1,580 research outputs found

    In Silico Analysis Identifies Intestinal Transit as a Key Determinant of Systemic Bile Acid Metabolism

    Get PDF
    Bile acids fulfill a variety of metabolic functions including regulation of glucose and lipid metabolism. Since changes of bile acid metabolism accompany obesity, Type 2 Diabetes Mellitus and bariatric surgery, there is great interest in their role in metabolic health. Here, we developed a mathematical model of systemic bile acid metabolism, and subsequently performed in silico analyses to gain quantitative insight into the factors determining plasma bile acid measurements. Intestinal transit was found to have a surprisingly central role in plasma bile acid appearance, as was evidenced by both the necessity of detailed intestinal transit functions for a physiological description of bile acid metabolism as well as the importance of the intestinal transit parameters in determining plasma measurements. The central role of intestinal transit is further highlighted by the dependency of the early phase of the dynamic response of plasma bile acids after a meal to intestinal propulsion

    Zebrafish type I collagen mutants faithfully recapitulate human type I collagenopathies

    Get PDF
    The type I collagenopathies are a group of heterogeneous connective tissue disorders, that are caused by mutations in the genes encoding type I collagen and include specific forms of osteogenesis imperfecta (OI) and the Ehlers-Danlos syndrome (EDS). These disorders present with a broad disease spectrum and large clinical variability of which the underlying genetic basis is still poorly understood. In this study, we systematically analyzed skeletal phenotypes in a large set of zebrafish, with diverse mutations in the genes encoding type I collagen, representing different genetic forms of human OI, and a zebrafish model resembling human EDS, which harbors a number of soft connective tissues defects, typical of EDS. Furthermore, we provide insight into how zebrafish and human type I collagen are compositionally and functionally related, which is relevant in the interpretation of human type I collagen-related disease models. Our studies reveal a high degree of intergenotype variability in phenotypic expressivity that closely correlates with associated OI severity. Furthermore, we demonstrate the potential for select mutations to give rise to phenotypic variability, mirroring the clinical variability associated with human disease pathology. Therefore, our work suggests the future potential for zebrafish to aid in identifying unknown genetic modifiers and mechanisms underlying the phenotypic variability in OI and related disorders. This will improve diagnostic strategies and enable the discovery of new targetable pathways for pharmacological intervention

    Modelling of the effect of ELMs on fuel retention at the bulk W divertor of JET

    Get PDF
    Effect of ELMs on fuel retention at the bulk W target of JET ITER-Like Wall was studied with multi-scale calculations. Plasma input parameters were taken from ELMy H-mode plasma experiment. The energetic intra-ELM fuel particles get implanted and create near-surface defects up to depths of few tens of nm, which act as the main fuel trapping sites during ELMs. Clustering of implantation-induced vacancies were found to take place. The incoming flux of inter-ELM plasma particles increases the different filling levels of trapped fuel in defects. The temperature increase of the W target during the pulse increases the fuel detrapping rate. The inter-ELM fuel particle flux refills the partially emptied trapping sites and fills new sites. This leads to a competing effect on the retention and release rates of the implanted particles. At high temperatures the main retention appeared in larger vacancy clusters due to increased clustering rate

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Affinity Inequality among Serum Antibodies That Originate in Lymphoid Germinal Centers

    Get PDF
    Upon natural infection with pathogens or vaccination, antibodies are produced by a process called affinity maturation. As affinity maturation ensues, average affinity values between an antibody and ligand increase with time. Purified antibodies isolated from serum are invariably heterogeneous with respect to their affinity for the ligands they bind, whether macromolecular antigens or haptens (low molecular weight approximations of epitopes on antigens). However, less is known about how the extent of this heterogeneity evolves with time during affinity maturation. To shed light on this issue, we have taken advantage of previously published data from Eisen and Siskind (1964). Using the ratio of the strongest to the weakest binding subsets as a metric of heterogeneity (or affinity inequality), we analyzed antibodies isolated from individual serum samples. The ratios were initially as high as 50-fold, and decreased over a few weeks after a single injection of small antigen doses to around unity. This decrease in the effective heterogeneity of antibody affinities with time is consistent with Darwinian evolution in the strong selection limit. By contrast, neither the average affinity nor the heterogeneity evolves much with time for high doses of antigen, as competition between clones of the same affinity is minimal.Ragon Institute of MGH, MIT and HarvardSamsung Scholarship FoundationNational Science Foundation (U.S.). Graduate Research Fellowship (Grant 1122374

    A blinded comparison of fluticasone propionate with budesonide via powder devices in adult patients with moderate-to-severe asthma: a clinical evaluation

    Get PDF
    In Vitro and in vivo data have demonstrated that there are detectable differences between inhaled corticosteroids commonly used to treat asthma. However, controversy still remains as to whether these differences translate into clinical benefits. This 12-week, international, randomized, doubleblind, parallel-group study was undertaken to compare the efficacy and safety of fluticasone propionate (FP) 800 μg daily, administered as a powder via the Diskhaler®, and budesonide (BUD) 1600 μg daily, administered using the Turbuhaler®, in adult patients with moderate-tosevere asthma. A total of 518 patients participated in the study, 256 of whom received FP and 262 BUD. Assessment of mean morning peak expiratory flow (PEF) over the 12-week treatment period revealed a statistically significant difference in efficacy between FP 800 μg daily and BUD 1600 μg daily in favour of FP (p = 0.003), with an overall improvement of 20.9 l/min with FP compared with 12.4 l/min on BUD. Statistically significant differences in favour of FP were seen over the 12 weeks for mean evening PEF (p = 0.04), diurnal PEF variation (p = 0.03) and percentage predicted PEF (p = 0.003), as well as forced expiratory volume (p = 0.008), forced vital capacity (p = 0.02) and PEF (p = 0.005) measured at clinic visits. The median percentage of symptom-free nights increased over the 12-week study period in both treatment groups, with similar changes seen for the median percentage of days with symptom score < 2, rescue medication use and exacerbations of asthma. The incidence of adverse events was found to be comparable in the two treatment groups. The geometric mean ratios of serum cortisol levels were found to be 1.03 for FP, indicating no mean hypothalamic-pituitary-adrenal axis suppression from baseline, and 0.93 for BUD (p = 0.0002 compared with FP). In summary, FP 800 μg daily showed a greater efficacy/safety ratio in the treatment of moderate-to-severe asthma than BUD 1600 μg daily
    corecore