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‡Institute of Mechanics, Karlsruhe Institute of Technology
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Abstract

This paper introduces a new one-step second order accurate energy-momentum (EM) pre-
serving time integrator for reversible electro-elastodynamics. The new scheme is shown to be
extremely useful for the long-term simulation of electroactive polymers (EAPs) undergoing mas-
sive strains and/or electric fields. The paper presents the following main novelties. (1) The
formulation of a new energy momentum time integrator scheme in the context of nonlinear electro-
elastodynamics. (2) The consideration of well-posed ab initio convex multi-variable constitutive
models. (3) Based on the use of alternative mixed variational principles, the paper introduces two
different EM time integration strategies (one based on the Helmholtz’s and the other based on the
internal energy). (4) The new time integrator relies on the definition of four discrete derivatives of
the internal/Helmholtz energies representing the algorithmic counterparts of the work conjugates
of the right Cauchy-Green deformation tensor, its co-factor, its determinant and the Lagrangian
electric displacement field. (5) Proof of thermodynamic consistency and of second order accuracy
with respect to time of the resulting algorithm is included. Finally, a series of numerical examples
are included in order to demonstrate the robustness and conservation properties of the proposed
scheme, specifically in the case of long-term simulations.

Keywords: electroactive polymer, electro-elastodynamics, multi-variable convexity,
energy-momentum scheme.

1. Introduction

Electro Active Polymers (EAPs) [41, 40, 42, 29] represent an important family of smart materi-
als where dielectric elastomers and piezoelectric polymers are some of their most iconic integrants.
Dielectric elastomers are very well-known for their outstanding actuation capabilities and low stiff-
ness properties, which makes them ideal for their use as soft robots [35]. For instance, electrically
induced area expansions of over 380% on dielectric elastomer thin films placed on the verge of
snap-through configurations have been reported by Li et al. [30]. Other applications for dielec-
tric elastomers include Braille displays, deformable lenses, haptic devices and energy generators,
to name but a few. [14]. Piezoelectric polymers have similar dielectric properties to dielectric
elastomers but, on the other hand, have much larger stiffness. As a result, piezoelectric polymers
cannot in principle exhibit large electrically induced deformations. Instead, they can be used
as moderately deformable actuators. Other important type of applications for these materials
include tactile sensors, energy harvesters, acoustic transducers and inertial sensors [35, 14].
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3Corresponding author: a.j.gil@swansea.ac.uk

Preprint submitted to Computer Methods in Applied Mechanics and Engineering April 12, 2018

*Manuscript
Click here to download Manuscript: Manuscript_Ortigosa_EM_integrator_after_review_12_April.pdfClick here to view linked References



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

The variational formulation of the governing equations of these materials is well established.
In the most standard formulation, displacements and the scalar electric potential [51, 52, 53, 28,
50, 17, 51] are modelled as the unknown fields. In this formulation, the constitutive information is
encapsulated in the Helmholtz energy functional via its invariant-based representation depending
upon kinematic strain measures and the electric field [13, 12]. However, for more complex consti-
tutive models than that of an ideal dielectric elastomer, the saddle point nature of the Helmholtz
functional (convex with respect to the deformation gradient tensor and concave with respect to
the electric field in the small strain/small electric field regime), makes in general impossible to
define a priori constitutive models which satisfy the ellipticity condition [31, 5, 47, 46]. This is
a necessary condition that ensures the well-posedness of the problem. Motivated by the possible
loss of ellipticity of the Helmholtz functional, Gil and Ortigosa [20, 37, 36] advocated for the use
of the internal energy functional for the definition of constitutive models in nonlinear electro-
mechanics. In essence, the authors postulated a definition of the internal energy convex with
respect to an extended set of arguments, namely the deformation gradient tensor F , its co-factor
H , its Jacobian J , the Lagrangian electric displacement field D0 and d, defined as d = FD0

and proved that this definition satisfies the ellipticity condition unconditionally. Crucially, it is
then possible to safely introduce the Helmholtz energy via a Legendre transformation.

The objective of this paper is to derive a new and robust EM time integrator scheme, tailor-
made for nonlinear electro-elastodynamics [48, 21]. The proposed time integrator is extremely
suitable for long-term numerical simulations of EAPs in both actuation and energy harvesting
scenarios. An example that showcases the applicability of the method in actuation scenarios is
the consideration of EAP-based actuators subjected to a time dependent electric field in order to
achieve user-defined operational configurations.

Consistent implicit EM time integration schemes (EM schemes in the sequel) inherit the
conservation laws of total energy, linear momentum and angular momentum. The consistency of
these types of algorithms refer to their ability to preserve or dissipate the total energy of a system
in agreement with the laws of thermodynamics [23], hence not restricting their applicability to
(reversible) hyperelastic isotropic material models. For instance, EM consistent integrators can
also be applied in the context of mixed variational formulations [7], anisotropic material behaviour
[25], non-linear visco-elastodynamics [23, 32] and non-linear elasto-thermodynamics [26, 19]. A
great overview of the development of EM schemes is provided by the textbook [6].

In the purely mechanical case, the thermodynamical consistency of these methods is ensured
by virtue of replacing the (exact) derivative of the strain energy with respect to the right Cauchy-
Green deformation tensor (i.e. the consistent second Piola-Kirchhoff stress tensor) with its algo-
rithmic counterpart. The latter, denoted as discrete derivative [21, 19, 7, 44] must be defined in
compliance with the so-called directionality property. Specially interesting is the recent work by
Betsch et al. [8], where a new consistent EM time integrator scheme has been developed in the
context of polyconvex elasticity. Essentially, these authors proposed the consideration of three
discrete derivatives of the strain energy (as opposed to the single discrete derivative used in the
standard case). Each discrete derivative represents the algorithmic counterpart of the work conju-
gates of the right Cauchy-Green deformation tensor, its co-factor and its determinant. In a recent
work [19], this formulation has been extended to the field of thermo-elasticity. In comparison to
previously proposed discrete derivative expressions (see e.g. [21, 24]), the new stress formula in
[8, 19] assumes a remarkably simple form. A key factor for that simplification is the use of a
tensor cross product pioneered by the Boer [15] and employed for the first time by Bonet et. al.
[9, 10] in the case of nonlinear electromechanics [20, 37, 36, 38].

