
Modelling Sealed Containers
in Z

Eerke Boiten1 and Jeremy Jacob2

1 Centre for Cyber Security & School of Computing
University of Kent, UK

2 Department of Computer Science, University of York, UK

Abstract. Physical means of securing information, such as sealed en-
velopes and scratch cards, can be used to achieve cryptographic objectives,
including ones that are hard or impossible by electronic means. So far, de-
scriptions of such mechanisms have been informal, and as a consequence
so has the associated reasoning.
This paper3 takes a formal methods approach to these physical cryptogra-
phy primitives. A model of distinguishable sealed envelopes is given in Z,
exploring some of the design decisions and avenues for further analysis
and development of such models.

1 Introduction

Physical mechanisms for securing information such as sealed envelopes and
scratch cards have powerful properties already in their simplest possible forms.
They contain information, which remains hidden until an explicit moment where
the seal is broken or the card is scratched. Up to that point, anyone not involved
in manufacturing the item can plausibly argue ignorance of the information.
More complex forms include multiple scratchable areas on a single card (as used
in lottery games), and overprinted scratch cards [21].

Reasoning about such mechanisms so far has been done only informally.
Applications such as in lotteries and games are probably simple enough for this
to suffice. However, it has also been shown that these mechanisms can be used
in voting protocols [1,21], polling protocols [19], and most fundamentally: to
implement general cryptographic schemes [18], including bit commitment and
oblivious transfer. In such schemes, scratch cards and sealed envelopes play a
much more intricate role, and the notions of security are sophisticated. At the
most abstract (“possibilistic”) level, this involves reasoning about information
flow and confidentiality. A more detailed analysis will also have to consider
explicit probabilistic and computational complexity based aspects [5].

This paper embarks on the formal modelling and analysis of these mech-
anisms. The physical mechanism considered will be sealed distinguishable

3 Version of 28 March 2014 – incorporating ABZ 2014 reviewers’ comments before
abbreviation to 6 pages.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/20119464?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

envelopes containing a single bit of information. This will be applied in a num-
ber of protocols for bit commitment, leading up to the one given in Moran and
Naor’s paper [18]. The emphasis will be for this paper on constructing the model
of the envelopes and the protocols based on it, and looking ahead to the se-
mantic requirements for using such models in systematic analysis and formal
development.

Section 2 describes a model for distinguishable sealed envelopes in Z. The
problem of bit commitment, and how its modelling and analysis stretches the
standard formal methods toolbox, is described in Section 3. We specify and
discuss a number of bit commitment protocols based on envelopes in Section 4.
Finally, Section 5 reflects on observational semantics and refinement, and sets
out an agenda for advancing this work.

2 Modelling Sealed Envelopes in Z

This is a story about Agents who pass Envelopes about:

[Agent, Envelope]

The presence of these two as given types represents relevant information, namely
that both of these have “identities”. For Agents this will show in particular
agents holding specific and different roles in protocols; for Envelopes it means
that different envelopes can be distinguished. Moran and Naor [18] describe
two different models of envelopes, of which we are covering the more powerful
distinguishable envelope model.

The development of this specification has been supported with the Z-Eves
proof tool [22], in particular syntax-checking, type-checking and applicability
checking have been applied to definitions and theorems.4 Most of the theorems’
proofs have not been discharged yet.

2.1 The State

Envelopes contain bits, and may be: uncreated; created and closed; or created
and open. The value in a created and closed envelope may only be known by
its creator; the value in an open envelope is known by anyone who possesses it.
A created envelope is in the possession of exactly one agent in any state. Thus,
envelopes which have not been created are exactly those not held by anyone.

We model an agent knowing the content of an envelope by a pair of relations
zero and one. The predicate a 7→ e ∈ zero encodes that agent a has direct evidence
(it created the envelope, or has seen it when open) that e contains a 0-bit; and
similarly for one.

4 Note to reviewers: this comment was fully correct for the version four days before
submission, and is intended to be fully correct again for any published version. At the
time of submission, some revised and additional definitions and theorems are included
that have not been checked, yet.

