95 research outputs found

    Sealed containers in Z

    Get PDF
    Physical means of securing information, such as sealed envelopes and scratch cards, can be used to achieve cryptographic objectives. Reasoning about this has so far been informal. We give a model of distinguishable sealed envelopes in Z, exploring design decisions and further analysis and development of such models

    Modeling the hydrogeochemical evolution of brine in saline systems: case study of the Sabkha of Oum El Khialate in South East Tunisia

    Get PDF
    We studied the effects of evaporation and groundwater flow on the formation of salt minerals in the Sabkha of Oum El Khialate in South East Tunisia, which contains large amounts of sulfate sodium mineral deposits. Due to the fact that there are no important surface water bodies present in this sabkha, transport of solutes is dominated by advection rather than mixing in lakes. For our study we used both analytical conservative and numerical reactive transport models. Results showed that salinity varies with distance and may reach very high levels near a watershed where the groundwater flux is zero. As a consequence, reactive transport simulations results showed that more minerals precipitate and water activity decreases values near this watershed. Model results also showed that a sequence of precipitating minerals could be deduced after 140,000 years. From the boundary of the sabkha towards the watershed the mineral sequence was dolomite, gypsum, magnesite, bloedite, halite and mirabilite. It was found that the amounts as well as the mineral precipitation distribution strongly depend on salinity and rates of inflowing water. (C) 2014 Elsevier Ltd. All rights reserved.Peer ReviewedPostprint (author’s final draft

    Behavioral Responses to Combinations of Timed Light, Food Availability, and Ultradian Rhythms in the Common Vole (Microtus arvalis)

    Get PDF
    Light is the main entraining signal of the central circadian clock, which drives circadian organization of activity. When food is made available during only certain parts of the day, it can entrain the clock in the liver without changing the phase of the central circadian clock. Although a hallmark of food entrainment is a behavioral anticipation of food availability, the extent of behavioral alterations in response to food availability has not been fully characterized. The authors have investigated interactions between light and temporal food availability in the timing of activity in the common vole. Temporally restricted food availability enhanced or attenuated re-entrainment to a phase advance in light entrainment when it was shifted together with the light or remained at the same time of day, respectively. When light-entrained behavior was challenged with temporal food availability cycles with a different period, two distinct activity components were observed. More so, the present data indicate that in the presence of cycles of different period length of food and light, an activity component emerged that appeared to be driven by a free-running (light-entrainable) clock. Because the authors have previously shown that in the common vole altering activity through running-wheel availability can alter the effectiveness of food availability to entrain the clock in the liver, the authors included running-wheel availability as a parameter that alters the circadian/ultradian balance in activity. In the current protocols, running-wheel availability enhanced the entraining potential of both light and food availability in a differential way. The data presented here show that in the vole activity is a complex of individually driven components and that this activity is, itself, an important modulator of the effectiveness of entraining signals such as light and food. (Author correspondence: [email protected]

    A global method for coupling transport with chemistry in heterogeneous porous media

    Get PDF
    Modeling reactive transport in porous media, using a local chemical equilibrium assumption, leads to a system of advection-diffusion PDE's coupled with algebraic equations. When solving this coupled system, the algebraic equations have to be solved at each grid point for each chemical species and at each time step. This leads to a coupled non-linear system. In this paper a global solution approach that enables to keep the software codes for transport and chemistry distinct is proposed. The method applies the Newton-Krylov framework to the formulation for reactive transport used in operator splitting. The method is formulated in terms of total mobile and total fixed concentrations and uses the chemical solver as a black box, as it only requires that on be able to solve chemical equilibrium problems (and compute derivatives), without having to know the solution method. An additional advantage of the Newton-Krylov method is that the Jacobian is only needed as an operator in a Jacobian matrix times vector product. The proposed method is tested on the MoMaS reactive transport benchmark.Comment: Computational Geosciences (2009) http://www.springerlink.com/content/933p55085742m203/?p=db14bb8c399b49979ba8389a3cae1b0f&pi=1

    An open extensible tool environment for Event-B

    No full text
    Abstract. We consider modelling indispensable for the development of complex systems. Modelling must be carried out in a formal notation to reason and make meaningful conjectures about a model. But formal modelling of complex systems is a difficult task. Even when theorem provers improve further and get more powerful, modelling will remain difficult. The reason for this that modelling is an exploratory activity that requires ingenuity in order to arrive at a meaningful model. We are aware that automated theorem provers can discharge most of the onerous trivial proof obligations that appear when modelling systems. In this article we present a modelling tool that seamlessly integrates modelling and proving similar to what is offered today in modern integrated development environments for programming. The tool is extensible and configurable so that it can be adapted more easily to different application domains and development methods.