The outline of this paper is as follows: in Section 2, some basic principles of kinematics are
presented. The governing equations in nonlinear electro-elastodynamics are also presented in this
section. The concept of multi-variable convexity and its importance from the material stability
point of view is presented in Section 3. Section 4 starts with the three-field mixed formulation

2
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presented in Reference [20] in the context of static electromechanics. Its extension to electro-
elastodynamics is then carried out by defining the appropriate action integral. After derivation of
the stationary conditions of the action integral, Section 5 introduces a new one-step implicit EM
time integrator scheme for electro-elastodynamics. Section 6 briefly describes the finite element
implementation of the new time integrator scheme and Section 7 presents five numerical examples
in order to validate the conservation properties and robustness of the new scheme. Finally, Section
8 provides some concluding remarks. Appendix A outlines the definition of the discrete derivative
expressions featuring in the proposed time integrator in Section 5.

2. Nonlinear continuum electromechanics

A brief introduction into nonlinear continuum electromechanics and the relevant governing
equations will be presented in this section.

2.1. Kinematics: motion and deformation

Let us consider the motion of an EAP with reference configuration B0 ∈ R3 and its boundary
∂B0 with unit outward normal N (refer to Figure 1). After the motion, the EAP occupies a
deformed configuration B ∈ R3 with boundary ∂B and unit outward normal n. The motion of
the EAP is defined by the deformation mapping φ (X , t), which links a material particle from the
reference configuration X ∈ B0 to the deformed configuration x ∈ B according to x = φ (X, t),
where displacement boundary conditions can be defined as φ (X, t) = φ̄ (X, t) , ∀X ∈ ∂φB0,
with ∂φB0 ⊂ ∂B0. Associated with the mapping φ (X, t) it is possible to define the two-field
deformation gradient tensor F [11, 22, 16, 4] as

F = ∇0φ (X, t) , (1)

where ∇0 represents the material gradient operator, namely ∇0 (•) = ∂(•)
∂X

. The deformation
gradient tensor F is also referred to as the fibre-map as it relates a fibre of differential length
from the material configuration dX to the deformed configuration dx as dx = F dX.

In addition, a differential element area vector in the reference configuration dA (colinear with
N) is mapped to the deformed configuration da (colinear with n) by means of the two-point
co-factor or adjoint tensor H as da = HdA. Finally, a differential volume in the reference
configuration dV is mapped to the final configuration dv via the Jacobian J as dv = JdV (refer
to Figure 1). Both H and J can be related to the deformation gradient tensor F as

H = (detF )F−T ; J = detF . (2)

An equivalent expression to that in equation (2) for both H and J can be obtained by making
use of the tensor cross product operation introduced by de Boer [15] and defined as

H =
1

2
F F ; HiI =

1

2
EijkEIJKFjJFkK ; (3a)

J =
1

3
H : F ; J =

1

3
HiIFiI , (3b)

where Eijk (or EIJK) symbolises the third order alternating tensor components4 and the use of
repeated indices implies summation, unless otherwise stated. As shown in References [10, 9], the
definitions of H and J in (3), although equivalent to those in (2), are very appealing as they
yield simpler expressions for their directional derivatives [9, 10, 20, 37, 36, 19].

4Lower case indices {i, j, k} will be used to represent the spatial configuration whereas capital case indices
{I, J,K} will be used to represent the material description.

3
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x1, X1

x2, X2

x3, X3

B0

∂B0

dV

NdA

dX

X

J

H

FF

φ(X)

∂B
B

dv

nda

dx

x

Figure 1: Deformation mapping φ (X, t) and main kinematic strain measures {F ,H , J}.

2.2. Governing equations in nonlinear electromechanics: conservation of linear momentum and
angular momentum

The local form of the conservation of linear momentum [22] can be written as

ρ0v̇ −DIV (FS)− f 0 = 0; in B0;

(FS)N = t0; on ∂tB0;

φ = φ̄; on ∂φB0,

(4)

where ρ0 : B0 → R+ represents the mass density of the EAP in the reference configuration, v the
velocity field and (•̇) denotes differentiation with respect to time. Furthermore, f0 represents a
body force per unit undeformed volume B0 and t0, the traction force per unit undeformed area
applied on ∂tB0 ⊂ ∂B0, such that ∂tB0 ∪ ∂φB0 = ∂B0 and ∂tB0 ∩ ∂φB0 = ∅. Finally, S represents
the second Piola-Kirchhoff stress tensor and the local conservation of angular momentum leads
to the well-known tensor condition S = ST .

2.3. Governing equations in non-linear electromechanics: Gauss’s and Faraday’s laws

In the absence of magnetic and time dependant effects, Maxwell equations reduce to Gauss
and Faraday laws. The local form of the Gausss law [49, 34, 33] can be written in a Lagrangian
setting as

DIVD0 − ρe0 = 0; in B0;

D0 ·N = −ωe
0; on ∂ωB0,

(5)

where D0 is the Lagrangian electric displacement vector, ρe0 represents an electric volume charge
per unit of undeformed volume B0 and ωe

0, an electric surface charge per unit of undeformed area
∂ωB0 ⊂ ∂B0. Alternatively, the spatial electric displacement vector D can be obtained through
the area push forward relationship D0 = HTD, [17, 18]. Furthermore, in the absence of magnetic

4



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

fields, the local form of the static Faraday’s law can be written in a Lagrangian setting as

E0 = −∇0ϕ; in B0;

ϕ = ϕ̄; on ∂ϕB0,
(6)

where E0 is the Lagrangian electric field vector and ϕ, the scalar electric potential. In (6), ∂ϕB0

represents the part of the boundary ∂B0 where essential electric potential boundary conditions
are applied such that ∂ωB0 ∪ ∂ϕB0 = ∂B0 and ∂ωB0 ∩ ∂ϕB0 = ∅. The spatial electric field vector
E can be obtained through the standard fibre transformation E0 = F TE [17, 18].

