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ABSTRACT

A technique is described that is used to improve the detection of radio-frequency interference in astronomical radio observatories. It
is applied on a two-dimensional interference mask after regular detection in the time-frequency domain with existing techniques. The
scale-invariant rank (SIR) operator is defined, which is a one-dimensional mathematical morphology technique that can be used to
find adjacent intervals in the time or frequency domain that are likely to be affected by RFI. The technique might also be applicable in
other areas in which morphological scale-invariant behaviour is desired, such as source detection. A new algorithm is described, that
is shown to perform quite well, has linear time complexity and is fast enough to be applied in modern high resolution observatories.
It is used in the default pipeline of the LOFAR observatory.

Key words. instrumentation: interferometers – methods: data analysis – techniques: interferometric

1. Introduction

Modern telescopes in radio astronomy, such as the Expanded
Very Large Array (EVLA) and the LOw-Frequency ARray
(LOFAR), are sensitive devices that observe the sky with enor-
mous depth and detail. The observed bandwidth of telescopes
has dramatically increased over the last decades, and often over-
laps with parts of the radio spectrum that have not been reserved
for radio astronomy. Simultaneously, the radio spectrum is be-
coming more crowded because of technological advancement.
Therefore, radio observations are affected by man-made radio
transmitters, which can be several orders of magnitude stronger
than the weak celestial signals of interest. This kind of inter-
ference, which seriously disturbs radio observations, is called
radio-frequency interference (RFI).

Numerous techniques have been suggested to perform the
challenging task of RFI mitigation. They include using spatial
information to null directions, provided in interferometers or
multi-feed systems (Ellingson & Hampson 2002; Leshem et al.
2000; Smolders & Hampson 2002; Kocz et al. 2010); remov-
ing the RFI by using reference antennas (Barnbaum & Bradley
1998); and blanking out unlikely high values at high time reso-
lutions (Baan et al. 2004; Leshem et al. 2000; Niamsuwan et al.
2005; Weber et al. 1997). Despite the numerous possible tech-
niques, almost any observation needs to be post-processed due
to RFI effects. The most used technique for such a final pro-
cessing step consists of detecting the RFI in time, frequency
and antenna space, and ignoring the contaminated data in fur-
ther data processing. This step is often referred to as “data flag-
ging”. Historically, this step was performed by the astronomer.
However, because of the major increase in resolution and band-
width of observatories, leading to observations of tens of ter-
abytes, this is no longer feasible. The tendency is therefore

to implement automated RFI flagging pipelines in the obser-
vatory’s pipeline. Examples of these are the RFI mitigation
pipeline used for the Effelsberg Bonn HI Survey (Flöer et al.
2010) and the AOFlagger pipeline (Offringa et al. 2010a).

1.1. RFI detection

Radio-frequency interference detection often involves thresh-
olding based on amplitude (Winkel et al. 2006; Offringa et al.
2010b), although also higher order statistics such as the kurto-
sis have been used (Gary et al. 2010). The latter requires storing
both the mean powers and the squared powers, thereby doubling
the data rate, and hence is not always usable. Most interfer-
ing sources radiate either in a constant small frequency range,
or produce a broadband peak in a short time range. Examples
of such interferences are respectively air traffic communication
and lightning. Consequently, an interfering source tends to af-
fect multiple neighbouring samples in the time-frequency do-
main. These samples form straight lines, parallel to the time and
frequency axes. An example is given in Fig. 1a, which shows
data from the Westerbork Synthesis Radio Telescope (WSRT).
This line-shaped behaviour of RFI can be used to improve the
accuracy of detection algorithms. An algorithm that uses this in-
formation is the SumThreshold method, which shows a very
high detection accuracy compared to other methods (Offringa
et al. 2010b). This method is used in one of the steps in the
AOFlagger pipeline (Offringa et al. 2010a). An important con-
sideration for succesful application of automated feature detec-
tion algorithms such as these, is that the signal of interest should
not contain significant line-shaped features, as is the case with
spectral line observations. Also, methods that assume straight,
one-dimensional features in the time-frequency domain, might
not work well in situations where the features are curved. This
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(a) (b)

Fig. 1. Typical spectral line RFI received in a short period of WSRT data around 117 MHz. It is likely that such RFI sources transmit continuously
within a small bandwidth. Panel a) shows the original observation, while panel b) shows what the AOFlagger with default settings would flag
without morphology-based flagging. Detection is quite accurate, but some of the detected lines in panel b) are not continuous. It is likely that
those RFI sources were active in the gaps as well. Morphology-based detection will help in such cases. The plot shows Stokes I amplitudes of the
cross-correlation of antennas RT0 × RT1, which is a 144 m East-West baseline. A single pixel is 10 s × 10 kHz of data.

can occur when both the frequency and the time resolutions are
high enough to resolve frequency variation in sources, for exam-
ple when sources are Doppler shifted or vary intrinsically, such
as with certain radar signals. With LOFAR, we see very few such
sources.

