1,227 research outputs found
Preparation and properties of a composite charged membrane
In order to develop a low pressure desalination membrane with fixed ionic charges, we made use of the normally unwanted crosslinking tendency in preparing the polyelectrolyte poly(styrenesulfonate) by sulfonation of polystyrene. After dipcoating a poly(sulfone) or poly(phenylene oxide) UF membrane with a dilute soluton of this polyelectrolyte in water in the presence of some free sulfuric acid and silversulfate, fixation and cross-linking of the coating polymer took place by a heat treatment.\ud
\ud
Different membrane properties could be obtained by varying the pore size of the supporting UF membranes, and by variation in the coating polymer (M.W., concentration) and sulfuric acid concentration. We found that fluxes sometimes decline drastically in comparison with the original pure water flux; salt rejection values (at 1.5 g/l NaCl concentration and 0.5 MPa) never are very high (≤60% for monovalent anions). The most important potential application for these membranes lies in their non-fouling properties
Thermoreversible gelation of cellulose acetate solutions studied by differential scanning calorimetry
Thermoreversible gels of cellulose acetate can be obtained by cooling concentrated cellulose acetate solutions in solvent-nonsolvent mixtures of dioxane and water. Upon heating the gels, endothermic effects were observed with differential scanning calorimetry. The heat effects are ascribed to the melting of a crystalline phase consisting of cellulose triacetate units. The endothermic peaks appear only after long aging periods of up to several days. Melting points generally decrease and heats of melting increase with increasing polymer concentration and with increasing nonsolvent content. The maximum degree of crystallinity is estimated as 8%. The kinetic effects of varying the water content in the solvent mixture are discussed
Fluidized beds as turbulence promoters in the concentration of food liquids by reverse osmosis
Fluidized beds offer a potential improvement of reverse osmosis processes for food liquids, less fouling of the membrane, and reduced energy consumption. Our experiments were concerned with tubular systems in which fluidized beds of glass, steel, and lead beads were used. Glass beads appeared to be preferable, since they caused little damage to the membrane. Only with the larger glass beads (3 mm) did the membrane skin become corrugated, so that the rejection decreased. The permeate flux for Gouda cheese whey was almost equal to that of an empty tube for which the velocity was about thirty times higher. The erosive action of the glass beads on the fouling layer was partially responsible for this effect. For reverse osmosis of skim milk and potato fruit water the bed did not reduce the fouling layer to a sufficient extent and, therefore, had a lower permeate flux than an empty tube
Leaf-applied sodium chloride promotes cadmium accumulation in durum wheat grain
Cadmium (Cd) accumulation in durum wheat grain is a growing concern. Among the factors affecting Cd accumulation in plants, soil chloride (Cl) concentration plays a critical role. The effect of leaf NaCl application on grain Cd was studied in greenhouse-grown durum wheat (Triticum turgidum L. durum, cv. Balcali-2000) by immersing (10 s) intact flag leaves into Cd and/or NaCl-containing solutions for 14 times during heading and dough stages. Immersing flag leaves in solutions containing increasing amount of Cd resulted in substantial increases in grain Cd concentration. Adding NaCl alone or in combination with the Cd-containing immersion solution promoted accumulation of Cd in the grains, by up to 41%. In contrast, Zn concentrations of grains were not affected or even decreased by the NaCl treatments. This is likely due to the effect of Cl complexing Cd and reducing positive charge on the metal ion, an effect that is much smaller for Zn. Charge reduction or removal (CdCl2 0 species) would increase the diffusivity/lipophilicity of Cd and enhance its capability to penetrate the leaf epidermis and across membranes. Of even more significance to human health was the ability of Cl alone to penetrate leaf tissue and mobilize and enhance shoot Cd transfer to grains, yet reducing or not affecting Zn transfer
Periodic mass loss episodes due to an oscillation mode with variable amplitude in the hot supergiant HD50064
We aim to interpret the photometric and spectroscopic variability of the
luminous blue variable supergiant HD\,50064 ().CoRoT space photometry
and follow-up high-resolution spectroscopy, with a time base of 137\,d and
169\,d, respectively, was gathered, analysed and interpreted using standard
time series analysis and light curve modelling methods as well as spectral line
diagnostics.The space photometry reveals one period of 37\,d, which undergoes a
sudden amplitude change with a factor 1.6. The pulsation period is confirmed in
the spectroscopy, which additionally reveals metal line radial velocity values
differing by km\,s depending on the spectral line and on the
epoch. We estimate \teff13\,500\,K, \logg1.5 from the equivalent
width of Si lines. The Balmer lines reveal that the star undergoes episodes of
changing mass loss on a time scale similar to the changes in the photometric
and spectroscopic variability, with an average value of (in M\,yr). We tentatively interpret the 37\,d
period as due to a strange mode oscillation.Comment: 4 pages, accepted for publication in Astronomy & Astrophysics Letter
J08069+1527: A newly discovered high amplitude, hybrid subdwarf B pulsator
We present our discovery of a new hybrid pulsating subdwarf B star,
J08069+1527. The effective temperature and surface gravity of 28,500400\,K
and 5.370.04\,dex, respectively, place this object inside the instability
strip and also among other pulsating hot subdwarfs of a hybrid nature, right
next to another fascinating star: Balloon\,090100001. From this proximity, we
anticipated this star could pulsate in both high and low frequency modes.
