86 research outputs found

    Atrial flutter and fibrillation in patients with pulmonary arterial hypertension or chronic thromboembolic pulmonary hypertension in the ASPIRE registry: comparison of rate versus rhythm control approaches

    Get PDF
    Background The development of atrial flutter and fibrillation (AFL/AF) in patients with pre-capillary pulmonary hypertension has been associated with an increased risk of morbidity and mortality. Rate and rhythm control strategies have not been directly compared. Methods Eighty-four patients with pulmonary arterial hypertension (PAH) or chronic thromboembolic pulmonary hypertension (CTEPH) with new-onset AFL/AF were identified in the ASPIRE registry. First, baseline characteristics and rates of sinus rhythm (SR) restoration of 3 arrhythmia management strategies (rate control, medical rhythm control and DC cardioversion, DCCV) in an early (2009–13) and later (2014–19) cohort were compared. Longer-term outcomes in patients who achieved SR versus those who did not were then explored. Results Sixty (71%) patients had AFL and 24 (29%) AF. Eighteen (22%) patients underwent rate control, 22 (26%) medical rhythm control and 44 (52%) DCCV. SR was restored in 33% treated by rate control, 59% medical rhythm control and 95% DCCV (p < 0.001). Restoration of SR was associated with greater improvement in functional class (FC) and Incremental Shuttle Walk Distance (p both <0.05). It also independently predicted superior survival (3-year survival 62% vs 23% in those remaining in AFL/AF, p < 0.0001). In addition, FC III/IV independently predicted higher mortality (HR 2.86, p = 0.007). Right atrial area independently predicted AFL/AF recurrence (OR 1.08, p = 0.01). DCCV was generally well tolerated with no immediate major complications. Conclusions Restoration of SR is associated with superior functional improvement and survival in PAH/CTEPH compared with rate control. DCCV is generally safe and is more effective than medical therapy at achieving SR

    Critical care outcomes in patients with pre-existing pulmonary hypertension: insights from the ASPIRE registry

    Get PDF
    Pulmonary Hypertension (PH) is a life-shortening condition characterised by episodes of decompensation precipitated by factors such as disease progression, arrhythmias and sepsis. Surgery and pregnancy also place additional strain on the right ventricle. Data on critical care management in patients with pre-existing PH are scarce. We conducted a retrospective observational study of a large cohort of patients admitted to the critical care unit of a national referral centre between 2000–17 to establish acute mortality, evaluate predictors of in-hospital mortality and establish longer-term outcomes in survivors to hospital discharge. 242 critical care admissions involving 206 patients were identified. Hospital survival was 59.3%, 94% and 92% for patients admitted for medical, surgical or obstetric reasons. Medical patients had more severe physiological and laboratory perturbations than patients admitted following surgical or obstetric interventions. Higher APACHE II score, age and lactate, and lower SpO2/FiO2, platelet count and sodium level were identified as independent predictors of hospital mortality. An exploratory risk score, OPALS (Oxygen (SpO2:FiO2), ≤185; Platelets, ≤196×109·L−1; Age, ≥37.5 years; Lactate, ≥2.45 mmol·L−1; Sodium, ≤130.5 mmol·L−1), identified medical patients at increasing risk of hospital mortality. One of nine patients (11%) who were invasively ventilated for medical decompensation and 50% of patients receiving renal replacement therapy left hospital alive. There was no significant difference in exercise capacity or functional class between follow-up and pre-admission in patients who survived to discharge. These data have clinical utility in guiding critical care management of patients with known PH. The exploratory OPALS score requires validation

    A Switch from a Gradient to a Threshold Mode in the Regulation of a Transcriptional Cascade Promotes Robust Execution of Meiosis in Budding Yeast

    Get PDF
    Tight regulation of developmental pathways is of critical importance to all organisms, and is achieved by a transcriptional cascade ensuring the coordinated expression of sets of genes. We aimed to explore whether a strong signal is required to enter and complete a developmental pathway, by using meiosis in budding yeast as a model. We demonstrate that meiosis in budding yeast is insensitive to drastic changes in the levels of its consecutive positive regulators (Ime1, Ime2, and Ndt80). Entry into DNA replication is not correlated with the time of transcription of the early genes that regulate this event. Entry into nuclear division is directly regulated by the time of transcription of the middle genes, as premature transcription of their activator NDT80, leads to a premature entry into the first meiotic division, and loss of coordination between DNA replication and nuclear division. We demonstrate that Cdk1/Cln3 functions as a negative regulator of Ime2, and that ectopic expression of Cln3 delays entry into nuclear division as well as NDT80 transcription. Because Ime2 functions as a positive regulator for premeiotic DNA replication and NDT80 transcription, as well as a negative regulator of Cdk/Cln, we suggest that a double negative feedback loop between Ime2 and Cdk1/Cln3 promotes a bistable switch from the cell cycle to meiosis. Moreover, our results suggest a regulatory mode switch that ensures robust meiosis as the transcription of the early meiosis-specific genes responds in a graded mode to Ime1 levels, whereas that of the middle and late genes as well as initiation of DNA replication, are regulated in a threshold mode