Typically, the received power of interfering sources varies
over time and frequency. This happens because of several effects,
such as intrinsic variation of the source; changing ionosphere;
and because of instrumental effects. A typical example of the lat-
ter, which is present in almost every observation, is the change of
the telescope’s gain towards a terrestrial source as the telescope
tracks a field in the sky. Like time variation, frequency variation
can be caused intrinsically by the source. The instrument also
adds frequency-dependent gain, for example due to imperfect
band-pass filters. Even though a source might be continuously
received by the telescope, thresholding detection methods might
fail to detect the interferer over its full range due to the varia-
tion in received power. Figure 1b shows an example where this
is likely the case. Increasing the sensitivity of the thresholding
method might help somewhat, but will also cause an increase of
false positives. While some falsely detected samples are tolera-
ble, they should be kept minimal in order to avoid data bias and
insufficient resolution.

Using mathematical morphology for RFI detection is not a
new idea; a dilation is often used during RFI processing to flag
areas near high values in the time-frequency domain. An exam-
ple of this can be found in Winkel et al. (2006), where windows
of 5 time steps × 5 frequency channels around detected samples
are flagged. However, standard morphological techniques are not
scale invariant. An operator is called scale invariant if scaling
its input results in the same scaling of its output. An ordinary
dilation will cause sharp RFI features to create a high amount
of false positives, while flagging smooth RFI features requires
a very large dilation kernel. Another scale-dependent technique
used for RFI detection is to consider the statistics of time steps

and frequency channels. In this paper, we will show that scale
invariance is a desirable property of RFI detection algorithms.
This paper provides:

– a detailed description of a recently-introduced morphologi-
cal technique for RFI detection;

– analysis of the technique and a comparison with an ordinary
dilation, using simulations and real data from two different
radio-observatories;

– a novel fast algorithm with linear time complexity to imple-
ment the technique.

1.2. Outline

We discuss a morphological technique that can be used to im-
prove RFI detection. The method flags additional samples that
are likely to be contaminated with RFI, based on the morphology
of the flag mask output of a thresholding stage in the pipeline.
In Sect. 2 we describe the technique and show a fast algorithm
to implement it. We present some results of the method on sim-
ulated data and real data in Sect. 3. Finally, we summarize and
discuss the results in Sect. 4.

2. The scale-invariant rank operator

RFI features such as in Fig. 2a are common in radio observa-
tions, and can occur at different scales. However, a morphologi-
cal dilation is not scale invariant, and will thus necessarily work
better for some RFI features than others. To overcome this prob-
lem, we will describe and analyse a morphological rank operator
that is scale invariant1. Scale invariance is a desirable property
of RFI detection algorithms, because (a) it implies the method

1 The mathematical properties of this technique will be analysed in
more detail in van de Gronde et al. (in prep.).

A95, page 2 of 10

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201118497&pdf_id=1


A. R. Offringa et al.: A morphological algorithm for improving RFI detection

(a) (b) (c) (d)

Fig. 2. Simulation of a typical broadband RFI feature with Gaussian frequency profile as used in the ROC analysis. Panel a) isolated RFI feature;
panel b) when noise is added, a part of the feature becomes undetectable; panel c) flagged with the SumThreshold method; panel d) with SIR
operator applied, parameter η = 0.2.

can be applied on data with different resolutions without chang-
ing parameters; and (b) the time and frequency scale of RFI it-
self can be arbitrary, so any method to detect RFI should work
equally well for RFI at different scales. In practice, RFI seems
to behave in a more or less scale-invariant manner at the reso-
lution of LOFAR, as for example can be seen in Fig. 1, so we
should also use a scale-invariant method to detect it. This scale-
invariant behaviour of RFI breaks down at high time and fre-
quency resolutions, at which many features become diagonal in
the time-frequency plane.

The proposed technique was first mentioned in Offringa et al.
(2010a), as it is part of the AOFlagger, which is the default
LOFAR RFI detection pipeline. In that article the operation was
referred to as a dilation, however, it does not strictly adhere to
all the properties of a morphological dilation. For example, we
will see that the operator ρ is not distributive over the union set
operator: ρ(X ∪ Y) � ρ(X) ∪ ρ(Y) for some X and Y. Because a
rank operator flags points for which the number of flagged points
in a neighbourhood exceeds a threshold (Goutsias & Heijmans
2000, Sect. 3.4, Soille 2002), we will refer to the operator ρ as
the scale-invariant rank (SIR) operator.

In this paper, we will describe the method in-depth and anal-
yse its effectiveness. In Offringa et al. (2010a), it was mentioned
that the full algorithm has a time complexity of O(N2), N being
the input size of the SIR operator, but by making the algorithm
less accurate, an implementation of O(N× log N) was mentioned
to be possible. Here, we will introduce a faster algorithm with
linear time complexity, which is also an exact implementation
of the SIR operator.