At any point in our story we have agents holding envelopes, some of which
are open, and agents knowing the contents of some envelopes.

S
holder : Envelope 7 7→ Agent
open : FEnvelope
zero, one : Agent↔ Envelope

open ⊆ dom holder

ran(zero∪ one) = dom holder

ran zero∩ ran one = ∅

The predicates state that:

1. all open envelopes are held by some agent;
2. the content of every created envelope is known by some agent (at least its

creator); and
3. agents’ views of envelope contents are consistent: all agents who know the

content of an envelope agree on it.

In this story we do not care about the initial state. An empty initial state is
easy to describe if wished.

2.2 Good Operations

Operations on the state —happenings in our story— must be well behaved. We
introduce a schema, OpS, to capture this.

OpS
∆S

open ⊆ open′

zero ⊆ zero′

one ⊆ one′

The predicates state that:

1. envelopes cannot be resealed (which is a crucial property of our model); and
2. agents cannot forget what they know (acknowledging that zero and one are

essentially epistemic predicates).

2.3 Operations on the State

There are three operations, to create, move and open envelopes. Each of these is
a bulk operation, in that it applies to sets of envelopes.

We also allow empty sets everywhere, and do not insist that agents are
different, so that an agent may ‘move’ envelopes to itself. These conventions
allow slightly simpler formulæ.

Create When an agent a? creates new envelopes it does so for a set of envelopes
to store 0-bits, zs?, and for a set of 1-bits, os?. Of course, either of these could be
empty and the other have cardinality 1.

Create
OpS
a? : Agent
zs?, os? : FEnvelope

(zs? ∪ os?) ∩ dom holder = ∅

zs? ∩ os? = ∅

holder′ = holder∪ ((zs? ∪ os?)× {a?})

open′ = open

zero′ = zero∪ ({a?} × zs?)

one′ = one∪ ({a?} × os?)

Note that the predicates record that the new envelopes are new, held by their
creator, are closed, and their values are known to their creator only.

Move A set of envelopes (perhaps just one) may be moved to a named agent
as long as they have all been created, and are held by one agent. The receiving
agent learns the values of any open envelopes. No envelope is opened by this
operation.

Move
OpS
b? : Agent
es? : FEnvelope

es? ⊆ dom holder

∃ a : Agent • holder(| es? |) = {a}

holder′ = holder⊕ (es?× {b?})

open′ = open

zero′ = zero∪ ({b?} × (es? ∩ open∩ ran zero))

one′ = one∪ ({b?} × (es? ∩ open∩ ran one))

Open The holder of a set of envelopes can open them. The holder learns their
values, they do not change hands.

Open
OpS
es? : FEnvelope

es? ⊆ dom holder

es? ∩ open = ∅

holder′ = holder

open′ = open∪ es?

∃ a : Agent • holder(| es? |) = {a} ∧
zero′ = zero∪ ({a} × (es? ∩ ran zero)) ∧
one′ = one∪ ({a} × (es? ∩ ran one))

Note that the precondition es? ∩ open = ∅ (none of the envelopes are already
open) could be omitted without harm; the operation would then be required to
treat re-opening envelopes as a null operation.

2.4 An Agent’s View

We can define a schema that reports an agent’s view of a state. This is a finalisation
operation, not commonly used in Z states-and-operations specifications, but a
good way of encoding non-standard observations of abstract data types. See
Section 5 for further discussion.

View
S
S0
b? : Agent

holder0 = holder B {b?}

open0 = open∩ dom holder0

zero0 = {b?}C zero

one0 = {b?}C one

The variables with 0-subscripts are those which represent b?’s view of (an
instance of) state S.

An agent knows more than this. It also knows what closed envelopes have
passed through it without being opened, and the order that envelopes passed
through it. It also has partial knowledge of what other agents that it has com-
municated with know. None of that knowledge is important for the sequel, but
could easily be added by new state components in S.

Remark Instead of using a 0-subscript we could have decorated the view vari-
ables with a prime (′); this has the advantage that we could save a line in the
schema definition, but the disadvantage of confusion with state-change.

