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ON THE EXPRESSIVE POWER OF THE RELATIONAL MODEL:
A DATABASE DESIGNER'S POINT OF VIEW

It. J. Veldwijk
E. R.K.Spoor
M. Boogaard

M. V. van Dijk
MESDAG Research Group

Vrije Universeteit Amsterdam

ABSTRACT

The purpose of this paper is to introduce a framework for assessing the expressive power of data
models and to apply this framework to the relational model of data. From a designer's point of view,
a data model such as the relational model should not only be formally defined and easy to understand,
but should also provide a powerful set of constructs to model real-world phenomena. The expressive
power of a data model, defined as the degree to which its constructs match with constructs
encountered in reality, can be judged by two complementary principles: the interpretation principle
and the representation principle. It is asserted that database designers attempt to minimize the
number of ad hoc database constraints, and that a data model faithful to the two principles supports
this design strategy. Subsequently, this constraint minimization strategy is used to assess the expressive
power of a particular data model, i.e., the relational data model. The authors take the position that
the expressive power of the relational model is not optimal, due to a lack of adherence to both the
interpretation principle and the representation principle. The paper amplifies this position by means
of a number of examples, all based on publications by Codd and Date.

1. INTRODUCTION Another development has been the recognition of the
importance of database constraints in database design.

The importance of capturing aspects of reality in data Many program-independent aspects cannot be captured
models is generally accepted among scientists and infor- by the normalization procedure. It is quite difficult to
mation systems designers. Codd's (1990) relational explain why a business rule like "any employee works for
model of data has triggered a great deal of research at most one department" can be represented in a data-
development, and general interest in data models and base design, while a rule like "any department employs at
data modelling. In the field of application design, reta- least one employee" cannot. This position is also taken
tional concepts, notably normalization theory, have by Codd (1990, p. 243), who asserts that constraints
greatly influenced the way in which databases are de- should be expressed in a relational language and that
signed. constraint enforcement is the responsibility of the DBMS,

rather than the application programs.
Initially, the procedure was to collect information require-
ments, describe screen and print layouts in detail, and The database design is an important tool for future appli-
then derive a data structure to reflect these requirements cation users, because it provides them with a checklist of
in a non-redundant manner by means of a bottom up all the rules the application must enforce. From their
normali tion procedure. point of view, it is crucial that the design faithfully re-

flects all relevant microworld aspects. A design that
overly constrains the database states permitted will result

In recent years this approach has been more or less in a misused or unused and therefore unreliable applica-
abandoned. A top-down, semantically oriented!, design tion. A design that permits database states that have no
approach has proved to result in correct database designs counterpart in reality does not support its users properly,
in far less time, and the database design now has a place and thus also leads to unreliability too.
of its own in the overall application design. This shift in
attitude is reflected in several publications by Date (see, The database design process is aided by a data model,
for example, 1989, Chapter 19, and compare 1981, Char which enables the designer to express the rules that apply
ter 14, with 1990a, Chapter 21). to the user's environment. The expressive power of a
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data model is an important factor in the effective and theless, both these objectives of database design are
efficient design and maintenance of applications. The widely accepted, as is shown by Codd's (1979) efforts to
data model's expressive power can be regarded as the extend the semantic content of the relational model.
degree to which its constructs match with the constructs Moreover, both Codd and Date stress the semantic
that designers encounter in reality. nature of relational constructs such as relations, domains,

keys, etc. (Codd 1990, p. VII-V[II; Date 1989, Chapter 8).
Paramount objectives of data models are formality and
simplicity (see, e.g., Date 199Ob, p. 134). However, from The emphasis on formality and consistency is clearly
a database designer's point of view these objectives are demonstrated by Date's (1989, p. 145) interpretation
necessary but insufficient. In their view, data models principle, which states that "the data model in question
should emphasize expressiveness rather than formality must have a commonly accepted (and useful) INTER-
and simplicity. PRETATION: that is, its objects, integrity rules, and