2.1. Description

Consider F, a set of positions in the time-frequency domain,
such that a sample at time t and frequency ν has been flagged
when (t, ν) ∈ F. Assume F is the result of a statistical detection
algorithm, such as the SumThreshold algorithm. We will apply
the SIR operator in time and frequency directions separately, and
define the sets Θt and Φν to contain the flags of a slice in time
and frequency direction:

Θt ≡ {(s, ν) ∈ F | s = t} , (1)

Φν ≡ {(t, μ) ∈ F | μ = ν} . (2)

A single one-dimensional set Θt or Φν is the input for the SIR
operator. The operator considers a sample to be contaminated

(a) Input (b) Union

(c) Horizontal
first

(d) Vertical first

Fig. 3. Example outputs of the SIR operator in which the one-
dimensional output has been combined in three different ways. Panel a)
is the input, panel b) shows the result of performing a union on the
outputs of both directions, and in panels c) and d), the SIR operator
was first applied in, respectively, the horizontal and vertical direction.
Parameter η was 0.5 in this example.

with RFI when the sample is in a subsequence of mostly flagged
samples. To be more precise, it will flag a subsequence when
more than (1−η)N of its samples are flagged, with N the number
of samples in the subsequence and η a constant, 0 ≤ η ≤ 1.
Using ρ to denote the operator, the output ρ(X) can be formally
defined as

ρ(X) ≡
⋃{

[Y1, Y2) | (3)

# (X ∩ [Y1, Y2)) ≥ (1 − η)(Y2 − Y1)
}
,

with [Y1, Y2) a half-open interval of Θt or Φν, and the hash sym-
bol # denoting the count-operator that returns the number of el-
ements in the set. In words, Eq. (3) defines ρ(X) to consist of all
the samples that are in an interval [Y1, Y2), in which the ratio of
samples in the input X is greater or equal than (1− η). Parameter
η represents the aggressiveness of the method: with η = 0, no
additional samples are flagged and ρ(X) = X. On the other hand,
η = 1 implies all samples will be flagged. Figure 2 shows an ex-
ample of a simulated Gaussian broadband RFI feature, and the
input and output of the SIR-operator.
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(a) Original data (b) Intersection

(c) Union (d) Time first

(e) Frequency first (f) Union of (d) and (e)

Fig. 4. Example of the SIR operator applied on a LOFAR observation, displaying five different methods to make the SIR operator two-dimensional.
The visibilities shown are from baseline CS003 × CS007 of a LOFAR low-band-antenna (LBA) observation with 3s × 0.8 kHz resolution. This
observation part was selected as an example because it has a two-dimensional RFI structure. Such RFI is less common, hence this is not a typical
case. With the exception of the intersection, there is no difference between the different methods on the thin lines below 32.1 MHz. Applying the
operator sequentially (panels d)–f)) is more aggressive for the two-dimensional structures, as it will flag samples that have diagonal neighbours
that are flagged. Intersecting the two methods (panel b)) will only flag concave samples. Pink is pre-flagged by the SumThreshold method, yellow
is added by the SIR operator. A value of η = 0.2 was used in this example.

The one-dimensional outputs can be remapped to the original
two-dimensional domain in various ways. A simple and useful
way is to perform a logical union of Θ′t = ρ(Θt) and Φ′ν = ρ(Φν),
the flags on respectively the time and frequency outputs:

F′ =
⎛⎜⎜⎜⎜⎜⎝
⋃

t

Θ′t

⎞⎟⎟⎟⎟⎟⎠ ∪
⎛⎜⎜⎜⎜⎜⎝
⋃
ν

Φ′ν

⎞⎟⎟⎟⎟⎟⎠ . (4)

An alternative is to initially apply the SIR operator only in one
direction, i.e., on the sets that correspond with either the time or
frequency direction, and subsequently applying the SIR opera-
tor on the outputs of the first in the other direction. The latter
is more aggressive than the former. The result also depends on
which direction is processed first. The difference is demonstrated
in Fig. 3, and an example of how that would work out on actual
data is given in Fig. 4. Optionally, the operator can be applied
in frequency and time directions with different η, if one suspects
that RFI acts differently in either direction.

2.2. Properties and parameters

Consider the case in Eq. (3) when a subsequence of arbitrary
length is flagged. Since the fraction of flagged samples within
the subsequence is explicitly used to define its output, the oper-
ator is scale invariant. Formally, an operator ρ is scale invariant
if and only if ρ(λX) = λρ(X), i.e., scaling the input X with λ
followed by ρ is equal to scaling the output ρ(X) with λ. We
will now give a formal proof of the scale invariance of the SIR
operator.