Indeed, our analysis of photometric data confirmed our prediction. We detected
two peaks in the high frequency region and two other peaks at low frequencies.
In addition, the amplitude of the dominant mode is very high and comparable to
the dominant peaks in other hybrid subdwarf B stars. Since this star is bright,
we performed time-series low resolution spectroscopy. Despite a low
signal-to-noise (S/N) ratio, we were able to detect the main peak from these
data. All our results strongly indicate that J08069+1527 is a high amplitude
pulsating hot subdwarf B star of hybrid nature. By analogy to the other
pulsating sdB star, we judge that the dominant mode we detected here has radial
nature. Future stellar modeling should provide us with quite good constrains as
p- and g-modes presented in this star are driven in different parts of its
interior.Comment: 7 pages, 10 figures, accepted for publication in MNRA
An asteroseismic study of the O9V star HD 46202 from CoRoT space-based photometry
The O9V star HD 46202, which is a member of the young open cluster NGC 2244,
was observed by the CoRoT satellite in October/November 2008 during a short run
of 34 days. From the very high-precision light curve, we clearly detect beta
Cep-like pulsation frequencies with amplitudes of ~0.1 mmag and below. A
comparison with stellar models was performed using a chi^2 as a measure for the
goodness-of-fit between the observed and theoretically computed frequencies.
The physical parameters of our best-fitting models are compatible with the ones
deduced spectroscopically. A core overshooting parameter alpha_ov = 0.10 +-
0.05 pressure scale height is required. None of the observed frequencies are
theoretically excited with the input physics used in our study. More
theoretical work is thus needed to overcome this shortcoming in how we
understand the excitation mechanism of pulsation modes in such a massive star.
A similar excitation problem has also been encountered for certain pulsation
modes in beta Cep stars recently modelled asteroseismically.Comment: Accepted for publication in Astronomy and Astrophysics on 17/12/2010,
9 pages, 7 figures, 4 table
A morphological algorithm for improving radio-frequency interference detection
A technique is described that is used to improve the detection of
radio-frequency interference in astronomical radio observatories. It is applied
on a two-dimensional interference mask after regular detection in the
time-frequency domain with existing techniques. The scale-invariant rank (SIR)
operator is defined, which is a one-dimensional mathematical morphology
technique that can be used to find adjacent intervals in the time or frequency
domain that are likely to be affected by RFI. The technique might also be
applicable in other areas in which morphological scale-invariant behaviour is
desired, such as source detection. A new algorithm is described, that is shown
to perform quite well, has linear time complexity and is fast enough to be
applied in modern high resolution observatories. It is used in the default
pipeline of the LOFAR observatory.Comment: Accepted for publication in A&
The orbits of subdwarf B + main-sequence binaries. I: The sdB+G0 system PG 1104+243
The predicted orbital period histogram of an sdB population is bimodal with a
peak at short ( 250 days) periods. Observationally, there
are many short-period sdB systems known, but only very few long-period sdB
binaries are identified. As these predictions are based on poorly understood
binary interaction processes, it is of prime importance to confront the
predictions to observational data. In this contribution we aim to determine the
absolute dimensions of the long-period sdB+MS binary system PG1104+243.
High-resolution spectroscopy time-series were obtained with HERMES at the
Mercator telescope at La Palma, and analyzed to obtain radial velocities of
both components. Photometry from the literature was used to construct the
spectral energy distribution (SED) of the binary. Atmosphere models were used
to fit this SED and determine the surface gravity and temperature of both
components. The gravitational redshift provided an independent confirmation of
the surface gravity of the sdB component. An orbital period of 753 +- 3 d and a
mass ratio of q = 0.637 +- 0.015 were found from the RV-curves. The sdB
component has an effective temperature of Teff = 33500 +- 1200 K and a surface
gravity of logg = 5.84 +- 0.08 dex, while the cool companion is found to be a
G-type star with Teff = 5930 +- 160 K and logg = 4.29 +- 0.05 dex. Assuming a
canonical mass of Msdb = 0.47 Msun, the MS component has a mass of 0.74 +- 0.07
Msun, and its Teff corresponds to what is expected for a terminal age
main-sequence star with sub-solar metalicity. PG1104+243 is the first
long-period sdB binary in which accurate physical parameters of both components
could be determined, and the first sdB binary in which the gravitational
redshift is measured. Furthermore, PG1104+243 is the first sdB+MS system that
shows consistent evidence for being formed through stable Roche-lobe overflow.Comment: Accepted by A&A on 05-10-201
Detection of frequency spacings in the young O-type binary HD 46149 from CoRoT photometry
Using the CoRoT space based photometry of the O-type binary HD46149, stellar
atmospheric effects related to rotation can be separated from pulsations,
because they leave distinct signatures in the light curve. This offers the
possibility of characterising and exploiting any pulsations seismologically.
Combining high-quality space based photometry, multi-wavelength photometry,
spectroscopy and constraints imposed by binarity and cluster membership, the
detected pulsations in HD46149 are analyzed and compared with those for a grid
of stellar evolutionary models in a proof-of-concept approach. We present
evidence of solar-like oscillations in a massive O-type star, and show that the
observed frequency range and spacings are compatible with theoretical
predictions. Thus, we unlock and confirm the strong potential of this
seismically unexplored region in the HR diagram.Comment: 11 pages, 12 figures, accepted for publication in A&
- …