With a basic model of distinguishable sealed envelopes in place, we now set
out the target: a bit commitment protocol.

3 Bit Commitment: a Challenge

Commitment is an essential cryptographic primitive between two parties. (The
term carries several meanings in computer science – this one is somewhat
different from “commit” actions that occur in database transaction management,
and for which “distributed commitment” protocols have been developed [13].)
In the simplest case, where the value committed to is a single bit, it works as
follows.

One party, usually called the sender, executes an action Commit(b) for a given
bit value b. Once this has happened, the other party, usually called the receiver,
knows that the sender has committed to a bit (and in a context of multiple
commitments taking place, this commitment also has an identity), but does not
know what b is. This prescribed ignorance on the part of the receiver is called
the hiding property, which a cheating receiver may attempt to break. Once the
commitment has been made, this starts a window of time in which the sender has
committed to a value which the receiver does not yet know. In e.g. authentication
and interactive zero knowledge proof protocols, essential interactions take place
inside this window. At some later point in time, the sender can execute an Open
action, after which the receiver finds out b. The value returned on opening
should be the same value originally committed to – this is called the binding
property, which a cheating sender may attempt to break. A surrounding protocol
building on commitment would typically be aborted by the receiver if they
discover foul play at this point.

The obvious attempt to implement commitment using envelopes runs as
follows. On committing, the sender (here a?) creates an envelope with a bit in.
Let’s say the sender passes the envelope directly to the receiver (here b?).

Commit =̂ [Create; es? : FEnvelope | es? = zs? ∪ os? ∧ #es? = 1] o
9 Move

Note that we have introduced a name (es?) into Create to describe part of the link
between it and the following Move.5

Now we can specialise to the two cases of committing to a zero-bit and to a
one-bit, and the recipient’s view after both:

CommitZero =̂ [Commit | os? = ∅]

CommitOne =̂ [Commit | zs? = ∅]

CommitZeroView =̂ ∃ es?, zs?, os? : FEnvelope • CommitZero o
9 View

CommitOneView =̂ ∃ es?, zs?, os? : FEnvelope • CommitOne o
9 View

5 This is the first piece of Z in this specification where the Z-Eves theorem prover requires
—a minimal amount of— help to discharge applicability proof obligations.

Of course, b? cannot tell the difference between CommitZero and CommitOne:6

Theorem 1 (Commit Indistinguishability).

∀ a?, b? : Agent | a? 6= b? • θCommitZeroView = θCommitOneView

This theorem captures the hiding property.

Remark It is necessary to introduce the schemas CommitZeroView and
CommitOneView as the θ construction can only be applied to a schema name, but
not to an arbitrary schema expression. The schemas CommitZero and CommitOne
are worth introducing as system-level descriptions of the two types of bit-
commitment, independently of the vagaries of Z.

3.1 Discovering the value of a committed-to bit

The recipient, b?, can open the envelope to discover the value of the bit in it.
To state the theorem that after opening the recipient knows the bit committed

to, we introduce a view of: the sending of some bit, sending a zero-bit, and
sending a one bit. The statement of the theorem encodes the manner by which
b?’s knowledge allows it to deduce the value of the sent bit.7

CommitOpenView =̂ Commit o
9 Open o

9 View

CommitZeroOpenView =̂ CommitZero o
9 Open o

9 View

CommitOneOpenView =̂ CommitOne o
9 Open o

9 View

Theorem 2 (Opened Distinguishability).

∀CommitOpenView •
(es? ⊆ ran zero0 \ ran one0 ⇒ CommitZeroOpenView)
∧
(es? ⊆ ran one0 \ ran zero0 ⇒ CommitOneOpenView)

Remark The inclusion of the View finalisation is necessary to ensure there is
enough information for the type-checker. The schema names, CommitOpenView,
and so on, cannot be replaced by their definitions as they are used in contexts
where schema references, but not schema expressions are allowed.

