: Outcomes and recommendations
The TALYS-generated Evaluated Nuclear Data Libraries (TENDL) provide truly general-purpose nuclear data files assembled from the outputs of the T6 nuclear model codes system for direct use in both basic physics and engineering applications. The most recent TENDL-2015 version is based on both default and adjusted parameters of the most recent TALYS, TAFIS, TANES, TARES, TEFAL, TASMAN codes wrapped into a Total Monte Carlo loop for uncertainty quantification. TENDL-2015 contains complete neutron-incident evaluations for all target nuclides with Z ≤116 with half-life longer than 1 second (2809 isotopes with 544 isomeric states), up to 200 MeV, with covariances and all reaction daughter products including isomers of half-life greater than 100 milliseconds. With the added High Fidelity Resonance (HFR) approach, all resonances are unique, following statistical rules. The validation of the TENDL-2014/2015 libraries against standard, evaluated, microscopic and integral cross sections has been performed against a newly compiled UKAEA database of thermal, resonance integral, Maxwellian averages, 14 MeV and various accelerator-driven neutron source spectra. This has been assembled using the most up-to-date, internationally-recognised data sources including the Atlas of Resonances, CRC, evaluated EXFOR, activation databases, fusion, fission and MACS. Excellent agreement was found with a small set of errors within the reference databases and TENDL-2014 predictions
Inventory simulation tools: Separating nuclide contributions to radiological quantities
The activation response of a material is a primary factor considered when evaluating its suitability for a nuclear application. Various radiological quantities, such as total (becquerel) activity, decay heat, and γ dose, can be readily predicted via inventory simulations, which numerically evolve in time the composition of a material under exposure to neutron irradiation. However, the resulting data sets can be very complex, often necessarily resulting in an over-simplification of the results – most commonly by just considering total response metrics. A number of different techniques for disseminating more completely the vast amount of data output from, in particular, the FISPACT-II inventory code system, including importance diagrams, nuclide maps, and primary knock-on atom (PKA) spectra, have been developed and used in scoping studies to produce database reports for the periodic table of elements. This paper introduces the latest addition to this arsenal – standardised and automated plotting of the time evolution in a radiological quantity for a given material separated by contributions from dominant radionuclides. Examples for relevant materials under predicted fusion reactor conditions, and for bench-marking studies against decay-heat measurements, demonstrate the usefulness and power of these radionuclide-separated activation plots
Management of patients with hypertension and chronic kidney disease referred to Hypertension Excellence Centres among 27 countries. On behalf of the European Society of Hypertension Working Group on Hypertension and the Kidney.
Objective Real-life management of patients with hypertension and chronic kidney disease (CKD) among European Society of Hypertension Excellence Centres (ESH-ECs) is unclear : we aimed to investigate it. Methods A survey was conducted in 2023. The questionnaire contained 64 questions asking ESH-ECs representatives to estimate how patients with CKD are managed. Results Overall, 88 ESH-ECS representatives from 27 countries participated. According to the responders, renin-angiotensin system (RAS) blockers, calcium-channel blockers and thiazides were often added when these medications were lacking in CKD patients, but physicians were more prone to initiate RAS blockers (90% [interquartile range: 70-95%]) than MRA (20% [10-30%]), SGLT2i (30% [20-50%]) or (GLP1-RA (10% [5-15%]). Despite treatment optimisation, 30% of responders indicated that hypertension remained uncontrolled (30% (15-40%) vs 18% [10%-25%]) in CKD and CKD patients, respectively). Hyperkalemia was the most frequent barrier to initiate RAS blockers, and dosage reduction was considered in 45% of responders when kalaemia was 5.5-5.9 mmol/L. Conclusions RAS blockers are initiated in most ESH-ECS in CKD patients, but MRA and SGLT2i initiations are less frequent. Hyperkalemia was the main barrier for initiation or adequate dosing of RAS blockade, and RAS blockers' dosage reduction was the usual management
The joint evaluated fission and fusion nuclear data library, JEFF-3.3
The joint evaluated fission and fusion nuclear data library 3.3 is described. New evaluations for neutron-induced interactions with the major actinides U, U and Pu, on Am and Na, Ni, Cr, Cu, Zr, Cd, Hf, W, Au, Pb and Bi are presented. It includes new fission yields, prompt fission neutron spectra and average number of neutrons per fission. In addition, new data for radioactive decay, thermal neutron scattering, gamma-ray emission, neutron activation, delayed neutrons and displacement damage are presented. JEFF-3.3 was complemented by files from the TENDL project. The libraries for photon, proton, deuteron, triton, helion and alpha-particle induced reactions are from TENDL-2017. The demands for uncertainty quantification in modeling led to many new covariance data for the evaluations. A comparison between results from model calculations using the JEFF-3.3 library and those from benchmark experiments for criticality, delayed neutron yields, shielding and decay heat, reveals that JEFF-3.3 performes very well for a wide range of nuclear technology applications, in particular nuclear energy
- …
