323 research outputs found

    A class of symplectic integrators with adaptive timestep for separable Hamiltonian systems

    Get PDF
    Symplectic integration algorithms are well-suited for long-term integrations of Hamiltonian systems because they preserve the geometric structure of the Hamiltonian flow. However, this desirable property is generally lost when adaptive timestep control is added to a symplectic integrator. We describe an adaptive-timestep symplectic integrator that can be used if the Hamiltonian is the sum of kinetic and potential energy components and the required timestep depends only on the potential energy (e.g. test-particle integrations in fixed potentials). In particular, we describe an explicit, reversible, symplectic, leapfrog integrator for a test particle in a near-Keplerian potential; this integrator has timestep proportional to distance from the attracting mass and has the remarkable property of integrating orbits in an inverse-square force field with only "along-track" errors; i.e. the phase-space shape of a Keplerian orbit is reproduced exactly, but the orbital period is in error by O(1/N^2), where N is the number of steps per period.Comment: 24 pages, 3 figures, submitted to Astronomical Journal; minor errors in equations and one figure correcte

    Short-time critical dynamics of the Baxter-Wu model

    Full text link
    We study the early time behavior of the Baxter-Wu model, an Ising model with three-spin interactions on a triangular lattice. Our estimates for the dynamic exponent zz are compatible with results recently obtained for two models which belong to the same universality class of the Baxter-Wu model: the two-dimensional four-state Potts model and the Ising model with three-spin interactions in one direction. However, our estimates for the dynamic exponent θ\theta of the Baxter-Wu model are completely different from the values obtained for those models. This discrepancy could be related to the absence of a marginal operator in the Baxter-Wu model.Comment: 7 pages, 11 figures, accepted for publication in Phys. Rev.

    Mechanical behavior of basalt fibers in a basalt-UP composite

    Get PDF
    AbstractWith the increasing interest in sustainable solutions in material design in the last decade, research on natural materials (animal, vegetal or mineral) has increased at a rapid pace. Of these materials, Basalt Fibers for composite construction provide an interesting set of mechanical properties, equal or above to those of Glass Fibers, with advantages in terms of cost effectiveness and production to vegetable based Natural Fibers. Basalt fibers offer some advantages versus current materials, it is fireproof, requires no material addition, has better mechanical properties than most types of E-Glass, and it is cheaper than Carbon Fiber. This paper studies the mechanical properties of a Basalt Fiber composite in an Unsaturated Polyester matrix produced by Resin Transfer Molding (RTM), with the composites subjected to tensile, compression, shear and flexural tests. The results aligned with the predicted values by using the mixing rule, albeit with a high coefficient of variation, which microscopic analysis confirmed to arise from production issues with RTM

    Using Pilot Systems to Execute Many Task Workloads on Supercomputers

    Full text link
    High performance computing systems have historically been designed to support applications comprised of mostly monolithic, single-job workloads. Pilot systems decouple workload specification, resource selection, and task execution via job placeholders and late-binding. Pilot systems help to satisfy the resource requirements of workloads comprised of multiple tasks. RADICAL-Pilot (RP) is a modular and extensible Python-based pilot system. In this paper we describe RP's design, architecture and implementation, and characterize its performance. RP is capable of spawning more than 100 tasks/second and supports the steady-state execution of up to 16K concurrent tasks. RP can be used stand-alone, as well as integrated with other application-level tools as a runtime system

    Improved production of acetate and propionate by Propionibacterium freudenreichii