Proof. With ρ the SIR operator, we will scale the input X with
factor λ. If λ = 0 we trivially have that ρ(λX) = λρ(X). Also, if
ρ(λX) = λρ(X) for λ > 0, it is not difficult to see that we also
have ρ(−λX) = −λρ(X), as mirroring the input will mirror the
output. Therefore, assume without loss of generality that λ > 0.
Now, substituting X with λX in Eq. (3) results in

ρ(λX) =
⋃
{[Y1, Y2) |

# (λX ∩ [Y1, Y2)) ≥ (1 − η)(Y2 − Y1)} .
A95, page 4 of 10
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By using Z1 = Y1/λ and Z2 = Y2/λ, this can be rewritten to

ρ(λX) =
⋃
{[λZ1, λZ2) |

# (λX ∩ [λZ1, λZ2)) ≥ (1 − η)(λZ2 − λZ1)} .

If we assume continuous positions, both the left side and the
right side of the comparison can be scaled by 1/λ:

ρ(λX) =
⋃
{[λZ1, λZ2) |

# (X ∩ [Z1, Z2)) ≥ (1 − η)(Z2 − Z1)} ,

and by using [λZ1, λZ2) = λ[Z1, Z2) and the definition in Eq. (3),
this is equivalent to ρ(λX) = λρ(X).

Because the time and frequency dimensions are obviously dis-
crete and finite when applied on radio observations, in practice
the scale invariance is limited by the resolution and size of the
data.

The aggressiveness of the SIR operator can be controlled
with the η parameter, which can be chosen differently for the
time and frequency directions. Because the method is scale in-
variant, the choice of η can be made independent of the time and
frequency resolutions of the input. The default η parameter in
the LOFAR pipeline is currently η = 0.2 and is equal in both
directions. This value has been determined by tweaking of the
parameter and data inspection, e.g. by looking at the resulting
time-frequency diagram and projections of the data variances.
The results were checked for many observations. Higher values
seem to remove too much data without much benefit, while some
RFI is left undetected with lower values. The value works well
for various telescopes and on different time and frequency reso-
lutions. We will evaluate this setting in Sect. 3.2.

Since most telescopes observe two linear or circular polar-
izations, RFI detection can consider each (correlated) polariza-
tion individually, and the operator can be applied on each pro-
duced mask independently. However, the flag masks are often
kept equal between the polarizations, because calibration might
become unstable when, for a particular sample, part of the polar-
izations are missing. Moreover, if one of the polarization feeds of
the telescope has been affected by RFI, it is likely that the others
also have been affected. For these reasons, the approach taken
in the LOFAR pipeline is to use the SumThreshold method on
all four cross-correlated polarizations (XX, XY, YX and YY) indi-
vidually, then flag any sample for which at least one polarization
has been flagged, and finally apply the SIR operator once on the
combined mask.

2.3. The algorithm

A straightforward implementation of the operator in Eq. (3) is
to test each possible contiguous subsequence. In this case, if N
is the number of samples in the sequence Θt or Φν, O(N2) sums
of subsequences have to be tested. Since the sums of all subsets
can also be constructed in quadratic time complexity, the total
time complexity of a straightforward implementation is O(N2).
We will now show an algorithm that solves the problem with
linear time complexity. The algorithm is somewhat similar to
the maximum contiguous subsequence sum algorithm.

Listing 1: Linear time complexity algorithm for the scale-invariant
rank operator

function ScaleInvariantRankOperator

Input:
N : Size
Ω : Input array of size N

(Ω[i] = 1 =⇒ i is flagged,
Ω[i] = 0 otherwise)

η : Aggressiveness parameter
Output:
Ω′ : Output flag array of size N

1:begin
// Initialize Ψ

2: for x = 0 . . .N − 1 do Ψ[x] ← η - 1 + Ω[x]
// Construct an array M such that:
// M(x) =

∑
j ∈ {0 . . . x − 1}: Ψ[ j]

3: M[0]← 0
4: for x = 0 . . .N − 1 do M[x + 1] ← M[x] + Ψ[x]

// Construct array P such that:
// M[P[x]] = min M[ j]: 0 ≤ j ≤ x

5: P[0]← 0
6: for x = 1 . . .N − 1 do
7: P[x]← P[x − 1]
8: if M[P[x]] > M[x] then P[x]← x
9: end for

// Construct array Q such that:
// M[Q[x]] = max M[ j]: x < j < N

10: Q[N − 1]← N
11: for x = N − 2 . . . 0 do
12: Q[x]← Q[x + 1]
13: if M[Q[x]] < M[x + 1] then Q[x]← x + 1
14: end for

// Flag sample x if M[Q[x]] − M[P[x]] ≥ 0
15: for x = 0 . . .N − 1 do
16: if M[Q[x]]-M[P[x]]≥ 0 then
17: Ω′[x]← 1
18: else
19: Ω′[x]← 0
20: end if
21: end for
22: return Ω′;
23:end

Listing 1 shows a direct algorithm to solve the SIR operator
problem.

