184 research outputs found

    New type of microengine using internal combustion of hydrogen and oxygen

    Get PDF
    Microsystems become part of everyday life but their application is restricted by lack of strong and fast motors (actuators) converting energy into motion. For example, widespread internal combustion engines cannot be scaled down because combustion reactions are quenched in a small space. Here we present an actuator with the dimensions 100x100x5 um^3 that is using internal combustion of hydrogen and oxygen as part of its working cycle. Water electrolysis driven by short voltage pulses creates an extra pressure of 0.5-4 bar for a time of 100-400 us in a chamber closed by a flexible membrane. When the pulses are switched off this pressure is released even faster allowing production of mechanical work in short cycles. We provide arguments that this unexpectedly fast pressure decrease is due to spontaneous combustion of the gases in the chamber. This actuator is the first step to truly microscopic combustion engines.Comment: Paper and Supplementary Information (to appear in Scientific Reports

    An energy–momentum time integration scheme based on a convex multi-variable framework for non-linear electro-elastodynamics

    Get PDF
    This paper introduces a new one-step second order accurate energy–momentum (EM) preserving time integrator for reversible electro-elastodynamics. The new scheme is shown to be extremely useful for the long-term simulation of electroactive polymers (EAPs) undergoing massive strains and/or electric fields. The paper presents the following main novelties. (1) The formulation of a new energy momentum time integrator scheme in the context of nonlinear electro-elastodynamics. (2) The consideration of well-posed ab initio convex multi-variable constitutive models. (3) Based on the use of alternative mixed variational principles, the paper introduces two different EM time integration strategies (one based on the Helmholtz’s and the other based on the internal energy). (4) The new time integrator relies on the definition of four discrete derivatives of the internal/Helmholtz energies representing the algorithmic counterparts of the work conjugates of the right Cauchy–Green deformation tensor, its co-factor, its determinant and the Lagrangian electric displacement field. (6) Proof of thermodynamic consistency and of second order accuracy with respect to time of the resulting algorithm is included. Finally, a series of numerical examples are included in order to demonstrate the robustness and conservation properties of the proposed scheme, specifically in the case of long-term simulations

    Energy applications of ionic liquids

    Get PDF
    Ionic liquids offer a unique suite of properties that make them important candidates for a number of energy related applications. Cation–anion combinations that exhibit low volatility coupled with high electrochemical and thermal stability, as well as ionic conductivity, create the possibility of designing ideal electrolytes for batteries, super-capacitors, actuators, dye sensitised solar cells and thermoelectrochemical cells. In the field of water splitting to produce hydrogen they have been used to synthesize some of the best performing water oxidation catalysts and some members of the protic ionic liquid family co-catalyse an unusual, very high energy efficiency water oxidation process. As fuel cell electrolytes, the high proton conductivity of some of the protic ionic liquid family offers the potential of fuel cells operating in the optimum temperature region above 100 °C. Beyond electrochemical applications, the low vapour pressure of these liquids, along with their ability to offer tuneable functionality, also makes them ideal as CO2 absorbents for post-combustion CO2 capture. Similarly, the tuneable phase properties of the many members of this large family of salts are also allowing the creation of phase-change thermal energy storage materials having melting points tuned to the application. This perspective article provides an overview of these developing energy related applications of ionic liquids and offers some thoughts on the emerging challenges and opportunities
    • …
    corecore