3. Constitutive equations in nonlinear electro-elasticity

The governing equations presented in Section 2 are coupled by means of a suitable constitutive
law. The objective of the following section is to introduce some notions on constitutive laws in
nonlinear electro-elasticity.

3.1. Multi-variable convexity

In the case of reversible electro-elasticity, the internal energy density e per unit of undeformed
volume can be defined in terms of the deformation and the electric displacement field, namely
e = e(∇0φ,D0) [34]. Motivated solely by considerations of material stability, Gil and Ortigosa
[20, 37, 36, 39] extended the concept of polyconvexity [1, 2, 3] to the context of electromechanics
and defined new convexity restrictions on the internal energy, postulating a convex multi-variable
definition as

e (∇0φ,D0) = W (F ,H , J,D0,d) ; d = FD0, (7)

where W must be a convex function with respect to the extended set V = {F ,H, J,D0,d}. Cru-
cially, the above convex multi-variable representation in (7) satisfies the concept of ellipticity for
the entire range of deformations and electric displacement fields. In addition, for the requirement
of objectivity, the convex multi-variable energy W (7) can be re-expressed in terms of a set of
objective arguments as

e (∇0φ,D0) = ẽ (C,D0) = W̃obj (C,G, C,D0,CD0) = W̃ (C,G, C,D0) , (8)

where ẽ represents the internal energy in terms of the right Cauchy-Green strain tensor C and
D0 and W̃ denotes the internal energy expressed in terms of the extended symmetric mechanical
kinematic set {C,G, C}, defined as

C = F TF ; G =
1

2
C C = HTH ; C =

1

3
G : C = J2, (9)

andD0. Notice in equation (8) the argument CD0 has been removed form W̃obj as it is redundant

(it can be expressed in terms of C and D0). It is worth noting that W̃ is not convex with respect

to the individual components of the set Ṽ = {C,G, C,D0}, but rather an objective (frame
invariant) re-expression of the convex multi-variable functional W . In this case5,

Dẽ (C,D0) [δφ] = S :
1

2
DC[δφ]; Dẽ (C,D0) [δD0] = E0 · δD0, (10)

where the second Piola-Kirchhoff stress tensor S and the material electric field E0 are defined in
terms of the derivatives of the internal energy ẽ (C,D0), namely

S = 2∂C ẽ (C,D0); E0 = ∂D0
ẽ (C,D0). (11)

5Use of the first law of thermodynamics and consideration of reversibility has been made of.

5
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An alternative but equivalent definition of the directional derivatives of the internal energy
ẽ (C,D0) to those in (10) can be obtained by considering its equivalent extended representation

W̃ ,

DW̃ [δφ] = ∂CW̃ : DC[δφ] + ∂GW̃ : DG[δφ] + ∂CW̃DC[δφ]; DW̃ [δD0] = ∂D0
W̃ · δD0.

(12)
From the definition of C in (9)a, it is possible to obtain an expression for its directional

derivative appearing in equation (12), as

DC[δφ] = (∇0δφ)
T F + F T∇0δφ. (13)

Similarly, from the definition of G in (9)b, its directional derivative can be obtained as

DG[δφ] = C DC[δφ]. (14)

From equation (9)c, the directional derivative of C can be obtained as

DC[δφ] =
1

3
(DG[δφ] : C +G : DC[δφ]) =

1

3
(C C +G) : DC[δφ] = G : DC[δφ], (15)

Finally, inserting (13), (14) and (15) into (12)a and comparison with (10)a enables to obtain
an equivalent expression for S and E0 to those in equations (11)a and (11)b, respectively, as

S = 2∂CW̃ + 2∂GW̃ C + 2∂CW̃G; E0 = ∂D0W̃ . (16)

3.2. Simple examples of convex multi-variable electro-mechanical constitutive models

It is customary to propose an additive decomposition of the internal energy ẽ (C,D0) into a
purely mechanical contribution and a coupled electromechanical contribution [12, 54, 27] as

ẽ (C,D0) = ẽm (C) + ẽem (C,D0) . (17)

The simplest expression for the electromechanical contribution corresponds to that of an ideal
dielectric elastomer, defined as

ẽem (C,D0) = W̃em (C, C,D0) =
1

2εrε0C1/2
D0 ·CD0, (18)

where ε0 represents the permittivity of vacuum, with ε0 = 8.8541 × 10−12NC−2m−2. Different
models can be proposed for the purely mechanical contribution ẽm. The Mooney-Rivlin model is
defined via the following polyconvex energy functional

ẽMR
m (C) = W̃MR

m (C,G, C) =
µ1

2
trC +

µ2

2
trG− (µ1 + 2µ2) lnC

1/2 − λ

2

(
C1/2 − 1

)2
, (19)

where µ1, µ2 and λ are material parameters with units of stress related to the shear modulus µ0

and the bulk modulus λ0 in the origin as µ0 = µ1+µ2 and λ0 = λ+2µ2. The Gent model, based
on the concept of limiting chain extensibility, has also been frequently used to define the purely
mechanical contribution of dielectric elastomers. The internal energy for this model is defined as

ẽGm (C) = W̃G
m (C, C) = −µ (Imax − 3)

2
ln

(
1− trC − 3

Imax − 3

)
− µ lnC1/2 +

κ

2

(
C1/2 − 1

)2
, (20)

with µ0 = µ and λ0 = λ + 2µ/ (Imax − 3). In addition, Imax represents the limiting value of the
first invariant of C, namely trC. Notice that ẽGm in (20) is polyconvex for the range trC < Imax.
Hence, for a convex multi-variable electromechanical contribution ẽem, then the addition of both
ẽGm and ẽem is also convex multi-variable for that range.