operators must have some generally accepted correspon-
Although the preceding discussion can be applied to data dence to phenomena in the real world."
models in general, the present paper focuses on one
particular data model - the relational data model. This The interpretation principle, while useful, is not sufficient
model has been chosen because it is highly popular in the to judge the expressive power of a data model. For this
field of database design and is dominated by formal reason we will introduce the representation principle as a
considerations. The purpose of the paper is to introduce complementary yardstick. This principle states for any
a framework for assessing the expressive power of data data model that it must ofer constructs to represent aU
models and to apply this framework to the relational data real-world phenomena generally considered significant by
model. In section 2, we take a closer look at data models application designers. Even if this constitutes a never
as such, and identify two complementary principles by ending task and requires intensive communication
which the expressive power of a data model can be between the designers and users of data models, it should
assessed. Section 3 examines the process of capturing be an important and explicit aim of data model design, as
reality in a database design using a data model and a it is in database design.
database design strategy, directed at minimizing the
number of application-specific constraints, is identified. We argue that the relational model does not fully con-
Sections 4,5 and 6 apply the constraint minimization form to Date's interpretation principle in a broader
strategy to aspects of the relational model. In section 4, sense, by which we mean that although the model uses
we criticize certain design guidelines advocated by Codd only constructs that have real-world counterparts, it
and Date from a constraint-minimization viewpoint. In allows designers to devise database designs that cannot
section 5, we discuss a number of constructs allowed by have real-world counterparts. Moreover, we argue that,
the relational model that do not occur in reality, and thus because of the overemphasis on formality, the current
lead to cumbersome database design. In section 6, we relational model does not adhere sufficiently to the
discuss some constructs that do occur in reality, but representation principle. Before we present our argu-
cannot be represented elegantly by the relational model, ments, we have to make clear what the costs of these
again leading to cumbersome database design. Finally, in alleged shortcomings are.
section 7, recommendations are made for remedying the
identified shortcomings of the relational model. The
central idea behind these recommendations is that re- 3. DATABASE DESIGN AND DATA MODEL
search directed at extending the expressive power of a SUPPORT
data model requires the research community to adopt not
only a formal but also a database designer's orientation. In an abstract sense, most data models provide api)lica-

tion designers with a view of the world in terms of ob-
jects, constraints on objects, and operations on objects.

2. DATA MODELS In designing a database, it is obviously crucial to decide
which real-world phenomena are important enough to be

A data model is often regarded as a collection of con- represented as objects and which high-level operations on
cepts, well-defined by mathematics or formal logic, that these objects should be supported. In addition, it is
help one to consider and express the static and dynamic important to decide what constraints apply to the objects
properties of data-intensive applications. This definition identified.
stresses the need for a solid formal basis for any data
model, but does not explicitly state that it should faith- A data model provides database designers with inherent,
fully represent the relevant properties of reality. Never- explicit and implicit constraints (Brodie 1984). Inherent
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constraints are rules that can never be violated in the and the representation principle. Hence, these principles
data model. In the relational model, examples of such are just as relevant to database designs as they are to
rules (i.e., metarules) are 'tuples must be unique within data model design.
a relation" and "every relation has at least one attribute."
Explicit constraints are rules that can be defined using In the next three sections the framework presented above
some combination of mechanisms provided by the data will be applied to the relational model. We shall demon-
model. In a relational environment, an example of such a strate its applicability to discussions on relational data-
rule is the assertion that "no two tuples in the relation base design guidelines (section 4) and to discussions
DEPARTMENT have identical values for the attribute related to constructs in the relational model itself (sec-
DEM#: Implicit constraints are rules that are implied tions 5 and 6).
by other rules. Consider the rule "for every value of the
attribute DEPT# in DEPARTMENT there exists at most
one value of the attribute DEPT'NAME in DEPART- 4. CONSTRAINT MINIMIZATION AND
MEN['." This rule is implied by the explicit constraint DATABASE DESIGN GUIDELINES
given above, in combination with the inherent constraint
that "attributes are atomic: The preceding sections provide a frame of reference for

