152 research outputs found

    Deducing the kinetics of protein synthesis in vivo from the transition rates measured in vitro

    Get PDF
    The molecular machinery of life relies on complex multistep processes that involve numerous individual transitions, such as molecular association and dissociation steps, chemical reactions, and mechanical movements. The corresponding transition rates can be typically measured in vitro but not in vivo. Here, we develop a general method to deduce the in-vivo rates from their in-vitro values. The method has two basic components. First, we introduce the kinetic distance, a new concept by which we can quantitatively compare the kinetics of a multistep process in different environments. The kinetic distance depends logarithmically on the transition rates and can be interpreted in terms of the underlying free energy barriers. Second, we minimize the kinetic distance between the in-vitro and the in-vivo process, imposing the constraint that the deduced rates reproduce a known global property such as the overall in-vivo speed. In order to demonstrate the predictive power of our method, we apply it to protein synthesis by ribosomes, a key process of gene expression. We describe the latter process by a codon-specific Markov model with three reaction pathways, corresponding to the initial binding of cognate, near-cognate, and non-cognate tRNA, for which we determine all individual transition rates in vitro. We then predict the in-vivo rates by the constrained minimization procedure and validate these rates by three independent sets of in-vivo data, obtained for codon-dependent translation speeds, codon-specific translation dynamics, and missense error frequencies. In all cases, we find good agreement between theory and experiment without adjusting any fit parameter. The deduced in-vivo rates lead to smaller error frequencies than the known in-vitro rates, primarily by an improved initial selection of tRNA. The method introduced here is relatively simple from a computational point of view and can be applied to any biomolecular process, for which we have detailed information about the in-vitro kinetics

    Health and Pleasure in Consumers' Dietary Food Choices: Individual Differences in the Brain's Value System

    Get PDF
    Taking into account how people value the healthiness and tastiness of food at both the behavioral and brain levels may help to better understand and address overweight and obesity-related issues. Here, we investigate whether brain activity in those areas involved in self-control may increase significantly when individuals with a high body-mass index (BMI) focus their attention on the taste rather than on the health benefits related to healthy food choices. Under such conditions, BMI is positively correlated with both the neural responses to healthy food choices in those brain areas associated with gustation (insula), reward value (orbitofrontal cortex), and self-control (inferior frontal gyrus), and with the percent of healthy food choices. By contrast, when attention is directed towards health benefits, BMI is negatively correlated with neural activity in gustatory and reward-related brain areas (insula, inferior frontal operculum). Taken together, these findings suggest that those individuals with a high BMI do not necessarily have reduced capacities for self-control but that they may be facilitated by external cues that direct their attention toward the tastiness of healthy food. Thus, promoting the taste of healthy food in communication campaigns and/or food packaging may lead to more successful self-control and healthy food behaviors for consumers with a higher BMI, an issue which needs to be further researched

    Spatiotemporal neural characterization of prediction error valence and surprise during reward learning in humans

    Get PDF
    Reward learning depends on accurate reward associations with potential choices. These associations can be attained with reinforcement learning mechanisms using a reward prediction error (RPE) signal (the difference between actual and expected rewards) for updating future reward expectations. Despite an extensive body of literature on the influence of RPE on learning, little has been done to investigate the potentially separate contributions of RPE valence (positive or negative) and surprise (absolute degree of deviation from expectations). Here, we coupled single-trial electroencephalography with simultaneously acquired fMRI, during a probabilistic reversal-learning task, to offer evidence of temporally overlapping but largely distinct spatial representations of RPE valence and surprise. Electrophysiological variability in RPE valence correlated with activity in regions of the human reward network promoting approach or avoidance learning. Electrophysiological variability in RPE surprise correlated primarily with activity in regions of the human attentional network controlling the speed of learning. Crucially, despite the largely separate spatial extend of these representations our EEG-informed fMRI approach uniquely revealed a linear superposition of the two RPE components in a smaller network encompassing visuo mnemonic and reward areas. Activity in this network was further predictive of stimulus value updating indicating a comparable contribution of both signals to reward learning

    Performance of the light-detecting and stimulating chip of the subretinal implant Alpha AMS

    No full text

    Decomposition of time-dependent fluorescence signals reveals codon-specific kinetics of protein synthesis

    No full text
    During protein synthesis, the nascent peptide chain traverses the peptide exit tunnel of the ribosome. We monitor the co-translational movement of the nascent peptide using a fluorescent probe attached to the N-terminus of the nascent chain. Due to fluorophore quenching, the time-dependent fluorescence signal emitted by an individual peptide is determined by co-translational events, such as secondary structure formation and peptide-tunnel interactions. To obtain information on these individual events, the measured ensemble fluorescence signal has to be decomposed into position-dependent intensities. Here, we describe mRNA translation as a Markov process with specific fluorescence intensities assigned to the different states of the process. Combining the computed stochastic time evolution of the translation process with a sequence of observed ensemble fluorescence time courses, we compute the unknown position-specific intensities and obtain detailed information on the kinetics of the translation process. In particular, we find that translation of poly(U) mRNAs dramatically slows down at the fourth UUU codon. The method presented here detects subtle differences in the position-specific fluorescence intensities and thus provides a novel approach to study translation kinetics in ensemble experiments
    • …
    corecore