623 research outputs found

    The Impact of Course Title and Instructor Gender on Student Perceptions and Interest in a Women's and Gender Studies Course

    Get PDF
    Diversity awareness has enormous benefits, and universities in the United States increasingly require students to complete diversity-related courses. Prior research has demonstrated that students' initial attitudes toward these courses affect their subsequent engagement, as well as the quality of their learning experience; however, very little research has examined how these initial attitudes are formed. We conducted an experiment to examine this issue in the context of a women's and gender studies course in psychology. Participants read one of two identical course descriptions that varied only the course title (i.e., Psychology of Gender versus Psychology of Women) and instructor gender. Participants perceived a women-titled course to be narrowly focused compared to an identical gender-titled course and were more interested in taking the gender-titled course. Instructor gender had no effects on any of the variables. Additionally, female participants had more positive attitudes toward the course than male participants, regardless of title. Exploratory mediation analyses indicated that the main effects of course title and participant gender were mediated by perceptions of course content. Implications for improving student experiences and interest in diversity-related courses are discussed

    Morphological variation of the maxilla in modern humans and African apes

    Get PDF
    Differences in morphology among modern humans and African apes are frequently used when assessing whether hominin fossils should be attributed to a single species or represent evidence for taxic diversity. A good understanding of the degree and structure of the intergeneric, interspecific, and intraspecific variation, including aspects such as sexual dimorphism and age, are key in this context. Here we explore the variation and differences shown by the maxilla of extant hominines, as maxillary morphology is central in the diagnosis of several hominin taxa. Our sample includes adults of all currently recognized hominine species and subspecies, with a balanced species sex ratio. In addition, we compared the adults with a small sample of late juveniles. The morphology of the maxillae was captured using three-dimensional landmarks, and the size and shape were analyzed using geometric morphometric methods. Key observations are that 1) the maxillae of all extant hominine species and subspecies show statistically significant differences, but complete separation in shape is only seen at the genus level; 2) the degree of variation is not consistent between genera, with subspecies of Gorilla being more different from each other than are species of Pan; 3) the pattern of sexual shape dimorphism is different in Pan, Gorilla, and Homo, often showing opposite trends; and 4) differentiation between maxillary shapes is increased after adjustment for static intraspecific allometry. These results provide a taxonomically up-to-date comparative morphological framework to help interpret the hominin fossil record, and we discuss the practical implications in that context

    Assessing morphology and function of the semicircular duct system: Introducing new in-situ visualization and software toolbox

    Get PDF
    International audienceThe semicircular duct system is part of the sensory organ of balance and essential for navigation and spatial awareness in vertebrates. Its function in detecting head rotations has been modelled with increasing sophistication, but the biomechanics of actual semicircular duct systems has rarely been analyzed, foremost because the fragile membranous structures in the inner ear are hard to visualize undistorted and in full. Here we present a new, easy-to-apply and non-invasive method for three-dimensional in-situ visualization and quantification of the semicircular duct system, using X-ray micro tomography and tissue staining with phosphotungstic acid. Moreover, we introduce Ariadne, a software toolbox which provides comprehensive and improved morphological and functional analysis of any visualized duct system. We demonstrate the potential of these methods by presenting results for the duct system of humans, the squirrel monkey and the rhesus macaque, making comparisons with past results from neurophysiological, oculometric and biomechanical studies

    ON THE EXPRESSIVE POWER OF THE RELATIONAL MODEL: A DATABASE DESIGNER\u27S POINT OF VIEW

    Get PDF
    The purpose of this paper is to introduce a framework for assessing the expressive power of data models and to apply this framework to the relational model of data. From a designer\u27s point of view, a data model such as the relational model should not only be formally defined and easy to understand, but should also provide a powerful set of constructs to model real-world phenomena. The expressive power of a data model, defined as the degree to which its constructs match with constructs encountered in reality, can be judged by two complementary principles: the interpretation principle and the representation principle. It is asserted that database designers attempt to minimize the number of ad hoc database constraints, and that a data model faithful to the two principles supports this design strategy. Subsequently, this constraint minimization strategy is used to assess the expressive power of a particular data model, i.e., the relational data model. The authors take the position that the expressive power of the relational model is not optimal, due to a lack of adherence to both the interpretation principle and the representation principle. The paper amplifies this position by means of a number of examples, all based on publications by Codd and Date

    Morphology and function of Neandertal and modern human ear ossicles.