assessing guidelines for database design advocated by
This constraint classification schema makes it possible to authorities like Codd and Date. It appears that several of
appraise the design decisions of competent database these are at odds with the constraint minimization stra-
designers. Their design strategy seems to be directed at tegy described above. The guidelines to be discussed are
minimizing the number of explicit constraints. To put it concerned with normalization composite keys, and the
another way, database design aims at expressing as many classification of explicit constraints.
rules as possible in terms of inherent constraints provided
by the data model. It is obvious that if the set of in-
herent constraints the data model supports is expressive, 4.1 Normalization
the database designer will need relatively few explicit
constraints. The guideline to decompose relations into at least BCNF

is generally accepted among database designers. Unfor-
The normalization procedure is an excellent example of tunately, some authorities in the field now display a
this strategy. If a rule holds that attribute B is function- different attitude towards normalization. For instance,
ally dependent on attribute A, the relational model makes Date (1989, p. 439) is of the opinion that "if a relation-
it possible to express this in an implicit manner by ap- ship that is currently many-to-one might eventually
plying the inherent constraint which asserts that "attri- become many-to-many...then it would be better to repre-
butes are atomic," with the explicit constraint that "no two sent it in a separate table right away, in order to avoid
tuples in a relation have identical values for attribute A." future disruptive changes to the design." He suggests that
Together these constraints imply the functional depen- many-to-one relationships are of two kinds: those that
dence of attribute B on attribute A. are inherent/y many-to-one and those that are currently

many-to-one but need not remain so. Figure 1 gives an
Of course there is much more to database design than example of both kinds of relationships.
normalization. It is possible to conceive fully normalized
but wrong databases. The general strategy directed at If the database designer chooses to view the many-to-one
minimizing the number of explicit constraints provides a relationship as not inherent, he has to introduce one
framework for distinguishing between good and bad extra relation, one extra attribute, two extra keys and two
database designs and expressive and inexpressive data rules expressing in a relational language that "any EM-
models. PLOYEE tuple must be referenced by at least one

ASSIGNMENT tuple" and that "no two tuples in AS-
The rationale for this strategy must still be explained. At SIGNMENT have the same value for EMP#."
a low level of abstraction, the reward for designing good
databases is decreased programming effort and improved Beside making the obvious point that in practice this
maintainability of application programs. At a high level design criterion is a very soft one, it is clear that this
of abstraction, the reward for good design is improved approach does not lead to a minimal number of explicit
understanding of the application in general, as constructs constraints. Since Date (199Ob, p. 212) also supports this
in the real world can easily be mapped onto constructs in objective, the advice not to always normalize all the way
the data model and vice versa. In other words, good is not only impractical but also questionable on thcoreti-
database design applies both the interpretation principle cal grounds, on the basis of arguments Date himself
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INHERENT MANY-TO-ONE NOT INHERENT MANY-TO-ONE

EMPLOYEE(EMP#, DEPT#, ) EMPLOYEE(EMP#, )

ASSIGNMENT (EMP#.DEPT#)

,$--|
DEPARTMENT(DEPT#, ) DEPARTMENT(DEPT#, ......,

Figure 1. Any Employee Works for Exactly One Department

agrees with. If one takes the constraint minimization Another related argument supplied by Date is that
strategy seriously, it appears that Date's guideline is composite keys lead to "logical redundancy." In the
relevant for discussing the relational model, but not for example in Table 1, the fact that the Royal Dutch com-
discussing the database design process. If instability in pany produced a balance in 1989 is represented many
the relationships between classes of objects is a normal times, once in the table BALANCE and many times in
phenomenon in reality, it follows that the relational the table BALITEM. Note that this logical redundancy
model does not adequately support the representation also occurs in the noncomposite key solution, although on
principle and should therefore be extended or improved: a more limited scale. This form of redundancy, if it is
We feel that the process of database design is fuzzy redundancy, never leads to consistency problems. The
enough as it is, and that following Date's guideline reason is that whenever consistency is violated, a referen-
generally does not improve matters. tial integrity constraint is violated as well. Redundancy in

the traditional sense always leads to the introduction of
explicit constraints. Logical redundancy leads to the

