215 research outputs found

    Metabarcoding protocol: Analysis of Bacteria (including Cyanobacteria) using the 16S rRNA gene and a DADA2 pipeline (Version 1)

    Get PDF
    This protocol has been prepared as part of the Interreg Alpine Space project Eco-AlpsWater (ASP569) - Innovative Ecological Assessment and Water Management Strategy for the Protection of Ecosystem Services in Alpine Lakes and Rivers, Activity A.T1.3, Deliverable D.T1.3.2 – 1, https://www.alpine-space.eu/projects/eco-alpswater/en/hom

    Metabarcoding protocol: Analysis of protists using the 18S rRNA gene and a DADA2 pipeline (Version 1)

    Get PDF
    This protocol has been prepared as part of the Interreg Alpine Space project Eco-AlpsWater (ASP569) - Innovative Ecological Assessment and Water Management Strategy for the Protection of Ecosystem Services in Alpine Lakes and Rivers, Activity A.T1.3, Deliverable D.T1.3.2 – 2, https://www.alpine-space.eu/projects/eco-alpswater/en/hom

    High Resolution Hybrid Pixel Sensors for the e+e- TESLA Linear Collider Vertex Tracker

    Get PDF
    In order to fully exploit the physics potential of a future high energy e+e- linear collider, a Vertex Tracker, providing high resolution track reconstruction, is required. Hybrid Silicon pixel sensors are an attractive option, for the sensor technology, due to their read-out speed and radiation hardness, favoured in the high rate environment of the TESLA e+e- linear collider design but have been so far limited by the achievable single point space resolution. In this paper, a conceptual design of the TESLA Vertex Tracker, based on a novel layout of hybrid pixel sensors with interleaved cells to improve their spatial resolution, is presented.Comment: 12 pages, 5 figures, to appear in the Proceedings of the Vertex99 Workshop, Texel (The Netherlands), June 199

    Early melanoma invasivity correlates with gut fungal and bacterial profiles

    Get PDF
    7openInternationalItalian coauthor/editorBackground The microbiome is emerging as a crucial player of the immune checkpoint in cancer. Melanoma is a highly immunogenic tumour, and the composition of the gut microbiome has been correlated to prognosis and evolution of advanced melanoma and proposed as a biomarker for immune checkpoint therapy. Objectives We investigated the gut fungal and bacterial compositions in early-stage melanoma and correlated microbial profiles with histopathological features. Methods Sequencing of bacterial 16S rRNA and the fungal internal transcribed spacer region was performed on faecal samples of patients with stage I and II melanoma, and healthy controls. A meta-analysis with gut microbiota data from patients with metastatic melanoma was also carried out. Results We found a combination of gut fungal and bacterial profiles significantly discriminating patients with melanoma from controls. In patients with melanoma, we observed an abundance of Prevotella copri and yeasts belonging to the order Saccharomycetales. We found that the bacterial and fungal community correlated to melanoma invasiveness, whereas the specific fungal profile correlated to melanoma regression. Bacteroides was identified as general marker of immunogenicity, being shared by regressive and invasive melanoma. In addition, the bacterial communities in patients with stage I and II melanoma were different in structure and richer than those from patients with metastatic melanoma. Conclusions The composition of the gut microbiota in early-stage melanoma changes along the gradient from in situ to invasive (and metastatic) melanoma. Changes in the microbiota and mycobiota are correlated to the histological features of early-stage melanoma, and to the clinical course and response to immune therapies of advanced-stage melanoma, through direct or indirect immunomodulation.openVitali, F.; Colucci, R.; Di Paola, M.; Pindo, M.; De Filippo, C.; Moretti, S.; Cavalieri, D.Vitali, F.; Colucci, R.; Di Paola, M.; Pindo, M.; De Filippo, C.; Moretti, S.; Cavalieri, D

    The peculiar landscape of repetitive sequences in the olive (Olea europaea L.) genome

    Get PDF
    Analyzing genome structure in different species allows to gain an insight into the evolution of plant genome size. Olive (Olea europaea L.) has a medium-sized haploid genome of 1.4 Gb, whose structure is largely uncharacterized, despite the growing importance of this tree as oil crop. Next-generation sequencing technologies and different computational procedures have been used to study the composition of the olive genome and its repetitive fraction. A total of 2.03 and 2.3 genome equivalents of Illumina and 454 reads from genomic DNA, respectively, were assembled following different procedures, which produced more than 200,000 differently redundant contigs, with mean length higher than 1,000 nt. Mapping Illumina reads onto the assembled sequences was used to estimate their redundancy. The genome data set was subdivided into highly and medium redundant and nonredundant contigs. By combining identification and mapping of repeated sequences, it was established that tandem repeats represent a very large portion of the olive genome (∼31% of the whole genome), consisting of six main families of different length, two of which were first discovered in these experiments. The other large redundant class in the olive genome is represented by transposable elements (especially long terminal repeat-retrotransposons). On the whole, the results of our analyses show the peculiar landscape of the olive genome, related to the massive amplification of tandem repeats, more than that reported for any other sequenced plant genome

    Soil communities: who responds and how quickly to a change in agricultural system?