However, the above does not yet correctly implement a commitment scheme.
Crucially, Open is enabled as soon as the commitment has been made. Thus, it

6 Z-Eves discharges this by one application of tactic “prove”.
7 Z-Eves cannot dismiss this using the tactic “prove by reduce”. It needs further guidance,

for example to expand operators such as C. This we have not done.

does not satisfy the requirement that the sender controls when the receiver is
allowed to learn the value of the commitment.

Even a solution where the sender would be able to observe when the re-
ceiver opens the commitment prematurely would be useful, as the sender could
then abort the overarching protocol on making that observation. However, the
assumption that sender and receiver are always in the same room and can al-
ways see what the other party is doing is too strong – we want security to be
guaranteed by the sealing of envelopes, not by constant observation.

Removing the Move action from the commitment step also would not solve
the problem, as this would break the binding property, as the sender could
postpone the choice of bit and envelope until that moment without the receiver’s
noticing8.

In the physical world, as in the cryptographic one, a standard solution to this
is to assume a trusted third party, to which we can hand the envelope (or the bit)
for safekeeping between committing and opening. This is a correct implemen-
tation, but somewhat circular, as the cryptographic machinery for establishing
the trusted third party, and secure communication with it, is typically built on
commitments again (they are for example commonly used in zero knowledge
proof protocols [10]).

The exploration of bit commitment as a two party electronic protocol, with
the normal assumptions of a fixed number of messages of bounded size, has
led to a large number of negative results. First, it is fairly simple to see that it
is impossible to achieve both perfect hiding and perfect binding – this is ex-
plained in detail elsewhere [4]. Even quantum computing will not change that
[16]. As a consequence, the highest attainable notion of security should be a
“computational” one. Indeed either perfect binding or hiding has been achieved
in concrete constructions, with in each case the chance of breaking the other
property negligibly small (in terms of a security parameter such as key length). It
has been proved, however, that a version achieving the important composition-
ality property of ”Universal Composability” [8] cannot be constructed unless
the parties have some common knowledge to start with [9]. All this makes com-
mitment an interesting challenge for formal methods, requiring approximate
notions of correctness in the face of an “obvious ideal” specification which is
unsatisfiable.

4 Envelope Based Commitment Protocols

4.1 Achieving Probabilistic Security

An envelope-based protocol that is more resistant against cheating needs three
additional enhancements. First, the bit in the envelope needs to be masked
with a “random” bit r. (In this paper, we do not continue the analysis onto

8 The argument that this could be fixed by linking the bit to the envelope’s identity and
transferring the identity on committing is attractive, but leads straight to the issue of
perfect bit commitment being impossible as a two party electronic protocol.

the probabilistic level, so the uniform probabilistic choice involved will be
represented by a non-deterministic one instead.) If the sender puts r xor v? in the
envelope, the receiver will learn nothing about the value of v? by prematurely
opening the envelope; instead, the sender will transmit r when they open the
commitment, which will allow the receiver to learn the value of v? by taking the
xor of r with the envelope’s contents. In fact, as the value contains no information
for anyone who does not know r, it does not even need to be put in an envelope.

Unfortunately this idea is flawed, too. As is typical for commitment schemes,
an attempt to stop the receiver cheating against hiding leads to an opportunity
for the sender to cheat against binding. There is nothing to stop the sender from
transmitting ¬r at opening time and thereby changing the value committed to.
What we would really need here is for the sender to commit to r as well, but that
makes it a circular construction again!

The way out of this is for the receiver to prepare envelopes with random
bits for the sender. In the first attempt, the receiver creates one with zero, and
one with one, and passes these to the sender. The sender opens a random one,
getting x, concludes that the other contains ¬x, and takes r = ¬x, and transfers
v? xor r as before. On opening the commitment, the sender passes the closed
envelope to the receiver, which should contain r as a proof that the sender did
not cheat. Binding has been restored!

Unfortunately hiding is at risk again in this solution: the receiver could
send envelopes with two identical bits, thereby learning the committed value
prematurely. The sender opens only one envelope so can never find this out.