6
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3.3. The Helmholtz energy function

The convex multi-variable nature of the internal energy e (∇0φ,D0) ensures convexity of

e (∇0φ,D0), ẽ (C,D0) and W̃ (C,G, C,D0) with respect to D0. Consequently, a one-to-one
and invertible relationship between variables D0 and E0 can always be established. Therefore, it
is possible to make use of a partial Legendre transform of the internal energy which leads to the
definition of the Helmholtz energy functional W̃Φ(C,G, C,E0) as

W̃Φ(C,G, C,E0) = − sup
D0

{
E0 ·D0 − W̃ (C,G, C,D0)

}
, (21)

where use of (16)b has been made of.

Remark 1. From the additive decomposition in equation (17), the Helmholtz energy functional

W̃Φ(C,G, C,E0) can be also additively decomposed as

W̃Φ(C,G, C,E0) = W̃Φm(C,G, C) + W̃Φem(C,G, C,E0), (22)

where the mechanical component W̃Φm is exactly identical to that of W̃ , namely

W̃Φm(C,G, C) = W̃m(C,G, C). (23)

When the electromechanical contribution is that of an ideal dielectric elastomer as that in
(18), it is possible to obtain an explicit representation of W̃Φem by making use of (21) as

W̃Φem (G, C,E0) = − εrε0
2C1/2

E0 ·GE0. (24)

However, for a more complex energy functional than that of an ideal dielectric elastomer, it is
generally impossible to obtain an explicit representation for the Helmholtz functional W̃Φem (C,G, C,E0)

associated with W̃em (C,G, C,D0). A simple example for the internal energy functional that
showcases this difficulty is

W̃em (C, C,D0) =
1

2ε1C1/2
D0 ·CD0 +

1

2αC1/2
(D0 ·CD0)

p ; p ≥ 2, (25)

with ε1 an electric permittivity-like material parameter (units of N/m2) and α, a material pa-
rameter with units of V 4/ (Nm2).

4. Electro-Elastodynamics

The objective of this section is to present the variational formulation that will be used in order
to develop an EM time integration scheme in Section 5.

4.1. Point of departure: three-field mixed formulation for electro-mechanics

A three-field mixed variational principle in the context of static electro-mechanics (where
inertial effects are not considered) can be defined as

ΠW̃ (φ, ϕ,D0) = inf
φ,D0

sup
ϕ

{∫

B0

W̃ (C,G, C,D0) dV +

∫

B0

D0 ·∇0ϕdV − Πm
ext (φ)−Πe

ext (ϕ)

}
.

(26)
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The reader is referred to Reference [20] for the derivation of above variational principle. In
(26), the external contributions Πm

ext and Πe
ext are defined as

Πm
ext (φ) =

∫

B0

f0 · φ dV +

∫

∂tB0

t0 · φ dA; Πe
ext (ϕ) = −

∫

B0

ρe0ϕdV −
∫

∂ωB0

ωe
0ϕdA. (27)

In equation (26), {φ, ϕ,D0} ∈ Vφ × Vϕ × VD0 , as

Vφ =
{
φ : B0 → R3; (φ)i ∈ H1 (B0) | J > 0

}
;

Vϕ =
{
ϕ : B0 → R1; ϕ ∈ H1 (B0)

}
;

VD0 =
{
D0 : B0 → R3; (D0)I ∈ L2 (B0)

}
,

(28)

Similarly, let us consider admissible variations {δφ, δϕ, δD0} ∈ Vφ
0 × Vϕ

0 × VD0, with

Vφ
0 =

{
∀φ ∈ Vφ; φ = 0 on ∂φB0

}
;

Vϕ
0 = {∀ϕ ∈ Vϕ; ϕ = 0 on ∂ϕB0} .

(29)

The stationary conditions of the mixed variational principle ΠW̃ in (26) yield

DΠW̃ [δφ] =

∫

B0

S :
1

2
DC[δφ] dV −

∫

B0

f 0 · δφ dV −
∫

∂tB0

t0 · δφ dA = 0;

DΠW̃ [δϕ] =

∫

B0

D0 ·∇0δϕ dV +

∫

B0

ρe0δϕ dV +

∫

∂ωB0

ωe
0δϕ dA = 0;

DΠW̃ [δD0] =

∫

B0

δD0 ·
(
∂D0W̃ +∇0ϕ

)
dV = 0,

(30)

with S defined in (16)a. Above equation (30)a represents the weak form of the local balance of
linear momentum in (4) for the case where no inertia effects are considered. In addition, equation
(30)b corresponds to the weak form of the Gauss law in (5). Finally, equation (30)c represents
the weak form of the Faraday law in (6).

Remark 2. Starting from the total potential ΠW̃ in (26), use of the Legendre transformation in
(21) leads to a two-field formulation with unknowns {φ, ϕ} in terms of the Helmholtz functional
(refer to Remark 1) as

ΠW̃Φ
(φ, ϕ) = inf

φ
sup
ϕ

{∫

B0

W̃Φ (C,G, C,E0) dV −Πm
ext (φ)− Πe

ext (ϕ)

}
. (31)

The stationary conditions of the above variational principle are

DΠW̃Φ
[δφ] =

∫

B0

S :
1

2
DC[δφ] dV −

∫

B0

f 0 · δφ dV −
∫

∂tB0

t0 · δφ dA = 0;

DΠW̃Φ
[δϕ] = −

∫

B0

∂E0W̃Φ ·∇0δϕ dV +

∫

B0

ρe0δϕ dV +

∫

∂ωB0

ωe
0δϕ dA = 0,

(32)

with
S = 2∂CW̃Φ + 2∂GW̃Φ C + 2∂CW̃ΦG. (33)