    Mortality Risk Prediction by an Insurance Company and Long-Term Follow-Up of 62,000 Men

    Get PDF
    Background: Insurance companies use medical information to classify the mortality risk of applicants. Adding genetic tests to this assessment is currently being debated. This debate would be more meaningful, if results of present-day risk prediction were known. Therefore, we compared the predicted with the observed mortality of men who applied for life insurance, and determined the prognostic value of the risk assessment. Methods: Long-term follow-up was available for 62,334 male applicants whose mortality risk was predicted with medical evaluation and they were assigned to five groups with increasing risk from 1 to 5. We calculated all cause standardized mortality ratios relative to the Dutch population and compared groups with Cox's regression. We compared the discriminative ability of risk assessments as indicated by a concordance index (c). Results: In 844,815 person years we observed 3,433 deaths. The standardized mortality relative to the Dutch male population was 0.76 (95 percent confidence interval, 0.73 to 0.78). The standardized mortality ratios ranged from 0.54 in risk group 1 to 2.37 in group 5. A large number of risk factors and diseases were significantly associated with increased mortality. The algorithm of prediction was significantly, but only slightly better than summation of the number of disorders and risk factors (c-index, 0.64 versus 0.60, P,0.001). Conclusions: Men applying for insurance clearly had better survival relative to the general population. Readily available medical evaluation enabled accurate prediction of the mortality risk of large groups, but the deceased men could not have been identified with the applied prediction method

    Identification of Yeast Transcriptional Regulation Networks Using Multivariate Random Forests

    Get PDF
    The recent availability of whole-genome scale data sets that investigate complementary and diverse aspects of transcriptional regulation has spawned an increased need for new and effective computational approaches to analyze and integrate these large scale assays. Here, we propose a novel algorithm, based on random forest methodology, to relate gene expression (as derived from expression microarrays) to sequence features residing in gene promoters (as derived from DNA motif data) and transcription factor binding to gene promoters (as derived from tiling microarrays). We extend the random forest approach to model a multivariate response as represented, for example, by time-course gene expression measures. An analysis of the multivariate random forest output reveals complex regulatory networks, which consist of cohesive, condition-dependent regulatory cliques. Each regulatory clique features homogeneous gene expression profiles and common motifs or synergistic motif groups. We apply our method to several yeast physiological processes: cell cycle, sporulation, and various stress conditions. Our technique displays excellent performance with regard to identifying known regulatory motifs, including high order interactions. In addition, we present evidence of the existence of an alternative MCB-binding pathway, which we confirm using data from two independent cell cycle studies and two other physioloigical processes. Finally, we have uncovered elaborate transcription regulation refinement mechanisms involving PAC and mRRPE motifs that govern essential rRNA processing. These include intriguing instances of differing motif dosages and differing combinatorial motif control that promote regulatory specificity in rRNA metabolism under differing physiological processes

    Making sense of perceptions of risk of diseases and vaccinations: a qualitative study combining models of health beliefs, decision-making and risk perception

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Maintaining high levels of childhood vaccinations is important for public health. Success requires better understanding of parents' perceptions of diseases and consequent decisions about vaccinations, however few studies have considered this from the theoretical perspectives of risk perception and decision-making under uncertainty. The aim of this study was to examine the utility of subjective risk perception and decision-making theories to provide a better understanding of the differences between immunisers' and non-immunisers' health beliefs and behaviours.</p> <p>Methods</p> <p>In a qualitative study we conducted semi-structured in-depth interviews with 45 Australian parents exploring their experiences and perceptions of disease severity and susceptibility. Using scenarios about 'a new strain of flu' we explored how risk information was interpreted.</p> <p>Results</p> <p>We found that concepts of dread, unfamiliarity, and uncontrollability from the subjective perception of risk and ambiguity, optimistic control and omission bias from explanatory theories of decision-making under uncertainty were useful in understanding why immunisers, incomplete immunisers and non-immunisers interpreted severity and susceptibility to diseases and vaccine risk differently. Immunisers dreaded unfamiliar diseases whilst non-immunisers dreaded unknown, long term side effects of vaccines. Participants believed that the risks of diseases and complications from diseases are not equally spread throughout the community, therefore, when listening to reports of epidemics, it is not the number of people who are affected but the familiarity or unfamiliarity of the disease and the characteristics of those who have had the disease that prompts them to take preventive action. Almost all believed they themselves would not be at serious risk of the 'new strain of flu' but were less willing to take risks with their children's health.</p> <p>Conclusion</p> <p>This study has found that health messages about the risks of disease which are communicated as though there is equality of risk in the population may be unproductive as these messages are perceived as unbelievable or irrelevant. The findings from this study have implications beyond the issue of childhood vaccinations as we grapple with communicating risks of new epidemics, and indeed may usefully contribute to the current debate especially in the UK of how these theories of risk and decision-making can be used to 'nudge' other health behaviours.</p