4.2 Composite Keys and Surrogates introduction of an implicit constraint (sce section 3) and
thus does not complicate the database design. The

The relational model permits the use of composite keys. advantage of redundancy, easier retrieval, also applies to
Date (199Ob, Chapters 5 and 6) is opposed to using such logical redundancy. Date's logical redundancy argument
keys. Again his arguments include the possibility of thus justifies the use of composite keys in certain cases.
future changes in the database design. Although it is
good practice to minimize the use of composite keys, A third consequence of always using noncomposite keys
blindly following Date's advice leads to unnatural data- is the introduction of meaningless attributes. These attri-
base designs and an increased number of explicit con- butes are effectively analogous to the surrogates Codd
straints. There are circumstances in which a composite (1979) introduced in his RM/T paper. Thus, on the basis
key solution is the more expressive one. This is illus- of the preceding discussion, we conclude that the intro-
trated by Table 1, which gives an example of a database duction of meaningless attributes does not provide oppor-
containing information about companies and their annual tunities to capture more meaning in our database designs,
balance sheets. and that designers will therefore prefer the present

version of the relational model.
The composite key alternative is intuitively much more
appealing and intuition is right if the alternatives are
judged by the constraint minimization objective. In some 43 Ad Hoc Versus Generalized
cases, noncomposite keys lead to the introduction of two Explicit Constraints
attributes lacking natural interpretation together with the
introduction of two alternate keys: COMP#, YEAR in In the preceding two subsections, we have demonstrated
BALANCE and BAL#, ITEM in BALITEM. Although that minimizing the number of explicit constraints using
the relational model supports alternate keys (i.e., explicit the inherent constraints of the data model is a sensible
constraints) the result is an unnecessarily complicated procedure. The data model must provide the database
database design leading to unnecessarily complex applica- designer with the means to express these constraints. In
tion programs. the relational model, this can be done by means of a
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COMPOSITE KEYS NONCOMPOSITE KEYS

COMPANY(COMP#, NAME, ....., COMPANY(COMP#, NAME, .....)
RD Royal Dutch RD Royal dutch
UNL Unilever UNL Unilever

BALANCE(COMP#, YEAR, DATE APPROVED) BALANCE(BAL#, COMP#, YEAR, DATE APPROVED)
RD 1989 04/19/1990 567 RD 1989 04/19/1990
RD 1990 04/12/1991 568 RD 1990 04/12/1991
UNL 1990 03/28/1991 569 UNL 1990 03/28/1991

BALITEM(COMP#, YEAR, ITEM, AMOUNT) BALITEM(B I#, BAL#, ITEM, AMOUNT)
RD 1989 LAND 2500 3531 567 LAND 2500
RD 1989 DEBT 250 3532 567 DEBT 250
RD 1989 CRED 300 3533 567 CRED 300
RD 1989 EQTY 4000 3534 567 EQTY 4000

Table 1. Companies, Annual Balances and Balance Items

relational language, such as relational calculus or SQL It Second, ad hoc constraints are easily overlooked in the
is clear that while explicit constraints can be of any design process. If not, they have to be coded over and
degree of complexity, the majority of explicit constraints over again leaving substantial room for errors.
fall into just a few categories. The best example of such
a class of constraints is referential integrity. Referential
integrity is generally considered so important that a Third, we feel that expressing constraints in a relational
database design in which referential integrity rules are language is insufficient if one wants to conceive sophisti-
not specified is considered unacceptable. Thus, a refer- cated RDBMSs or applications. The reason for this is
ential integrity constraint is not just another explicit con- that constraints express a great deal of the semantics of
straint. Other examples are explicit constraints required the database design. Sophisticated systems must be able
to support the concept of "image domains" (see Smith to access this information in order to display smart or
and Smith 197D and the quite common constraint cate- flexible behavior. Representing constraints by means of
gory asserting that "any tuple in relation A must be constraint classes, each with its own specific meaning, is
referenced by at least one tuple in relation B." important in preventing RDBMSs from becoming nothing