    Get PDF
    The diminutive middle ear ossicles (malleus, incus, stapes) housed in the tympanic cavity of the temporal bone play an important role in audition. The few known ossicles of Neandertals are distinctly different from those of anatomically modern humans (AMHs), despite the close relationship between both human species. Although not mutually exclusive, these differences may affect hearing capacity or could reflect covariation with the surrounding temporal bone. Until now, detailed comparisons were hampered by the small sample of Neandertal ossicles and the unavailability of methods combining analyses of ossicles with surrounding structures. Here, we present an analysis of the largest sample of Neandertal ossicles to date, including many previously unknown specimens, covering a wide geographic and temporal range. Microcomputed tomography scans and 3D geometric morphometrics were used to quantify shape and functional properties of the ossicles and the tympanic cavity and make comparisons with recent and extinct AMHs as well as African apes. We find striking morphological differences between ossicles of AMHs and Neandertals. Ossicles of both Neandertals and AMHs appear derived compared with the inferred ancestral morphology, albeit in different ways. Brain size increase evolved separately in AMHs and Neandertals, leading to differences in the tympanic cavity and, consequently, the shape and spatial configuration of the ossicles. Despite these different evolutionary trajectories, functional properties of the middle ear of AMHs and Neandertals are largely similar. The relevance of these functionally equivalent solutions is likely to conserve a similar auditory sensitivity level inherited from their last common ancestor

    Long-term observations of the background aerosol at Cabauw, The Netherlands

    Get PDF
    Long-term measurements of PM2.5 mass concentrations and aerosol particle size distributions from 2008 to 2015, as well as hygroscopicity measurements conducted over one year (2008-2009) at Cabauw, The Netherlands, are compiled here in order to provide a comprehensive dataset for understanding the trends and annual variabilities of the atmospheric aerosol in the region. PM2.5 concentrations have a mean value of 14.4 mu g m(-3) with standard deviation 2.1 mu g m(-3), and exhibit an overall decreasing trend of -0.74 mu g m(-3) year(-1). The highest values are observed in winter and spring and are associated with a shallower boundary layer and lower precipitation, respectively, compared to the rest of the seasons. Number concentrations of particles smaller than 500 nm have a mean of 9.2 x 10(3) particles cm(-3) and standard deviation 4.9x10(3) particles cm(-3), exhibiting an increasing trend between 2008 and 2011 and a decreasing trend from 2013 to 2015. The particle number concentrations exhibit highest values in spring and summer (despite the increased precipitation) due to the high occurrence of nucleation-mode particles, which most likely are formed elsewhere and are transported to the observation station. Particle hygroscopicity measurements show that, independently of the air mass origin, the particles are mostly externally mixed with the more hydrophobic mode having a mean hygroscopic parameter kappa of 0.1 while for the more hydrophilic mode kappa is 0.35. The hygroscopicity of the smaller particles investigated in this work (i.e., particles having diameters of 35 nm) appears to increase during the course of the nucleation events, reflecting a change in the chemical composition of the particles. (C) 2017 Elsevier B.V. All rights reserved.Peer reviewe

    Detailed electronic structure studies on superconducting MgB2_2 and related compounds

    Full text link
    In order to understand the unexpected superconducting behavior of MgB2_2 compound we have made electronic structure calculations for MgB2_2 and closely related systems. Our calculated Debye temperature from the elastic properties indicate that the average phonon frequency is very large in MgB2_2 compared with other superconducting intermetallics and the exceptionally high TcT_c in this material can be explained through BCS mechanism only if phonon softening occurs or the phonon modes are highly anisotropic. We identified a doubly-degenerate quasi-two dimensional key-energy band in the vicinity of EFE_{F} along Γ\Gamma-A direction of BZ which play an important role in deciding the superconducting behavior of this material. Based on this result, we have searched for similar kinds of electronic feature in a series of isoelectronic compounds such as BeB2_2, CaB2_2, SrB2_2, LiBC and MgB2_2C2_2 and found that MgB2_2C2_2 is one potential material from the superconductivity point of view. There are contradictory experimental results regarding the anisotropy in the elastic properties of MgB2_2 ranging from isotropic, moderately anisotropic to highly anisotropic. In order to settle this issue we have calculated the single crystal elastic constants for MgB2_2 by the accurate full-potential method and derived the directional dependent linear compressibility, Young's modulus, shear modulus and relevant elastic properties. We have observed large anisotropy in the elastic properties. Our calculated polarized optical dielectric tensor shows highly anisotropic behavior even though it possesses isotropic transport property. MgB2_2 possesses a mixed bonding character and this has been verified from density of states, charge density and crystal orbital Hamiltonian population analyses

    The Evolution of Bat Vestibular Systems in the Face of Potential Antagonistic Selection Pressures for Flight and Echolocation

    Get PDF
    PMCID: PMC3634842This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
    • …
    corecore