    Get PDF
    Propionibacterium freudenreichii is a commercially important bacterium that is well-known for its role as ripening starter in the cheese industry and its probiotic potential. These bacteria may beneficially modulate the intestinal ecosystem and can exert anti-neoplastic effects via the production of short chain fatty acids (SCFAs), acetate and propionate. Several studies have demonstrated that the SCFA production by P. freudenreichii is responsible for its probiotic abilities. The aim of this work was to optimize the acetate and propionate production by P. freudenreichii towards its future use as a nutraceutical agent. In order to optimize the production of the abovementioned SCFAs in a minimal synthetic media the different composition of the several components were evaluated. Characterization of the acetate and propionate production in a medium mimicking the content of the human colon (MCHC) and a medium used by colorectal carcinoma cell lines (DMEM) was performed. The basal medium (BM) was found to be the most promising regarding the production of the SCFAs, showing 0.530 ± 0.011 g L-1 of biomass; high acetate and propionate yields (0.216 ± 0.001 g g-1 and 0.572 ± 0.002 g g-1, respectively), as well as high productivities (0.031 ± 0.000 g L-1 h-1 and 0.010 ± 0.000 g L-1 h-1, respectively). In the MCHC and DMEM media, it was possible to observe microbial growth (0.234 ± 0.006 g L-1 and 1.54 ± 0.00 g L-1, respectively); however the amounts of acetate and propionate were lower than the ones produced in BM medium. The results suggest that acetate and propionate production depends not only on the substrate type, but also on the medium constituents, being the simplest medium the one that show higher productivities as P. freudenreichii show low SCFA production when grown in MCHC and DMEM media. Future work will be conducted in order the increase bacteria growth and SCFA production in those media as this represents an essential feature for its use as a nutraceutical

    Colorectal cancer cells increase the production of short chain fatty acids by Propionibacterium freudenreichii impacting on cancer cells survival

    Get PDF
    Propionibacterium freudenreichii is a commercially relevant bacterium with probiotic potential. This bacterium can exert protective effects particularly against colorectal cancer (CRC), via the production of short chain fatty acids (SCFA), namely acetate and propionate. In this work, we aimed to evaluate the performance and adaptation capacity of P. freudenreichii to a simulated digestive stress using different culture media, namely YEL, Basal medium, Mimicking the Content of the Human Colon medium (MCHC) and DMEM. The effect of the fermented culture broth on CRC cells survival and of CRC cells conditioned media on the bacteria performance was also evaluated. Basal medium was found to be the best for P. freudenreichii to produce SCFA. MCHC medium, despite being the medium in which lower amounts of acetate and propionate were produced, showed higher acetate and propionate yields as compared to other media. We also observed that the presence of lactate in CRC cells conditioned growth medium resulting from cell metabolism, leads to an increased production of SCFA by the bacteria. The bacterial fermented broth successfully inhibited CRC cells proliferation and increased cell death. Our results showed for the first time that P. freudenreichii performance might be stimulated by extracellular lactate produced by CRC metabolic switch also known as Warburg effect, where cancer cells ferment glucose into lactate. Additionally, our results suggest that P. freudenreichii could be potentially used as a probiotic in CRC prevention at early stages of the carcinogenesis process and might help in CRC therapeutic approaches.The authors acknowledge the financial support from the FEDER through POFC—COMPETE and by FCT through project PEst-OE/BIA/UI4050/2014. This work was supported by FCT I.P. through the strategic funding of UID/BIO/04469/2013 unit and project ref. RECI/BBB-EBI/0179/2012 (project number FCOMP-01-0124- FEDER-027462). This work was also supported by the strategic programme UID/BIA/04050/2013 (POCI-01-0145-FEDER-007569) funded by national funds through the FCT I.P. and by the ERDF through the COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI). This article is a result of the project EcoAgriFood NORTE-01-0145-FEDER-00009, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF).info:eu-repo/semantics/publishedVersio

    Exploitation of filamentous and picoplanktonic cyanobacteria for cosmetic applications: potential to improve skin structure and preserve dermal matrix components