Proof. Using the definition of Ω(x) and Ω′(x), such that 1 indi-
cates that x is flagged and 0 that it is not, we can rewrite Eq. (3)
as

Ω′(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if ∃Y1 ≤ x, Y2 > x, such that
Y2−1∑
y=Y1

Ω(y) ≥ (1 − η)(Y2 − Y1)

0 otherwise.

(5)

In line 2, the array Ψ(y) is initialized such that Ψ(y) = η in case
y is flagged, and Ψ(y) = η − 1 otherwise. Equation (5) can now
be rewritten to the following test:

Ω′(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if ∃Y1 ≤ x, ∃Y2 > x :

Y2−1∑
y=Y1

Ψ(y) ≥ 0

0 otherwise.
(6)

Line 3–4 initialize M(x) for 0 ≤ x ≤ N to

M(x) =
x−1∑
j=0

Ψ( j),

A95, page 5 of 10
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so that Eq. (6) can be rewritten as

Ω′(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if ∃Y1 ≤ x, ∃Y2 > x :

M(Y2) − M(Y1) ≥ 0
0 otherwise.

(7)

Because we are only interested in Ω′(x) in the range 0 ≤ x < N,
we can limit the search for Y1 and Y2 to 0 ≤ Y1 ≤ x < Y2 ≤ N.
There exists Y1 and Y2 in this range such that M(Y2)−M(Y1) ≥ 0,
if and only if

max
y:x<y≤N

M(y) − min
y:0≤y≤x

M(y) ≥ 0.

Lines 5–14 make sure that P and Q are initialized for 0 ≤ x < N,
such that

P(x) = argmin
y∈0...x

M(y),

Q(x) = argmax
y∈x+1...N

M(y).

Finally, this allows Eq. (7) to be rewritten as

Ω′(x) =

{
1 if M(Q(x)) − M(P(x)) ≥ 0
0 otherwise,

(8)

which is performed and returned in lines 15–23.

The algorithm is Θ(N), and performs 3N additions or sub-
tractions and 3N − 2 comparisons on floating point numbers.
The algorithm uses the temporary arraysΨ, M, P and Q, each of
size N, with the exception of M which is of size N + 1. Array Ψ
can be optimized away and the input Ω can be reused for output
by assigning directly to it in lines 17 and 19. The total amount of
temporary storage required is thus about N floating point values
and 2N index values, thus O(N). When the function is applied
on a two-dimensional image, as in the case of RFI detection,
the temporary storage is negligible, as the number of processed
slices is usually much larger than one or two. If η is expressed as
a ratio of two integer values, it is possible to scale all values and
only use integer math.

The algorithm has been implemented in C++ and takes
around 40 lines of code2.

Because the problem is somewhat similar to the maximum
contiguous subsequence sum (Bentley 1984) and the all max-
imal contiguous subsequence sum problems, it might be pos-
sible to parallelize the algorithm by similar means, e.g. as in
(Alves et al. 2005). Moreover, parallel algorithms exist for the
prefix sum/min/max calculations. For the specific application of
RFI detection for LOFAR, the pipeline has already been max-
imally parallelized by flagging different baselines and/or sub-
bands concurrently. Unlike parallelizing on the algorithm level,
this requires no communication between the different processes.

3. Analysis and results

3.1. Performance

Figure 5 displays the performance of the C++ implementa-
tions and compares the linear algorithm with the approximate
O(N log N) algorithm and the full quadratic algorithm. The mea-
surements have been performed on a regular desktop with a
3.07 GHz Intel Core i7 CPU, using only one of its cores. The

2 The implementation is part of the AOFlagger and can be downloaded
from http://www.astro.rug.nl/rfi-software
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Fig. 5. Computation time versus input size with the different algorithms
and fixed η = 0.2. The average over 1000 runs was taken for each dif-
ferent configuration.

time complexities of the three algorithms for increasing N be-
have as expected. The linear algorithm is faster in all cases, even
for small N. The O(N log N) time complexity algorithm is more
than one order of magnitude slower at both small and large N.
The linear algorithm has been executed with different values for
η and the results are shown in Fig. 5. Except for some slight
variations – especially for η = 0 – the algorithm’s speed is inde-
pendent of η.

In the LOFAR pipeline, it takes 3.8 s to process a single
sub-band for a single baseline, assuming 100 000 time steps and
256 channels (which is common). Of these 3.8 s, only 49 ms
(1.3%) are spent applying the SIR operator. In common appli-
cations, an observation contains on the order of a 1000 base-
lines and 250 sub-bands. The pipeline is heavily parallelized
by concurrently flagging baselines over multiple cores and sub-
bands over multiple cluster nodes. In this case, the pipeline’s
performance is dominated by disk access, and the relative con-
tribution of the SIR operator is even smaller.