but complex trigger mechanisms (Date 199Ob, p. 127).
It is interesting to note that Codd and Date differ about
whether to classify the more common explicit constraints.
Codd (1990, p. 244) takes the position that constraints
should not be casted in the data structure, but should
instead be expressed linguistically. Date (199Ob, p. 208) 5. CONSTRAINT MINIMIZATION AND THE
takes the position that while it must be possible to specify INTERPRETATION PRINCIPLE
any constraint in a relational language, identifying genera-
lized constraints2 is highly desirable for certain commonly
occurring cases. We agree with Date for a number of As we have seen, the framework sketched in sections 2
reasons. and 3 is useful for deciding between design alternatives

permitted by the relational data model. In this section
First, as we have seen above, the distinction between we shall argue that the relational model supports some
inherent constraints and generalized explicit constraints is constructs that have no counterpart in reality, and thus
quite fuzzy. Just as inherent constraints are preferable to does not fully conform to the interpretation principle.
explicit constraints, generalized explicit constraints are This shortcoming may result in poor database designc
preferable to other one-of-a-kind assertions. While and the introduction of additional explicit constraints.
referential integrity is a very important generalized expli- We shall substantiate our position by discussing the
cit constraint, there are other classes of constraints that relevance of multiple-target relations and the treatment
deserve attention. of self-referencing relations.
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5.1 Multiple-Target Relations 5.2 Self-Referencing Relations

According to Codd's definition of the relational model, a The relational model permits foreign key references
foreign key must reference a tuple in some relation, not within a single relation. In practice, such self-referencing
necessarily in one specific relation. The possibility of relations often occur, especially when database designers
multiple targets occurs whenever two or more primary attempt to create more generalized database designs.
keys are defined on the same domain. Date (199Ob, Figure 4 gives an exnmple of a relation representing
Chapters 5 and 6) explicitly disagrees with Codd, because employees and their managers.
he feels that it complicates the relational model and
because it is hard to come up with a realistic example of It would seem that the constraint expressing that "cycles
a case where such a facility might be useful. We take the must never occur" always holds true. We have never
stronger position that a database in which a foreign key come across an example in which this constraint does not
references tuples in more than one relation is always apply. Yet every time a self-referencing relation occurs,
proof of poor design. it is up to the designer to identify and describe the

constraint and see to it that it is incorporated into the
In his latest book, Codd (1990, p. 25) presents two exam- application programs in the form of screening routines.
ples in which multiple-target relations occur. In the first The question is whether realistic examples in which the
example a SUPPLIERS-relation is split up horizontally, constraint does not apply exist. If not, an argument can
separating domestic suppliers from foreign suppliers. be made for incorporating it into the relational model, in
Figure 2 elaborates this example. the same way referential integrity' is incorporated.

We agree with Date that the single-target solution is a A possible argument against extending the relational
much cleaner one. In any case, it explicitly distinguishes model is based on the fact that observations like this rely
between classes and subclasses and avoids ad hoc explicit heavily on induction. But suppose the constraint applies
constraints enforcing that domestic and foreign suppliers almost always; then there is still an argument for incorpo-
must have different values for the S#-attribute. rating it into the relational model on the basis of the

representation principle. In the rare instances in which
the constraint does not apply, the only consequence is

Codd's second example deals with a relation that for that, instead of applying a referential integrity constraint,
performance reasons is decomposed into two relations the designer must introduce an ad hoc constraint. If this
with the same primary key (see Figure 3). is unacceptable, so is the current situation in which an ad

hoc constraint almost always occurs.