The variational principle in (31) is typically preferred in finite element implementations. How-
ever, the a priori definition of a materially stable Helmholtz functional is not in general possible
due to its saddle point nature. Therefore, we advocate in this paper for the definition of mate-
rially stable convex multi-variable internal energy functionals W̃ (C,G, C,D0) (featuring in the
three-field principle ΠW̃ ) which through (21), yield materially stable Helmholtz energy functionals
[20].
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4.2. Extension to electro-elastodynamics

The objective of this section is to generalise the mixed variational principle ΠW̃ in (26) to the
context of electro-elastodynamics. This can be done by considering the following action integral

LW̃ (v,φ, ϕ,D0) =

∫ t

t0

(∫

B0

(
φ̇− 1

2
v

)
· ρ0v dV −

∫

B0

W̃ (C,G, C,D0) dV

−
∫

B0

D0 ·∇0ϕdV +Πm
ext (φ) + Πe

ext (ϕ)

)
dt,

(34)

where t0 and t represent any two instances of time with t > t0. By means of Hamilton’s principle,
the stationary conditions of the action integral LW̃ in (34) are

Wv =

∫

B0

(
v − φ̇

)
· ρ0δv dV = 0;

Wφ =

∫

B0

ρ0v̇ · δφ dV +

∫

B0

S :
1

2
DC[δφ] dV −

∫

B0

f 0 · δφ dV −
∫

∂tB0

t0 · δφ dA = 0;

Wϕ =

∫

B0

D0 ·∇0δϕ dV +

∫

B0

ρe0δϕ dV +

∫

∂ωB0

ωe
0δϕ dA = 0;

WD0
=

∫

B0

δD0 ·
(
∂D0

W̃ +∇0ϕ
)
dV = 0,

(35)

and with {v,φ, ϕ,D0} ∈ Vφ × Vφ × Vϕ × VD0 and {δv, δφ, δϕ, δD0} ∈ Vφ
0 × Vφ

0 × Vϕ
0 × VD0.

Note that an integration by parts with respect to time has been used on the first term on the
right hand-side of (35)b. Equation (35)a represents the weak form for the relationship between
the velocity field v and the time derivative of the mapping φ and equation (35)b, the extension
of the weak form of the balance of linear momentum in (30)a to electro-elastodynamics (hence
the equation is supplemented with the inertia term). Finally, notice that both weak forms for the
Gauss and Faraday laws in (35)c and (35)d are identical to those in the static case in (30)b and
(30)c, respectively.

Remark 3. When pursuing a Helmholtz-based mixed formulation (see Remark 2), the following
action integral can be defined in order to extend the variational principle ΠW̃Φ

to the case of
electro-elastodynamics,

LW̃Φ
(v,φ, ϕ) =

∫ t

t0

(∫

B0

(
φ̇− 1

2
v

)
· ρ0v dV −

∫

B0

W̃Φ (C,G, C,E0) dV +Πm
ext (φ) + Πe

ext (ϕ)

)
dt.

(36)
The stationary conditions of the above action integral (36) are

Wv =

∫

B0

(
v − φ̇

)
· ρ0δv dV = 0;

Wφ =

∫

B0

ρ0v̇ · δφ dV +

∫

B0

S :
1

2
DC[δφ] dV −

∫

B0

f0 · δφ dV −
∫

∂tB0

t0 · δφ dA = 0;

Wϕ = −
∫

B0

∂E0W̃Φ ·∇0δϕ dV +

∫

B0

ρe0δϕ dV +

∫

∂ωB0

ωe
0δϕ dA = 0,

(37)

with S defined in (33) and integration by parts with respect to time has been applied on the
second term on the right hand side of (37)b.
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4.3. Balance laws and integrals in electro-elastodynamics

Starting with the stationary conditions (35) the following sections derive the global conserva-
tion laws that govern the motion of the EAP.

4.3.1. Global form for conservation of linear momentum

For a displacement field δφ = ξ, with R3 ∋ ξ = const., the stationary condition in (35)b leads
to the global form of the conservation of linear momentum, namely

L̇− F ext = 0; L =

∫

B0

ρ0v dV ; F ext =

∫

∂tB0

t0 dA+

∫

B0

f 0 dV, (38)

where L represents the total linear momentum and F ext, the total external force. From (38)
it is possible to conclude that L is a constant of motion for the case of vanishing external forces
F ext.

4.3.2. Global form for conservation of angular momentum

For a rotational field δφ = ξ × φ, with R3 ∋ ξ = const., the stationary condition in (35)b
leads to the global form of the conservation of angular momentum, namely

J̇ −M ext = 0; J =

∫

B0

φ× ρ0v dV ; M ext =

∫

∂tB0

φ× t0 dA+

∫

B0

φ× f0 dV, (39)

where J represents the total angular momentum and M ext, the total external torque. From (39),
it is clear that J is a constant of motion for vanishing external torques M ext.

4.3.3. Global form for Gauss’s law

Taking δϕ = ξ, with R ∋ ξ = const., the stationary condition Wϕ in (35)c leads to the global
form of the Gauss’ law ∫

B0

ρe0 dV +

∫

∂ωB0

ωe
0 dA = 0. (40)

Then, for time independent volumetric and surface electrical charges ρe0 and ωe
0, equation (40)

dictates that the total electric charge of the system is conserved and equal to zero.