    Get PDF
    The use of natural products in skin care formulations gained interest as a concern for modern societies. The undesirable side effects of synthetic compounds, as well as the associated environmental hazards, have driven investigation on photosynthetic organisms as sustainable sources of effective and environmentally friendly ingredients. The use of natural extracts in cosmetics has been highlighted and, along with plants and algae, cyanobacteria have come into focus. Due to their low culture demands, high grow rates and ability to produce a wide variability of bioactive metabolites, cyanobacteria emerged as an economic and sustainable base for the cosmetic industry. In this study, we evaluated the potential of ethanol extracts of picocyanobacteria strains of the genera Cyanobium and Synechocystis and filamentous strains of the genera Nodosilinea, Phormidium and Tychonema for skin applications, with focus in the field of anti-aging. The extracts were analyzed for their pigment profile, phenolic content, antioxidant potential, cytotoxicity against keratinocytes (HaCat), fibroblasts (3T3L1), endothelial cells (hCMEC/D3) and capacity to inhibit hyaluronidase (HAase). The total carotenoid content ranged from 118.69 to 383.89 μg g−1 of dry biomass, and the total phenolic content from 1.07 to 2.45 mg GAE g−1. Identified carotenoids consisted of zeaxanthin, lutein, canthaxanthin, echinenone and β-carotene, with zeaxanthin and lutein being the most representative (49.82 and 79.08 μg g−1, respectively). The highest antioxidant potential was found for Phormidium sp. LEGE 05292 and Tychonema sp. LEGE 07196 for superoxide anion radical (O2•−) scavenging (IC50 of 822.70 and 924 μg mL−1, respectively). Low or no cytotoxicity were registered. Regarding HAase inhibition, Tychonema sp. LEGE 07196 and Cyanobium sp. LEGE 07175 showed the best IC50 (182.74 and 208.36 μg mL−1, respectively). In addition, an increase in fibroblast proliferation was registered with these same strains. From this work, the ethanol extracts of the species Tychonema sp. and Cyanobium sp. are particularly interesting for their potential application in anti-aging formulations, once they stimulated fibroblast proliferation and inhibit hyaluronic acid digestion.This work was done in the framework of the projects: BLUEHUMAN-BLUE biotechnology as a road for innovation on HUMAN’s health aiming smart growth in Atlantic Area-EAPA_151/2016 of the Interreg Atlantic Area Programme funded by the European Regional Development Fund; EnhanceMicroAlgae - High added-value industrial opportunities for microalgae in the Atlantic Area (EAPA_338/2016) of the Interreg Atlantic Area Programme funded by the European Regional Development Fund; ALGAVALOR - MicroALGAs: integrated production and valorization of biomass and its various applications - SI I&DT no. 352234-supported by the PORTUGAL 2020 through the European Regional Development Fund; and supported by the FCT Projects UIDB/04423/2020 and UIDP/04423/2020. The authors acknowledge the support and the use of resources of EMBRC-ERIC, specifically of the Portuguese infrastructure node of the European Marine Biological Resource Centre (EMBRC-PT) CIIMAR–PINFRA/22121/2016–ALG-01-0145-FEDER-022121, financed by the European Regional Development Fund (ERDF) through COMPETE2020-Operational Programme for Competitiveness and Internationalisation (POCI) and national funds through FCT/MCTES

    Antiproliferative effects of the natural oxadiazine nocuolin A are associated with impairment of mitochondrial oxidative phosphorylation

    Get PDF
    Natural products are interesting sources for drug discovery. The natural product oxadiazine Nocuolin A (NocA) was previously isolated from the cyanobacterial strain Nodularia sp. LEGE 06071 and here we examined its cytotoxic effects against different strains of the colon cancer cell line HCT116 and the immortalized epithelial cell line hTERT RPE-1. NocA was cytotoxic against colon cancer cells and immortalized cells under conditions of exponential growth but was only weakly active against non-proliferating immortalized cells. NocA induced apoptosis by mechanism(s) resistant to overexpression of BCL family members. Interestingly, NocA affected viability and induced apoptosis of HCT116 cells grown as multicellular spheroids. Analysis of transcriptome profiles did not match signatures to any known compounds in CMap but indicated stress responses and induction of cell starvation. Evidence for autophagy was observed, and a decrease in various mitochondrial respiration parameter within 1h of treatment. These results are consistent with previous findings showing that nutritionally compromised cells in spheroids are sensitive to impairment of mitochondrial energy production due to limited metabolic plasticity. We conclude that the antiproliferative effects of NocA are associated with effects on mitochondrial oxidative phosphorylation.This research was supported by the Structured Program of R&D&I INNOVMAR - Innovation and Sustainability in the Management and Exploitation of Marine Resources (reference NORTE-01-0145-FEDER-000035, Research Line NOVELMAR), funded by the Northern Regional Operational Program (NORTE2020) through the European Regional Development Fund (ERDF). The project was additionally supported the project CYANCAN - Uncovering the cyanobacterial chemical diversity: the search for novel anticancer compounds (reference PTDC/MEDQUI/30944/2017) co-financed by NORTE 2020, Portugal 2020, and the European Union through the ERDF, and by Foundation for Science and Technology through national funds. RU was supported by the FCT postdoc grant SFRH/BPD/112287/2015 and MS by the FCT PhD grant SFRH/BD/108314/2015
    • …
    corecore