    Yeast IME2 Functions Early in Meiosis Upstream of Cell Cycle-Regulated SBF and MBF Targets

    Get PDF
    BACKGROUND: In Saccharomyces cerevisiae, the G1 cyclin/cyclin-dependent kinase (CDK) complexes Cln1,-2,-3/Cdk1 promote S phase entry during the mitotic cell cycle but do not function during meiosis. It has been proposed that the meiosis-specific protein kinase Ime2, which is required for normal timing of pre-meiotic DNA replication, is equivalent to Cln1,-2/Cdk1. These two CDK complexes directly catalyze phosphorylation of the B-type cyclin/CDK inhibitor Sic1 during the cell cycle to enable its destruction. As a result, Clb5,-6/Cdk1 become activated and facilitate initiation of DNA replication. While Ime2 is required for Sic1 destruction during meiosis, evidence now suggests that Ime2 does not directly catalyze Sic1 phosphorylation to target it for destabilization as Cln1,-2/Cdk1 do during the cell cycle. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrated that Sic1 is eventually degraded in meiotic cells lacking the IME2 gene (ime2Δ), supporting an indirect role of Ime2 in Sic1 destruction. We further examined global RNA expression comparing wild type and ime2Δ cells. Analysis of these expression data has provided evidence that Ime2 is required early in meiosis for normal transcription of many genes that are also periodically expressed during late G1 of the cell cycle. CONCLUSIONS/SIGNIFICANCE: Our results place Ime2 at a position in the early meiotic pathway that lies upstream of the position occupied by Cln1,-2/Cdk1 in the analogous cell cycle pathway. Thus, Ime2 may functionally resemble Cln3/Cdk1 in promoting S phase entry, or it could play a role even further upstream in the corresponding meiotic cascade

    MMP-9, uPAR and Cathepsin B Silencing Downregulate Integrins in Human Glioma Xenograft Cells In Vitro and In Vivo in Nude Mice

    Get PDF
    Involvement of MMP-9, uPAR and cathepsin B in adhesion, migration, invasion, proliferation, metastasis and tumor growth has been well established. In the present study, MMP-9, uPAR and cathepsin B genes were downregulated in glioma xenograft cells using shRNA plasmid constructs and we evaluated the involvement of integrins and changes in their adhesion, migration and invasive potential.MMP-9, uPAR and cathepsin B single shRNA plasmid constructs were used to downregulate these molecules in xenograft cells. We also used MMP-9/uPAR and MMP-9/cathepsin B bicistronic constructs to evaluate the cumulative effects. MMP-9, uPAR and cathepsin B downregulation significantly inhibits xenograft cell adhesion to several extracellular matrix proteins. Treatment with MMP-9, uPAR and cathepsin B shRNA of xenografts led to the downregulation of several alpha and beta integrins. In all the assays, we noticed more prominent effects with the bicistronic plasmid constructs when compared to the single plasmid shRNA constructs. FACS analysis demonstrated the expression of alphaVbeta3, alpha6beta1 and alpha9beta1 integrins in xenograft cells. Treatment with bicistronic constructs reduced alphaVbeta3, alpha6beta1 and alpha9beta1 integrin expressions in xenograft injected nude mice. Migration and invasion were also inhibited by MMP-9, uPAR and cathepsin B shRNA treatments as assessed by spheroid migration, wound healing, and Matrigel invasion assays. As expected, bicistronic constructs further inhibited the adhesion, migration and invasive potential of the xenograft cells as compared to individual treatments.Downregulation of MMP-9, uPAR and cathespin B alone and in combination inhibits adhesion, migration and invasive potential of glioma xenografts by downregulating integrins and associated signaling molecules. Considering the existence of integrin inhibitor-resistant cancer cells, our study provides a novel and effective approach to inhibiting integrins by downregulating MMP-9, uPAR and cathepsin B in the treatment of glioma

    Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine

    Get PDF
    [This corrects the article DOI: 10.1186/s13054-016-1208-6.]
    corecore