4.3.4. Global form for conservation of energy

Let us replace the test functions {δv, δφ, δϕ, δD0} in (35) with {v̇, φ̇, ϕ̇, Ḋ0} ∈ Vφ
0 × Vφ

0 ×
Vϕ

0 × VD0 . This yields
∫

B0

(
v − φ̇

)
· ρ0v̇ dV = 0;

∫

B0

ρ0v̇ · φ̇ dV +

∫

B0

S :
1

2
Ċ dV −

∫

B0

f 0 · φ̇ dV −
∫

∂tB0

t0 · φ̇ dA = 0;

∫

B0

D0 ·∇0ϕ̇ dV +

∫

B0

ρe0ϕ̇ dV +

∫

∂ωB0

ωe
0ϕ̇ dA = 0;

∫

B0

Ḋ0 ·
(
∂D0

W̃ +∇0ϕ
)
dV = 0.

(41)

Addition of the four equations in (41) leads, in the case of time independent forces f 0 and t0
and charges ρe0 and ωe

0 to

K̇ +

∫

B0

(
S :

1

2
Ċ + ∂D0W̃ · Ḋ0

)
dV +

∫

B0

(
D0 ·∇0ϕ̇+ Ḋ0 ·∇0ϕ

)
dV − Π̇m

ext (φ)− Π̇e
ext (ϕ) = 0,

(42)
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where K =
∫
B0

1
2
ρ0v · v dV in (42) represents the total kinetic energy of the system. Finally,

equation (42) can be re-written as

K̇ +

∫

B0

˙̃
W (C,G, C,D0) dV +

∫

B0

d

dt
(D0 ·∇0ϕ) dV − Π̇m

ext (φ)− Π̇e
ext (ϕ) = 0. (43)

It is therefore clear that in the case of time independent forces and electric charges, the
following condition holds

ḢW̃ = 0; HW̃ = K +

∫

B0

W̃ (C,G, C,D0) dV +

∫

B0

D0 ·∇0ϕdV −Πm
ext (φ)−Πe

ext (ϕ) , (44)

and therefore the scalar field HW̃ is preserved throughout the motion of the EAP. Note that HW̃

is the total Hamiltonian, defined through the following Legendre transformation

HW̃ (p,φ, ϕ,D0) = sup
v

{∫

B0

p · v dV − LW̃ (v,φ, ϕ,D0)

}
, (45)

where p = ρ0v denotes the linear momentum per unit undeformed volume B0.

Remark 4. Identical results to those in Sections 4.3.1, 4.3.2 and 4.3.3 can be obtained for the
stationary conditions in (37) of the Helmholtz-based action integral LW̃Φ

(36) regarding conser-
vation of linear momentum, angular momentum, and the Gauss law, respectively. For the energy
conservation, a similar result to that in equation (44) is obtained as

ḢW̃Φ
= 0; HW̃Φ

= K +

∫

B0

W̃Φ (C,G, C,E0) dV − Πm
ext (φ)−Πe

ext (ϕ) , (46)

where HΦ̃ is the counterpart of HW̃ for the case of the Helmholtz-based formulation.

5. Energy-Momentum integration scheme for electro-elastodynamics

Following the work of Simo [48], Gonzalez [21], Romero [44] and Betsch et. al. [8, 7] in
the context of nonlinear elasticity and Franke et al. [19] in the context of thermoelasticity, the
objective of this section is to propose an EM preserving time discretisation scheme for the set of
weak forms in (35).

5.1. Design of the EM scheme

Let us consider a sequence of time steps {t1, t2, ..., tn, tn+1}, where tn+1 denotes the current
time step. From the stationary conditions in (35), the following implicit one-step time integrator
is proposed

(Wv)algo =

∫

B0

(
vn+1/2 −

∆φ

∆t

)
· ρ0δv dV = 0;

(Wφ)algo =

∫

B0

ρ0
∆v

∆t
· δφ dV +

∫

B0

Salgo :
1

2
(DC[δφ])algo dV −

∫

B0

f 0n+1/2
· δφ dV

−
∫

∂tB0

t0n+1/2
· δφ dA = 0;

(Wϕ)algo =

∫

B0

D0n+1/2
·∇0δϕ dV +

∫

B0

ρe0n+1/2
δϕ dV +

∫

∂ωB0

ωe
0n+1/2

δϕ dA = 0;

(WD0)algo =

∫

B0

δD0 ·
(
DD0W̃ +∇0ϕn+1/2

)
dV = 0.

(47)
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Note that (Wv)algo, (Wφ)algo, (Wϕ)algo and (WD0)algo in (47) represent the algorithmic or

time discrete versions of the stationary conditions in (35) and (•)n+1/2 = 1
2

(
(•)n+1 + (•)n

)
and

∆ (•) = (•)n+1 − (•)n. Noticing the equivalence between (10)a and (12)a, the second term on the
right-hand side of (47)b can be expressed as

Salgo :
1

2
(DC[δφ])algo = DCW̃ : (DC[δφ])algo +DGW̃ : (DG[δφ])algo +DCW̃ (DC[δφ])algo .

(48)

In (47) and (48), {DCW̃ ,DGW̃ ,DCW̃ ,DD0W̃} represent the discrete derivatives [21, 19] of

the internal energy W̃ with respect to {C,G, C,D0}, respectively, which are the algorithmic or

time discrete counterparts of {∂CW̃ , ∂GW̃ , ∂CW̃ , ∂D0W̃}, respectively. In addition, (DC[δφ])algo,
(DG[δφ])algo and (DC[δφ])algo represent the algorithmic counterparts of {DC[δφ], DG[δφ], DC[δφ]}
in (13)-(15).

5.1.1. Discretive derivatives of the internal energy

In this work, we use a definition of the (multiple) discrete derivative expressions DCW̃ ,

DGW̃ , DCW̃ and DD0W̃ of the internal energy based on the derivation presented in [19] for
energies depending upon several arguments. The generic expression for the discrete derivatives
{DCW̃ ,DGW̃ ,DCW̃ ,DD0W̃} is derived in Appendix A. The expressions given in the Appendix
satisfy two crucial properties for the design of EM time integrators, namely:

- They fulfil the so called directionality property [19, 21],

DCW̃ : ∆C +DGW̃ : ∆G+DCW̃∆C +DD0W̃ ·∆D0 = ∆W̃ . (49)

- They are well defined in the limit as ||∆C|| → 0, ||∆G|| → 0, ||∆C|| → 0 and ||∆D0|| → 0.