In fixing this, probabilistic reasoning really comes to the fore. Instead of
creating and sending two envelopes, the receiver creates and sends a balanced
collection of four envelopes. The sender opens three of these, and expects to
find two zeros and a one, or vice versa – if not, the receiver’s cheating has
been detected. This still allows a fair amount of cheating to be undetected: if
the receiver biases the choice by sending (say) three zeroes plus a one, this is
detected with a chance of one in four, and where it is undetected gives receiver
full knowledge of v? as r will be zero. A chance of detection of one in four seems
small, but by repeating this as often as necessary (“amplification”), the chance
of successful cheating can be made as small as desired.

4.2 The Commitment Protocol

Summarising, the protocol consists of three communications of envelopes be-
tween the two parties, with typically a time gap between the second and the
third in which the overarching protocol does its job knowing the commitment is
in place.

Before we give a description in Z, we present it in the traditional protocol
notation, in which we need two enhancements:

– normally a series of values separated by commas is sent and received in that
order (concatenated); surrounding [[]] brackets means they are received in
some non-deterministic order;

– [x] denotes a newly created closed envelope containing the bit x, a new open
envelope with x is represented by 〈x〉.

The commitment protocol then goes as follows.

Preparation: B→ A : [[[1], [1], [0], [0]]]
A receives these as E1 . . . E4, opens E1 . . . E3 and takes the exclusive-or
of their values returning b.
If E1 . . . E3 all had the same value,A finds B has cheated and aborts the protocol.
The Z specifications below use es? for E1 . . . E4 and fs? for E1 . . . E3.

Commitment: A→ B : 〈vv〉
The value vv is computed as the exclusive-or of b and the value v? that A
wants to commit to. It is sent in an open envelope called e? below.

Opening: A→ B : E4
B receives and opens this last closed envelope, the value found should be b,
and computes the exclusive-or of b and vv which should be v?.
If the envelope received isn’t one of the original four created by B, A has
cheated and B aborts the protocol (and any surrounding ones).

We retain a? as the sender, and b? as the receiver, in the following descriptions.
We will need a few shorthands for envelopes being created and moving in
opposite directions from the previous protocol:

CreateB =̂ Create[b?/a?]
MoveBA =̂ Move[a?/b?]

4.3 The Preparation Phase

The receiver creates four envelopes and sends them to the sender. Note that
we use here their names within the commitment protocol, with this particular
transmission going in the opposite direction.

SendFour =̂ [CreateB; es? : FEnvelope | es? = zs? ∪ os? ∧ #es? = 4] o
9 MoveBA

An honest receiver balances the bits to be sent: exactly two of them are 0-bits,
and hence exactly two are 1-bits:

Honest =̂ [SendFour | #zs? = 2]

A dishonest receiver could send all the same or three the same. The protocol
ensures that all four envelopes having the same value will be detected. Hence
we only model the case where there is a one–three split; the protocol will detect
this case with probability 1

4 .

Dishonest =̂ [SendFour | #zs? = 1 ∨ #os? = 1]

Now we can state a couple of theorems: that with an honest receiver the
sender knows the value in the unopened envelope, and with a dishonest receiver

the sender may be fooled.9 We need to distinguish the set of envelopes opened
from the set of envelopes sent by the receiver. We introduce fs? for the set of
envelopes to be opened, using renaming of variables in Open.

OpenThree =̂ [Open[fs?/es?]; es? : FEnvelope | #fs? = 3 ∧ fs? ⊆ es?]

HonestOpenThree =̂ Honest o
9 OpenThree

Theorem 3 (Honest Receiver).

∀HonestOpenThree •
(#(ran zero∩ fs?) = 1⇒ es? \ fs? ⊆ ran zero)
∧
(#(ran one∩ fs?) = 1⇒ es? \ fs? ⊆ ran one)

Because the value of the sealed envelope is known to its creator it is in the
range of either zero or one, we use this as a proxy for knowing its value. The
phrase ran zero ∩ fs? is the set of newly-opened envelopes that contain a 0-bit,
and similarly for ran one∩ fs? and 1-bits. The sealed envelope is the only member
of the set es? \ fs?, so the phrase es? \ fs? ⊆ ran zero tells us that it holds a 0-bit.