    Analysis of water vapor adsorption in soils by means of a lysimeter and numerical modeling

    Get PDF
    Daily temperature oscillations can cause adsorption (and desorption) of atmospheric water vapor by soils. The resulting daily fluctuations in the amount of liquid water in the soil can be measured by high-precision weighing lysimeters. We analyzed the data of a lysimeter in a sandy dune sediment in southern Spain using Codebright, a thermohydraulic numerical model for unsaturated flow that takes into account water, vapor, and heat transport in the soil, as well as soil–atmosphere interactions such as precipitation, evaporation, and solar radiation. The analysis shows that daily temperature oscillations, psychrometrics, and soil water retention can explain the fluctuations of the amount of liquid water in the soil. The retention curve, especially its driest part, is essential for the existence of these fluctuations. The fluctuations could not be reproduced by a model using the van Genuchten retention curve with a constant residual saturation. On the other hand, satisfactory results could be obtained by models using retention curves that at their driest part still show a change of saturation with suction. Moreover, the models suggest within the top few decimeters of the soil a pattern of alternating bands of condensation and evaporation, which follows the daily temperature oscillations that fade out deeper in the soil.We are very grateful to André Peters for providing the AWAT filter and give special thanks to Daniel Jesus Martínez, Fernando Ruiz Bermudo, and Antonio Nicolas Martínez for their excellent technical assistance and support.We are grateful for the support and collaboration of the Biological Station of Doñana, the Biological Reserve of Doñana, and the administration of the Doñana National Park. The contract of Lidia Molano Leno (PEJ-2014-A-68763) was financed by the Ministry of Economy, Industry and Competitiveness of Spain (MINECO) and co-financed by the European Investment Bank (EIB) and the European Social Fund (ESF). Likewise, this work has been financed by the CLIGRO Project (MICINN, CGL2016-77473-C3-1-R) of the Spanish National Plan for Scientific and Technical Research and Innovation. The infrastructure has been co-financed by European Research Funds (SE Scientific Infrastructures and Techniques and Equipment 2013, IGME13-1E-2113).Peer ReviewedPostprint (published version

    Efficient Refinement Checking in VCC

    Get PDF
    We propose a methodology for carrying out refinement proofs across declarative abstract models and concrete implementations in C, using the VCC verification tool. The main idea is to first perform a systematic translation from the top-level abstract model to a ghost implementation in VCC. Subsequent refinement proofs between successively refined abstract models and between abstract and concrete implementations are carried out in VCC. We propose an efficient technique to carry out these refinement checks in VCC. We illustrate our methodology with a case study in which we verify a simplified C implementation of an RTOS scheduler, with respect to its abstract Z specification. Overall, our methodology leads to efficient and automatic refinement proofs for complex systems that would typically be beyond the capability of tools such as Z/Eves or Rodin

    Societal, land cover and climatic controls on river nutrient flows into the Baltic Sea

    Get PDF
    Study region River basins draining into the Baltic Sea, known as the Baltic Sea Drainage Basin (BSDB). Study focus Dramatic shifts in water quality have been observed in the Baltic Sea in past decades. This study investigated the spatial distribution of trends in nitrogen (N) and phosphorus (P) in relation to societal, land cover and climatic changes. A 31-year record of observed catchment scale nutrient concentration and discharge data for the period 1970–2000 was combined with climate and land cover data. A Mann–Kendall test was applied to reveal trends in N and P, the N:P ratio, discharge, temperature and precipitation. Classical factor analysis and Kendall's rank correlation identified the most important relationships between nutrients, land cover and climate. New hydrological insights for the region A large spatial variability in N and P trends was observed with a notable difference between the east and west of the BSDB. The existence of regional trend variations are important for nutrient load reduction management strategies. Specifically, it is recommended that strategies targeting seawater eutrophication should focus more on P rather than N reduction because increasing P in the eastern catchments is responsible for the overall declining trend in the N:P ratio, an important trigger for algal blooms

    Applying SMT Solvers to the Test Template Framework

    Full text link
    The Test Template Framework (TTF) is a model-based testing method for the Z notation. In the TTF, test cases are generated from test specifications, which are predicates written in Z. In turn, the Z notation is based on first-order logic with equality and Zermelo-Fraenkel set theory. In this way, a test case is a witness satisfying a formula in that theory. Satisfiability Modulo Theory (SMT) solvers are software tools that decide the satisfiability of arbitrary formulas in a large number of built-in logical theories and their combination. In this paper, we present the first results of applying two SMT solvers, Yices and CVC3, as the engines to find test cases from TTF's test specifications. In doing so, shallow embeddings of a significant portion of the Z notation into the input languages of Yices and CVC3 are provided, given that they do not directly support Zermelo-Fraenkel set theory as defined in Z. Finally, the results of applying these embeddings to a number of test specifications of eight cases studies are analysed.Comment: In Proceedings MBT 2012, arXiv:1202.582
    corecore