3.2. Accuracy analysis

The performance of the SIR operator was tested by using re-
ceiver operating characteristics (ROC) analysis. To do so, a
ground truth needs to be available, which can only be accu-
rately acquired in a simulated environment. As discussed pre-
viously, a very large fraction of RFI is line-like. The samples
on such a line are not uniform due to intrinsic effects or instru-
mental gain variations. Therefore, we have used simulations of
four line-shaped RFI features as displayed in Fig. 6: (a) a sin-
gle Gaussian that reaches its 3σ point at both borders and is 1
in the centre; (b) three periods of a sinusoidal function which
is scaled between zero and one; (c) the Gaussian feature, but
slanted by 1/50 fraction; and (d) a burst-like signal in which the
amplitude levels are drawn from a Rayleigh distribution with
mode σ = 0.6. All features are three samples wide. Complex
Gaussian distributed noise with σ = 1 was added to the image,
such that the amplitudes are Rayleigh distributed. The created
two dimensional image of size 180 × 1024 was subsequently
flagged by the SumThreshold method with settings as in the
LOFAR AOFlagger pipeline, and the created flag mask was used
as input.

To estimate the performances, the true and false positives
ratios (TP and FP ratios respectively) were calculated after
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(a) (b) (c) (d)

Fig. 6. Features used for the accuracy analysis. Panel a) feature with Gaussian slope; panel b) sinusoidal feature; panel c) slanted feature with
Gaussian slope; panel d) burst feature with samples drawn from a Rayleigh distribution.

detection. We created a fuzzy ground truth mask in which a
value of one corresponds with maximal RFI, zero corresponds
with samples not contaminated by RFI, and values in between
correspond with lower levels of RFI contamination. Figure 2a
shows for example the ground-truth mask of the Gaussian fea-
ture. Given a sample with ground truth value β, if the corre-
sponding sample was flagged by the method, it would be counted
with ratio β as a true positive and 1-β as a false positive. The to-
tal TP and FP ratios are the sum of all the TP and FP values,
divided by the total sum of positives and negatives in the test set,
respectively.

The SIR operator and a standard morphological dilation
have been applied in the direction of the feature, i.e., verti-
cal/frequency direction. The true and false positives were varied
by changing the parameter η or the dilation size for respectively
the SIR operator and the dilation. Different runs gave slightly
different results because of the introduced Gaussian noise, hence
the simulation was repeated 100 times and the results were aver-
aged.

Figure 7 shows the average results. The shadowed areas in
panels a) and b) show the standard deviation over the 100 runs.
In the case of the Gaussian RFI feature, the SumThreshold pre-
detection removes on average 91.3% RFI power, while simulta-
neously falsely flagging a ratio of 0.38%. Hence, if the methods
do not flag any additional samples, they have a TP/FP ratio of
91.3%/0.38%, and this is therefore the start of both ROC curves
for this RFI feature. With η = 0.48, the SIR operator flags all the
RFI features with 100% TP with a FP ratio of 1.36%, with the ex-
ception of the slanted feature. The SumThreshold pre-detection,
dilation and SIR-operator work less well on the slanted feature,
and fail to detect it with 100% even at very high sensitivity. The
dilation operator needs a size of 32.8% of the height of the image
to detect the vertical RFI features. Since it will dilate any falsely
detected input sample equally, its FP ratio is 46% with this set-
ting. Changing the signal-to-noise ratio (SNR) of the features
changes the scaling of the ROC curves, but the relative differ-
ence between the two methods remains the same.

Given the various types of RFI, Fig. 7 shows that (I) the SIR
operator is extremely accurate on straight features, by detect-
ing all previously undetected samples with only a very slight
increase in false positives; (II) the SIR operator is superior
to the dilation in all tested situations; and (III) a setting of
η ∼ 0.2–0.4 seems to be a good compromise between FP and
TP ratios.

These tests have been performed by applying the operators
in one dimension. When applied in two dimensions by using the
output of the first dimension as input for the second, the compar-
ison between the dilation and the SIR operator will diverge even
more, because the false positives created by the first dimension
will be multiplied by the repeated application towards the sec-
ond dimension. An example of a two-dimensional application
is shown in Fig. 8. Certain RFI sources create more complex
shapes in the time-frequency domain, and contaminate larger
non-line like areas. These RFI sources cause higher values in
the output of the Gaussian smoothing, which is commonly part
of the earlier RFI detection stage, and consequently some of the
lower RFI levels of the RFI feature are not flagged. We have
seen that the SIR operator will work very well on such features,
because it fills the feature and slightly extends the flags in all
directions.