There are two symmetric theorems about dishonest receivers fooling the
sender. We only state one, about being fooled into believing that the value in the
sealed envelope is a 0-bit when it is actually a 1-bit.

DishonestOpenThree =̂ Dishonest o
9 OpenThree

Theorem 4 (Dishonest Receiver).

∃DishonestOpenThree | #(ran zero∩ fs?) = 1 • es? \ fs? ⊆ ran one

4.4 The Commitment Step

After the receiver has prepared and sent the four envelopes, we have already
seen that the sender opens three of them. The full action of the sender when they
commit to a bit is now as follows. We define shorthands for creating a singleton
set of envelopes renamed as e?:

CreateOne =̂ ∃ zs? : FEnvelope • [Create[e?/os?] | #e? = 1 ∧ #zs? = 0]

CreateZero =̂ ∃ os? : FEnvelope • [Create[e?/zs?] | #e? = 1 ∧ #os? = 0]

These single envelopes get opened and sent in the protocol step as follows:

SendOne =̂ CreateOne o
9 Open[e?/es?] o

9 Move[e?/es?]

SendZero =̂ CreateZero o
9 Open[e?/es?] o

9 Move[e?/es?]

9 Both of these theorems require much work to prove in Z-Eves.

Putting this phase together, the decision on which bit to send depends on which
bit to commit to (encoded in the operation name) and the masking bit (the bit
that is implied to be in the remaining closed envelope, decided from the values
of the three envelopes opened): it is the exclusive-or of those two bits.

CommitToOne =̂ OpenThree o
9 ([SendOne | #(ran zero∩ fs?) = 1]
∨[SendZero | #(ran zero∩ fs?) = 2])

CommitToZero =̂ OpenThree o
9 ([SendZero | #(ran zero∩ fs?) = 1]
∨[SendOne | #(ran zero∩ fs?) = 2])

The situation where the sender finds three identical envelopes on opening (and
thus discovers the receiver’s cheating in preparing the envelopes) is represented
by empty behaviour.

At this point, an honest receiver should not be able to observe a difference
between committing to zero and committing to one: the hiding property.

CommitZView =̂ ∃ e?, es?, fs?, zs?, os? • Honest o
9 CommitToZero o

9 View

CommitOView =̂ ∃ e?, es?, fs?, zs?, os? • Honest o
9 CommitToOne o

9 View

Theorem 5 (Commit4 Indistinguishability).

∀ a?, b? : Agent | a? 6= b? • θCommitZView = θCommitOView

4.5 Opening the Commitment

To open the commitment, the sender sends the remaining closed envelope to
the receiver. The receiver finds the masking bit in there and deduces by taking
its exclusive-or (i.e. inequality checking) with the bit sent earlier on the bit
committed to.

MoveLast =̂ [es?, fs?, ef ? : FEnvelope | Move[ef ?/es?] ∧ ef ? = es?/fs?]

Same =̂ [S′; e?, ef ? : FEnvelope | e? ∪ ef ? ⊆ ran zero′ ∨ e? ∪ ef ? ⊆ ran one′]

OpenZero =̂ MoveLast o
9 ([Open[ef ?/es?] ∧ Same)

OpenOne =̂ MoveLast o
9 ([Open[ef ?/es?] ∧ ¬Same)

Correctness theorems for this could be given to state that, with a honest re-
ceiver, only behaviours where the commitment step and the opening step use the
same bit are possible. In fact, it is impossible for the sender to successfully cheat
in this particular protocol. This can be stated by demonstrating that alternative
sender behaviours (e.g. replacing CommitToOne and/or MoveLast) do not enable
behaviours with mismatching commitments and openings (attacks against the
binding property).