A simple solution to this problem would be to arbitrarily Of course there is a compromise possible between re-
define one relation as referencing the other. All other peated ad hoc solutions and the extension of the rela-
relations referencing the original relation can then retain tional model. This compromise is the declaration of a
a single-target relation. However, we feel that perfor- generalized constraint as described in section 4.3. We
mance-oriented activities such as this should take place believe that the problems described in this section war-
below the relational level together with the definition of rant a serious discussion.
constructs such as indexes and clusters. Otherwise,
Co(id's (1990, p. 34) proposition that the ANSI term 6. CONSTRAINT MINIMIZATION AND THE
"conceptual schema" corresponds to the set of base REPRESENTATION PRINCIPLE
relations does not hold true. Decomposing a relation for
performance reasons clearly takes place below the con- In the previous section, we demonstrated that the reta-
ceptual level. Consequently, some base tables should be tional model under-constrains its users, resulting at best
excluded from the conceptual schema and a view consti- in unnecessary work for both designers and programmers.
tuting the original relation should be included. Again we Unfortunately, there are also situations in which the
must conclude that there is no need for multiple-target relational model over-constrains its users. This happens
tables. Unless someone comes up with a realistic exam- whenever a real-world object cannot be represented by
ple, the possibility to define foreign keys having multiple means of one tuple, as in the case of generalization
targets should be excluded from the relational model.3 hierarchies, historical data, and missing data. A funda-
Even if it is possible to conceive a non-contrived example, mental discussion of these aspects is beyond the scope of
it is questionable whether the relational model should this paper. The problems we intend to discuss are
support a construct that rarely occurs and creates nume- concerned with object identification and the integration of
rous opportunities for bad database design. data and functional aspects.
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SINGLE-TARGET RELATION MULTIPLE-TARGET RELATIONS

DOMEST_SUPPL(S#, STATE, CITY) FOREIGN_SUPPLIS#, COUNTRY) DOMEST_SUPPL(M, NAME, STATE, CITY)r -
SUPPLIER(§#, NAME) INVOICE(INV#, S#, )

A

V

INVOICE(INV#, S#, ) FOREIGN_SUPPL(§2, NAME, COUNTRY)

Figure 2. Single Versus Multiple-Target Relations: Generalization

ONE RELATION TWO RELATIONS

SUPPLIER(M, NAME, STATE, CITY) SUP_1(12, NAME) SUP_2(M, STATE, CITY)
A A A

I I

INVOICE(INV#, S#, ....) INVOICE(INV#, S#, ....)

Figure 3. Single Versus Multiple-Target Relations: Performance Optimization

EMPLOYEE(EMP#, EMPNAME, EMP#_MGR) r--- Barker --
1 Clark 2 V v
2 Scott 3 r--- Scott ---1 Blake
3 Barker - v v
4 White 2 Clark White
5 Blake 3

Figure 4. A Self-Referencing Relation and Its Graphical Representation

FOREIGN KEY REFERENCES PRIMARY KEY FOREIGN KEY REFERENCES ALTERNATE KEY

ORD(ORD#. CLIENT, ODATE, AMOUNT, INV#, IDATE) ORD(ORD#, CLIENT, ODATE, AMOUNT, INV#, IDATE)

tnt
PAYMENT(ORD#, SEQ#, PAYDATE, AMOUNT) PAYMENT(INV#, SEO#, PAYDATE, AMOUNT)

Figure 5. Orders, Invoices and Payments

6.1 Object Identification Difficulties occur when one encounters classes that
contain at most one object, in which case the relation