It should be noted that one of the assumptions made for the
SIR operator to improve detection accuracy, is that parts of the
RFI features are not detectable by amplitude thresholding. In
practice, however, a small subset of received RFI sources does
contribute to an observation with sufficient strength to detect the
entire feature with amplitude thresholding. Such transmitters are
the worst-case situation for the SIR operator, as the operator will
enlarge the flag mask relative to its length, but any samples it
flags extra are false positives. Note that it is not useful to per-
form ROC analysis of such a situation, as the true positives will
be constant. The number of false positives can easily be calcu-
lated, and scales linearly with η and the duration of the transmit-
ter. For example, when applying the SIR operator with η = 0.2
on a strong RFI transmitter that occupies ten minutes of data in
one channel, the operator will falsely flag two minutes of the
channel before and after it. An example of a band that contains
intermittent transmitters is the air traffic communication band of
118–137 MHz. Nevertheless, while some of these transmitters
are indeed strong, e.g., when they fly through a beam sidelobe,
there are also many transmitters at this frequency that are too
weakly received to be detected all of the time. Consequently,
some of them are only partially detected with amplitude thresh-
olding. This is why we expect better results using the SIR oper-
ator even in these bands, compared to using a dilation.

Figure 9 shows a WSRT example that contains many dif-
ferent RFI kinds. The initial SumThresholdmethod detects the
RFI quite accurately, but it leaves some parts of the last 1.5 h un-
flagged. This is solved by the SIR operator, although, because
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(a) ROC curves. Solid lines: rank operator; dashed lines: dilation.

(b) Influence of η on the SIR operator. Solid lines: true positives (left
axis); dashed lines: false positives (right axis).

(c) Influence of kernel size on the dilation. Solid lines: true positives
(left axis); dashed lines: false positives (right axis).

Fig. 7. Analysis of the receiver operating characteristics of the SIR operator and a standard dilation on simulated data. Marks a)–d) correspond with
the features shown in Fig. 6, respectively a Gaussian broadband feature, a sinusoidal feature, a slightly slanted Gaussian feature and a burst-like
feature. The shadowed areas show 1σ levels over 100 runs.

of the sudden start of the RFI, it falsely flags about 20 min
of data before the start of the RFI. The strong RFI produced
by the sporadic transmitter around 140 MHz is flagged by the
SumThreshold method, but in this case it is likely that these
channels have been occupied all of the time. Therefore, the
SIR operator gives the desired result by increasing the flags in
those channels. All in all, the baseline might be somewhat over-
flagged. Nevertheless, it does allow further data reduction with-
out manual intervention, and without thresholding part of the
noise. Moreover, this case is exceptional, and the sudden start of
very strong broadband RFI is (fortunately) seldomly seen, while
the sporadic transmitters such as the one at 140 MHz are seen
very often.

A final remark on the ROC analysis performed here is that
the given absolute true/false positive ratios are not an accurate
representation of actual RFI detection, because our two models
are very simplistic and based on the assumption that RFI be-
haves in a well defined manner. Establishing absolute true/false
positive ratios would require a detailed statistical model of the
behaviour of RFI. A realistic estimate for the number of samples
occupied by RFI with LOFAR is in the order of a few percent
(Offringa et al. 2011).

4. Conclusions and discussion

From panel 7a it is clear that the SIR operator is much more suit-
able to detect the tested kinds of RFI than an ordinary morpho-
logical dilation. A value of η = 0.2 was determined by tweak-
ing and validating the results to be a reasonable setting for the
LOFAR RFI pipeline, and has been used in the default LOFAR
pipeline for over a year. Panel 7a shows that this agrees approxi-
mately with the simulations: at η = 0.2, the vertical features have
almost been completely detected by the SIR operator (Gaussian:
98.9%, a 7.6% increase, sinusoidal: 99.9%, 5.8% increase, burst:
100%, 6.7% increase) with a minor increase in the false positive
ratio (Gaussian: 0.69%, an 0.31% increase, sinusoidal: 0.95%,
0.42% increase, burst: 1.3%, 0.08% increase). The slanted fea-
ture is not as accurately detected (86%, 6.1% increase), but the
method does enhance the detection. It is hard to give a similar
optimal value for the dilation operation, since the false positives
scale linearly with the size of the dilation kernel. Therefore, it
depends on what is an acceptable loss in terms of the false posi-
tives.

In the case of simulated Gaussian broadband features,
only 8.7% of the RFI power was not detected by the
SumThreshold method. For the sinusoidal and burst features,
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(a) Horizontal SIR operator (b) Vertical SIR operator (c) SIR operator in both directions

(d) Horizontal dilation (e) Vertical dilation (f) Dilation with a square kernel

Fig. 8. Gray-scale plots showing examples of the effectiveness of two morphological techniques on the data from Fig. 1. The pink samples have
been set by the SumThreshold algorithm and the yellow samples have additionally been detected with the morphological techniques. Panels a)–c)
show results of the SIR operator with η = 0.2 in the time direction and/or η = 0.3 in frequency direction. Panels d)–f) show an ordinary dilation
with a horizontal kernel of five pixels and/or a vertical kernel of three pixels.