5 Conclusions and Further Work

The above specifications reflect our attempt to model sealed envelopes and their
application in a bit commitment protocol. In doing so, we used a common Z
style of describing state spaces and operations on them. This we did not link yet
with any refinement theory. Rather, we took an approach that is more common
in formal methods for security: giving (an abstraction of) an implementation,
and then stating some security properties that we would like to hold. Clearly the
more sophisticated approach would be to state the security properties in an ab-
stract way, and produce the implementation as a (gradual, stepwise) refinement
of them [5], for some suitable advanced refinement notion.

Some of our security properties refer directly to the internals of the spec-
ification. As well as being less abstract, this may also inhibit reasoning over
multiple concurrent instances of protocols. One reason for using Z for this work
(as opposed to, say, refinement calculus) is that information hiding is part of
its common usage [12,23] – and these sealed containers are all about subtleties
of information hiding varying over time. The use of finalisations (“views”) in
some of the security statements is a first step towards providing a more abstract
observational semantics, in line with mechanisms previously explored by both
authors in different contexts [15,6,11,7,2]. So far, the views we have used only
described the variables visible to an agent. The established theory of information
flow recognises that the values of visible variables may also allow for inferences
on the values of hidden ones. Morgan’s shadow semantics [20] and the related
fog semantics [3] by Banks and Jacob would provide a way of addressing this
with finalisations – possibly in UTP rather than Z.

A major semantic aspect that also needs to be addressed is the probabilistic
one. Most of the non-determinism in the specifications in this paper is an ab-
straction of probabilistic choice. The full analysis should not only show that the
four-envelope protocol allows the receiver to cheat, but also confirm that the
probability of cheating being detected is one in four. A promising theoretical
framework for integrating this aspect is available. McIver and Morgan [17] have
developed refinement theory for probabilistic systems, and together with Hoang
et al. they have subsequently achieved some results in linking this to shadow
semantics [14]. A related aspect is that protocol descriptions also need to be
enhanced to explicitly encode what cheating is, and how this is best modelled in
specifications – here, we have modelled some of it in an ad-hoc way. The stan-
dard style of protocol description tends to avoid the description of behaviour in
error cases altogether.

For work in this area to become usable for modern cryptographic protocols in
general, it will also need to address computational aspects. For many problems,
the only possible or practicable solutions are ones that have a risk of failure that is
non-zero, but negligible as a function of an adversary’s computational resources.
Analysing and deriving such solutions also requires further enhancement to our
formal methods toolbox.

Acknowledgement

This work is supported by the EPSRC Network of Excellence CryptoForma, on
formal methods and cryptography (www.cryptoforma.org.uk) with the collab-
oration between the authors resulting directly from a presentation at the January
2014 network meeting.

References

1. Adida, B., Rivest, R.L.: Scratch & vote: self-contained paper-based cryptographic
voting. In: Proceedings of the 5th ACM workshop on Privacy in electronic society. pp.
29–40. ACM (2006)

2. Banks, M.J., Jacob, J.L.: On modelling user observations in the UTP. In: Qin, S. (ed.)
UTP. Lecture Notes in Computer Science, vol. 6445, pp. 101–119. Springer (2010)

3. Banks, M.J., Jacob, J.L.: On integrating confidentiality and functionality in a for-
mal method. Formal Asp. Comput. (2013), http://link.springer.com/article/
10.1007%2Fs00165-013-0285-4

4. Boiten, E.: Commitment: A challenge for formal methods, http://www.cs.kent.ac.
uk/people/staff/eab2/crypto/commit.pdf, unpublished, viewed 27 Jan 2014

5. Boiten, E.: From ABZ to cryptography. In: Börger, E., Butler, M., Bowen, J., Boca, P.
(eds.) ABZ: Abstract State Machines, B and Z. Lecture Notes in Computer Science,
vol. 5238, p. 353. Springer (2008)

6. Boiten, E., Derrick, J.: Grey box data refinement. In: Grundy, J., Schwenke, M., Vickers,
T. (eds.) International Refinement Workshop & Formal Methods Pacific ’98. pp. 45–59.
Discrete Mathematics and Theoretical Computer Science, Springer-Verlag, Canberra
(September 1998)

7. Boiten, E., Derrick, J., Schellhorn, G.: Relational concurrent refinement part II: Internal
operations and outputs. Formal Asp. Comput. 21(1–2), 65–102 (2009)

8. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS. pp. 136–145. IEEE Computer Society (2001), updated version at
http://eprint.iacr.org/2000/067.

9. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO. Lecture Notes in Computer Science, vol. 2139, pp. 19–40. Springer (2001)

10. Damgård, I., Nielsen, J.: Commitment schemes and zero-knowledge pro-
tocols (2011), https://services.brics.dk/java/courseadmin/CPT/documents/

getDocument/ComZK08.pdf?d=114251, material for a course on Cryptologic Protocol
Theory, Aarhus University, viewed 27 Jan 2014

11. Derrick, J., Boiten, E.: Relational concurrent refinement. Formal Asp. Comput. 15(2),
182–214 (November 2003), http://www.cs.kent.ac.uk/pubs/2003/1751

12. Derrick, J., Boiten, E.: Refinement in Z and Object-Z: Foundations and Advanced
Applications. Springer, 2nd edn. (2014), http://www.cs.kent.ac.uk/pubs/2001/
1200

13. Fischer, M.: The consensus problem in unreliable distributed systems (a brief survey).
In: Karpinski, M. (ed.) FCT. Lecture Notes in Computer Science, vol. 158, pp. 127–140.
Springer (1983)

14. Hoang, T.S., McIver, A.K., Meinicke, L., Morgan, C.C., Sloane, A., Susatyo, E.: Ab-
stractions of non-interference security: probabilistic versus possibilistic. Formal Asp.
Comput. 26(1), 169–194 (2014)

http://link.springer.com/article/10.1007%2Fs00165-013-0285-4
http://link.springer.com/article/10.1007%2Fs00165-013-0285-4
http://www.cs.kent.ac.uk/people/staff/eab2/crypto/commit.pdf
http://www.cs.kent.ac.uk/people/staff/eab2/crypto/commit.pdf
https://services.brics.dk/java/courseadmin/CPT/documents/getDocument/ComZK08.pdf?d=114251
https://services.brics.dk/java/courseadmin/CPT/documents/getDocument/ComZK08.pdf?d=114251
http://www.cs.kent.ac.uk/pubs/2003/1751
http://www.cs.kent.ac.uk/pubs/2001/1200
http://www.cs.kent.ac.uk/pubs/2001/1200

15. Jacob, J.L.: Refinement of shared systems. In: McDermid, J.A. (ed.) The Theory and
Practice of Refinement: Approaches to the Development of Large-Scale Software
Systems. pp. 27–36. Butterworths (1989)

16. Mayers, D.: Unconditionally secure quantum bit commitment is impossible. Physical
Review Letters 78(17), 3414–3417 (1997)

17. McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Systems.
Springer (2004)

18. Moran, T., Naor, M.: Basing cryptographic protocols on tamper-evident seals. In:
Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP. Lecture
Notes in Computer Science, vol. 3580, pp. 285–297. Springer (2005)

19. Moran, T., Naor, M.: Polling with physical envelopes: A rigorous analysis of a human-
centric protocol. In: Vaudenay, S. (ed.) EUROCRYPT. Lecture Notes in Computer
Science, vol. 4004, pp. 88–108. Springer (2006)

20. Morgan, C.: The shadow knows: Refinement of ignorance in sequential programs.
Sci. Comput. Program. 74(8), 629–653 (2009)

21. Randell, B., Ryan, P.: Voting technologies and trust. IEEE Security and Privacy 4(5),
50–56 (2006)

22. Saaltink, M.: The Z/EVES system. In: Bowen, J.P., Hinchey, M.G., Till, D. (eds.) ZUM.
Lecture Notes in Computer Science, vol. 1212, pp. 72–85. Springer (1997)

23. Woodcock, J., Davies, J.: Using Z: Specification, Refinement, and Proof. Prentice Hall
(1996)

	 Modelling Sealed Containers in Z