The relational model requires that every base relation has name is sufficient identification. The relational model
exactly one primary key by which any tuple within the requires the database designer to arbitrarily specify a
relation can be identified. The justification is that a real- primary key and to express an explicit constraint to the
world object represented in the database design can then effect that the relation must not contain more than one
always be identified by means of its relation name, tuple. If it were allowed to assign the empty set as the
together with a set of values for its primary key attri- primaiy key of any such relation, as suggested by Warden
butes. (1990), no extra constraint would be required and no
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meAningless primary key would have to be assigned to (Date 199Ob, Chapter 5). The introduction of such rules
the relation. into RDBMSs would be a great help to database de-

signers and application programmers, but it would be
Representation difficulties may also occur when a relation even better if these rules could be specified (or over-
has multiple candidate keys. This is caused by the rule ruled) per application program or even per transaction.
that foreign keys must reference primary keys, never For example, it is perfectly feasible for one program to
alternate keys. The justification is that allowing foreign reject an attempt to delete a CLIENT tuple referenced
keys to reference alternate keys adds complexity, not by one or more ORD R tuples and for another not to
representational power (Date 199Ob, p. 135). However, reject such an operation.
this argument does not hold true in the case where
alternate keys designate different statuses of objects, and
references to these objects are made depending on their
status. Consider Figure 5, which shows part of a data- 7. CONCLUSIONS AND
base for an order entry application. It is assumed that all RECOMMENDATIONS
orders received will at some time be delivered and an
invoice sent to the customer. The customer pays for the The three preceding sections demonstrate that in many
delivery later, possibly in several installments. Orders respects the relational model fails to support the interpre-
received and invoices sent must be numbered consecu- tation and representation principles introduced in section
tively. 2. This failure always results in the introduction of ad

hoc explicit constraints. By their very nature, the
If the foreign key in PAYMENT references the primary meaning that such constraints add to a database design is
key in ORD, the database designer has to introduce an not accessible by a DBMS or an application program.
explicit constraint to the effect that ORD tuples with a
null value for INV# cannot be referenced by PAYMENT One possible way to tackle this problem is to introduce
tuples. If PAYMENT were to reference the alternate more generalized constraints and to extend the relational
key in ORD, the semantics of the situation would be model to support these. Because there is a trade-off
captured better because the existence of the alternate key between expressive power and formal elegance, choices
expresses the fact that the order has a status in which will have to be made. One way to find out what types of
payments are possible. constraints occur most frequently is to initiate empirical

research focusing on existing database designs. In any
There is obviously a trade-off between representational case, the inherent fuzziness of such extensions requires
power on the one hand and simplicity and consistency on communication between data model designers and the
the other. What is needed is a discussion on the basis of database designers.
examples, such as the one in Figure 5, in order to deter-
mine the price we pay for simplicity. Another recommendation would be to express the reta-

tional model in relational terms. It is perfectly feasible to
express the relational model, at any rate its structural and

6.2 Integration of Data and integrity parts, in relational terms. Not only would this
Functional Aspects make the relational model more comprehensible to

database designers, but it would also provide us with a
Ideally, not only static (database) concepts but also yardstick against which attempts to improve the expres-
dynamic (programming) concepts should be part of a sive power of the relational model could be measured.
data model. Existing data models typically describe static
concepts only. This also holds true for the relational In addition, it is advisable to refrain from using unrealis-
model, although this model does provide its users with tic examples when discussing data models. If it is impos-
operators for data manipulation. The model contains sible to find realistic examples to support an argument,
concepts such as relation, attribute and tuple, but lacks then the argument is probably worthless.
concepts such as program or transaction. Support for
such concepts is left to RDBMS vendors or to database One question that remains is whether it is wise to extend
designers. the representational power of the relational model on

informal grounds. It may be a far better idea to use the
This omission may present problems when extensions to formal relational model as a basis for higher-level data
the relational model are suggested. Consider the discus- models that are semantically more expressive. In either
sion about the extension of the relational model to case the problems discussed in this paper will have to be
include the foreign key rules Cascade, Delete and Nullify addressed.
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