The first property is critical for the algorithm in (47) to preserve energy under zero or time
invariant external forces and electric charges. The second condition ensures that for sufficiently
regular solutions

Salgo = S
(
Ṽn+1/2

)
+O

(
∆t2

)
; DD0W̃ = ∂D0W̃

(
Ṽn+1/2

)
+O

(
∆t2

)
, (50)

and therefore, the proposed EM time integrator is second order accurate.

Remark 5. The consideration of convex multi-variable internal energy functionals ensures the
satisfaction of ellipticity at the continuum level. This condition cannot be verified at the (time)
discrete level, where the derivatives of the energy are replaced by their discrete counterparts.
Ellipticity can only be mathematically proven in the the limit, i.e. ∆t → 0, when both the
discrete and continuum levels coincide (see (50)).

5.1.2. Algorithmic directional derivatives

The objective of this section is to propose appropriate algorithmic expressions for (DC[δφ])algo,
(DG[δφ])algo and (DC[δφ])algo in (48). In doing so, the following properties will be fulfilled:

- For δφ = ∆φ = φn+1 − φn, a desired property to be satisfied is

DCW̃ : (DC[∆φ])algo = DCW̃ : ∆C;

DGW̃ : (DG[∆φ])algo = DGW̃ : ∆G;

DCW̃ (DC[∆φ])algo = DCW̃∆C.

(51)
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It is easy to verify that the following definition for (DC[δφ])algo, (DG[δφ])algo and (DC[δφ])algo
(proposed in [19])

(DC[δφ])algo =
(
(∇0δφ)

T F n+1/2 + F T
n+1/2∇0δφ

)
;

(DG[δφ])algo = Calgo (DC[δφ])algo ; Calgo = Cn+1/2;

(DC[δφ])algo = Galgo : (DC[δφ])algo ; Galgo =
1

3

(
Cn+1/2 Cn+1/2 +Gn+1/2

)
,

(52)
satisfies above properties in (51). From equation (48) and making use of (52), the algorithmic
second Piola-Kirchhoff stress tensor Salgo in (47) can be defined as

Salgo = 2DCW̃ + 2DGW̃ Calgo + 2DCW̃Galgo. (53)

Remark 6. The two last equivalent terms in equation (15) motivate two possible definitions for
the algorithmic or time discrete directional derivative (DC[δφ])algo,

(DC[δφ])algo = Galgo : (DC[δφ])algo ; (DC[δφ])algo = Gn+1/2 : (DC[δφ])algo , (54)

with Galgo defined in (52) (notice that Galgo 6= Gn+1/2). The definition in (54)a satisfies the
condition in equation (51)c whereas that in (54)b does not. Hence, the latter cannot be used for
the design of an EM time integration scheme.

5.2. Discrete form of the balance laws and integrals in electro-dynamics

A similar procedure to that in Section 4.3.1 will be followed in order to verify that the proposed
time integration scheme presented (47) possesses the conservation properties as presented in
Sections 4.3.1 to 4.3.4.

5.2.1. Discrete form of the global form for conservation of linear momentum

Following a similar procedure to that in Section 4.3.1, taking δφ = ξ, with R3 ∋ ξ = const.
in Wφ in (47)b yields

∆L

∆t
− F ext

n+1/2 = 0; F ext
n+1/2 =

∫

∂tB0

t0n+1/2
dA+

∫

B0

f 0n+1/2
dV, (55)

From equation (55) and for vanishing external forces F ext
n+1/2, it can be seen that the total

linear momentum L remains constant..

5.2.2. Discrete form of the global form for conservation of angular momentum

Taking δφ = ξ × φn+1/2, with R3 ∋ ξ = const. in Wφ in (47)b yields

∆J

∆t
−M ext

n+1/2 = 0; M ext
n+1/2 =

∫

∂tB0

φn+1/2 × t0n+1/2
dA+

∫

B0

φn+1/2 × f 0n+1/2
dV. (56)

From equation (56) and for vanishing external torques M ext
n+1/2, it can be seen that the total

angular momentum J remains constant.

5.2.3. Discrete form of the global form for the Gauss law

Taking δϕ = ξ, with R ∋ ξ = const., the weak form Wϕ in (47) leads to
∫

B0

ρe0n+1/2
dV +

∫

∂ωB0

ωe
0n+1/2

dA = 0. (57)

For time independent volumetric and surface electrical charges ρe0 and ωe
0, (57) shows that the

total electrical charge is zero.
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5.2.4. Discrete form of the global form for conservation of energy

In this section, a similar analysis to that in Section (4.3.4) will be presented for the semi-
discrete weak forms in (47). For this purpose, we replace the test functions {δv, δφ, δϕ, δD0} in
(47) with {∆v,∆φ,∆ϕ,∆D0} ∈ Vφ

0 × Vφ
0 × Vϕ

0 × VD0 . This yields

∫

B0

(
vn+1/2 −

∆φ

∆t

)
· ρ0∆v dV = 0;

∫

B0

ρ0
∆v

∆t
·∆φ dV +

∫

B0

Salgo :
1

2
(DC[∆φ])algo dV −

∫

B0

f0 ·∆φ dV −
∫

∂tB0

t0 ·∆φ dA = 0;

∫

B0

D0n+1/2
·∇0∆ϕdV +

∫

B0

ρe0n+1/2
∆ϕdV +

∫

∂ωB0

ωe
0n+1/2

∆ϕdA = 0;

∫

B0

∆D0 ·
(
DD0W̃ +∇0ϕn+1/2

)
dV = 0.