(a) Original data (b) Flagged with SumThreshold (pink) followed by the SIR
operator (yellow)

Fig. 9. Example of an interesting but uncommon WSRT case: part of a baseline of an observation at 140 MHz that suffered unusually strong
broadband RFI during the last 1.5 h. It also contains many different kinds of transmitters that mostly occupy constant channels. The vertical stripes
are fringes of celestial sources, hence contain the information of interest. The image shown is 2000 × 250 samples in size.
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the SumThresholdmethod performs even better. Therefore, the
total benefit of the SIR operator might seem small. However, we
think that there are strong reasons to use the method:

– The added false positives are almost negligible, and the
chances of biasing your data are much smaller compared
to using amplitude thresholding exclusively. For example,
thresholding biases the final distribution of uncorrelated
white noise, while morphologically extending a flag mask
does not. For these reasons, it is preferable to use morphol-
ogy to find the final few RFI samples, compared to lowering
the threshold.

– The method is extremely fast and simple, and its processing
time is almost negligible in a full RFI pipeline.

– We have seen situations in which even the low ratio of false
negatives that are leaked through an amplitude-based RFI de-
tection pipeline can cause calibration to fail. Empirically, we
have seen an improvement of the calibratability of LOFAR
observations by using the morphological method.

Section 3.2 describes that strong intermittent (on ∼minute scale)
RFI transmitters are probably the worst case for the SIR op-
erator, as in these cases the application of the operator with
η = 0.2 could in theory yield 40% false positives. However,
because of LOFAR’s high resolution, in combination with the
SumThreshold’s unprecedented detection accuracy, the total
percentage of flagged data in the case of LOFAR is only a few
percent. This implies that even if a large ratio of these were
strong intermittent transmitters – which is unlikely – the benefits
of not having to manually consider data quality in cases where
the technique does help, probably outweigh the ∼1% added false
positives. If it turns out that some bands do have mostly strong
transient transmitters, the η parameter could become a function
of frequency. At the moment, application of the SIR operator
seems to be helpful at any frequency.

In this paper we have assumed scale-invariant behaviour for
RFI. In reality this might not be entirely accurate, so instead
of using a threshold that grows linearly with the scale, as in
our definition of the SIR operator, it might be better to have a
threshold that depends on the scale in a non-linear fashion. Also,
when looking at the problem from a statistical point of view, RFI
might not be equally likely to occur on all scales. For example,
RFI might be less likely to occur on a scale of days than on a
scale of seconds. When it does occur on large scales, it is doubt-
ful that we actually need to extend the detected intervals in a
scale-invariant manner, because the signal would likely already
be detected at a smaller scales and gaps would likely be filled.
Such considerations would suggest that it might be better to have
a threshold that grows less than linearly for large scales. Better
RFI statistics and RFI modelling might provide the required in-
formation for assessing such considerations.

Several options are available to apply the SIR operator on
a two-dimensional input. As shown in Fig. 4, the intersection
of the results in both directions does not extend line RFI,
thus is not useful in this context. A union does extend such
RFI, but does not extend the flags diagonally. Processing the
directions sequentially might therefore be beneficial for RFI
that has structure in both frequency and time, as this kind of
RFI does likely also slightly contribute in the diagonal direc-
tion. The difference between processing time first, frequency

first or taking the union of both, is small. Taking the union over-
comes the somewhat arbitrary decision of which direction to pro-
cess first. In the case of LOFAR, we decided to only perform
filtering time first, because taking the union of both time and
frequency first is more expensive.

Morphology can be used in several image processing tasks,
for example in feature detection. Often, generic morphological
operations need to be applied on different resolutions. In such
cases, the scale-invariant operation to extend binary masks as
presented here might be generally useful.

So far, we have considered combinations of one-dimensional
application of the SIR operator in order to use it for our two-
dimensional application in the time-frequency domain. For this
application, but also for more generic applications, it might be
interesting to consider a true two-dimensional version of the
SIR operator. While the one-dimensional operator selects all
subsequences (lines) with a ratio ≥η of flagged values, a two-
dimensional operator would select all rectangles that have a ratio
≥η of flagged values. It is however likely that such an operator
can not be implemented with a linear time complexity, which
makes it less attractive for the large data rate of LOFAR.

We have shown that even slightly slanted features are harder
to detect accurately. Fortunately, in the case of LOFAR, such fea-
tures are very rare. If the features to be detected have a known
orientation that is not parallel to one of the axes, it might be
an option to apply the operator in the direction of the features.
While a trivial implementation can apply the operator along
fixed lines, some work might be necessary to maintain transla-
tion invariance (Soille & Talbot 2001).
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