    Get PDF
    The use of conservation and sustainable practices could restore the abundance and richness of soil organisms in agroecosystems. Fitting in this context, this study aimed to highlight whether and how different soil living communities reacted to the conversion from an integrated to an organic orchard. The metataxonomic approach for fungi and bacteria and the determination of biological forms of diatoms and microarthropods were applied. Soil analyses were carried out in order to evaluate the effect of soil chemical features on four major soil living communities. Our results showed that the different taxa reacted with different speeds to the management changes. Fungi responded quickly to the changes, suggesting that modification in agricultural practices had a greater impact on fungal communities. Bacteria and microarthropods were more affected by abiotic parameters and less by the management. The diatom composition seemed to be affected by seasonality but the highest H’ (Shannon index) value was measured in the organic system. Fungi, but also diatoms, seemed to be promising for monitoring changes in the soil since they were sensitive to both the soil features and the anthropic impact. Our study showed that soil biodiversity could be affected by the conversion to sustainable management practices from the early years of an orchard onwards. Therefore, better ecological orchard management may strengthen soil sustainability and resilience in historically agricultural region

    Performance of prototype BTeV silicon pixel detectors in a high energy pion beam

    Get PDF
    The silicon pixel vertex detector is a key element of the BTeV spectrometer. Sensors bump-bonded to prototype front-end devices were tested in a high energy pion beam at Fermilab. The spatial resolution and occupancies as a function of the pion incident angle were measured for various sensor-readout combinations. The data are compared with predictions from our Monte Carlo simulation and very good agreement is found.Comment: 24 pages, 20 figure

    Beam Test of BTeV Pixel Detectors

    Full text link
    The silicon pixel vertex detector is one of the key elements of the BTeV spectrometer. Detector prototypes were tested in a beam at Fermilab. We report here on the measured spatial resolution as a function of the incident angles for different sensor-readout electronics combinations. We compare the results with predictions from our Monte Carlo simulation.Comment: 7 pages, 5 figures, Invited talk given by J.C. Wang at "Vertex 2000, 9th International Workshop on Vertex Detectors", Michigan, Sept 10-15, 2000. To be published in NIM

    The Peculiar Landscape of Repetitive Sequences in the Olive (Olea europaea L.) Genome

    Get PDF
    Analyzing genome structure in different species allows to gain an insight into the evolution of plant genome size. Olive (Olea europaea L.) has a medium-sized haploid genome of 1.4 Gb, whose structure is largely uncharacterized, despite the growing importance of this tree as oil crop. Next-generation sequencing technologies and different computational procedures have been used to study the composition of the olive genome and its repetitive fraction. A total of 2.03 and 2.3 genome equivalents of Illumina and 454 reads from genomic DNA, respectively, were assembled following different procedures, which produced more than 200,000 differently redundant contigs, with mean length higher than 1,000 nt. Mapping Illumina reads onto the assembled sequences was used to estimate their redundancy. The genome data set was subdivided into highly and medium redundant and nonredundant contigs. By combining identification and mapping of repeated sequences, it was established that tandem repeats represent a very large portion of the olive genome (∼31% of the whole genome), consisting of six main families of different length, two of which were first discovered in these experiments. The other large redundant class in the olive genome is represented by transposable elements (especially long terminal repeat-retrotransposons). On the whole, the results of our analyses show the peculiar landscape of the olive genome, related to the massive amplification of tandem repeats, more than that reported for any other sequenced plant genome

    Soil communities: Who responds and how quickly to a change in agricultural system?

    Get PDF
    The use of conservation and sustainable practices could restore the abundance and richness of soil organisms in agroecosystems. Fitting in this context, this study aimed to highlight whether and how different soil living communities reacted to the conversion from an integrated to an organic orchard. The metataxonomic approach for fungi and bacteria and the determination of biological forms of diatoms and microarthropods were applied. Soil analyses were carried out in order to evaluate the effect of soil chemical features on four major soil living communities. Our results showed that the different taxa reacted with different speeds to the management changes. Fungi responded quickly to the changes, suggesting that modification in agricultural practices had a greater impact on fungal communities. Bacteria and microarthropods were more affected by abiotic parameters and less by the management. The diatom composition seemed to be affected by seasonality but the highest H’ (Shannon index) value was measured in the organic system. Fungi, but also diatoms, seemed to be promising for monitoring changes in the soil since they were sensitive to both the soil features and the anthropic impact. Our study showed that soil biodiversity could be affected by the conversion to sustainable management practices from the early years of an orchard onwards. Therefore, better ecological orchard management may strengthen soil sustainability and resilience in historically agricultural regions
    • …
    corecore