(58)
Consideration of time independent forces f0 and t0 and charges ρe0 and ωe

0 and after addition
of the four equations in (58), it yields

∆K +

∫

B0

(
Salgo :

1

2
(DC[∆φ])algo +DD0W̃ ·∆D0

)
dV

+

∫

B0

D0n+1/2
·∇0∆ϕdV +

∫

B0

∆D0 ·∇0ϕn+1/2 dV −∆Πm
ext (φ)−∆Πe

ext (ϕ) = 0,

(59)

The third and fourth terms in above equation can be re-written as

∫

B0

D0n+1/2
·∇0∆ϕdV +

∫

B0

∆D0 ·∇0ϕn+1/2 dV =

∫

B0

∆(D0 ·∇0ϕ) dV. (60)

From the definition of the algorithmic stress Salgo in (53) and those for (DC[δφ])algo, Calgo

and Galgo in (52), it is possible to re-write the second term in (58)b as

Salgo :
1

2
(DC[∆φ])algo =

(
DCW̃ +DGW̃ Calgo +DCW̃Galgo

)
: (DC[∆φ])algo

= DCW̃ : ∆C +DGW̃ : ∆G+DCW̃∆C.
(61)

Substitution of 60 and (61) into (59) yields

∆K +

∫

B0

(
DCW̃ : ∆C +DGW̃ : ∆G+DCW̃∆C +DD0

W̃ ·∆D0

)
dV

+

∫

B0

∆(D0 ·∇0ϕ) dV −∆Πm
ext (φ)−∆Πe

ext (ϕ) = 0.

(62)

Comparison of (62) and the definition of the total Hamiltonian HW̃ in (44) enables to conclude
that conservation of energy for the implicit one-step time integrator in equation (47) requires the
directionality property in equation (49) to be satisfied. Two points have been crucial to arrive
at this conclusion. First, the consideration of the algorithmic fields Calgo and Galgo in (52) has
enabled to obtain the identity in equation (61). Second, the consideration of D0n+1/2

(47)c and
of ∇0ϕn+1/2 in (47)d has been essential in order to re-write the third and fourth terms in (59) as
in (60).
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Remark 7. The stationary conditions in (37) lead us to propose an implicit one-step time integrator
for the Helmholtz-based formulation as

(Wv)algo =

∫

B0

(
vn+1/2 −

∆φ

∆t

)
· ρ0δv dV = 0;

(Wφ)algo =

∫

B0

ρ0
∆v

∆t
· δφ dV +

∫

B0

Salgo :
1

2
(DC[δφ])algo dV −

∫

B0

f 0n+1/2
· δφ dV−

∫

∂tB0

t0n+1/2
· δφ dA = 0;

(Wϕ)algo = −
∫

B0

DE0W̃Φ∇0δϕ dV +

∫

B0

ρe0n+1/2
δϕ dV +

∫

∂ωB0

ωe
0n+1+2

δϕ dA = 0,

(63)

where Salgo is given in (53). and where {DCW̃Φ, DGW̃Φ, DCW̃Φ, DE0W̃Φ} represent the discrete

derivatives of the Helmholtz functional W̃Φ (C,G, C,E0) with respect to {C,G, C,E0}. Simi-
larly to the time integrator in (47), we use a definition of the (multiple) discrete derivatives of

W̃Φ (C,G, C,E0) based on the generic definition followed in [19]. In this case, the discrete deriva-
tives must sastisfy the same properties as in Section 5.1.1, where now the directionality property
is given by

DCW̃Φ : ∆C +DGW̃Φ : ∆G+DCW̃Φ∆C +DE0W̃Φ ·∆E0 = ∆W̃Φ. (64)

Note that identical results to those in Sections 5.2.1, 5.2.2 and 5.2.3 can be obtained for the
weak forms in (63) regarding conservation of linear momentum, angular momentum, and the
Gauss law, respectively. For the energy conservation, a similar result to that in (62) is also
obtained

∆K +

∫

B0

(
DCW̃Φ : ∆C +DGW̃Φ : ∆G+DCW̃Φ∆C +DE0W̃Φ ·∆E0

)
dV

−∆Πm
ext (φ)−∆Πe

ext (ϕ) = 0.

(65)

Comparison of (65) and the definition of the total HamiltonianHW̃Φ
in (46) enables to conclude

that conservation of energy for the implicit one-step time integrator in equation (63) requires the
directionality property in equation (64) to be satisfied.

6. Finite Element implementation

As standard in finite elements, the domain B0 described in Section 2.1 and representing the
EAP is sub-divided into a finite set of non-overlapping elements e ∈ E such that

B0 ≈ Bh
0 =

⋃

e∈E
Be
0. (66)

The unknown fields {v,φ, ϕ,D0} in the semi-discrete weak forms Wv, Wφ, Wϕ and WD0 in

(47) are discretised employing the following functional spaces Vφh ×Vφh ×Vϕh ×VDh
0 defined as

Vφh

= {φ ∈ Vφ; φh
∣∣
Be
0
=

nφ
node∑

a=1

Nφ
a φa};

Vϕh

= {ϕ ∈ Vϕ; ϕh
∣∣
Be
0
=

nϕ
node∑

a=1

Nϕ
a ϕa};

VDh
0 = {D0 ∈ VD0 ; Dh

0

∣∣
Be
0
=

n
D0
node∑

a=1

ND0
a D0a},

(67)
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where for any field Y ∈ {φ, ϕ,D0}, nY
node denotes the number of nodes per element of the

discretisation associated with the field Y and NY
a : Be

0 → R, the ath shape function used for the
interpolation of Y . In addition, Ya represents the value of the field Y at the ath node of a given
finite element. Similarly, following a Bubnov-Galerkin approach, the functional spaces for the

virtual variations {δv, δφ, δϕ, δD0} ∈ Vφh

0 × Vφh

0 × Vϕh

0 × VDh
0 are defined as

Vφh

0 =
{
∀φ ∈ Vφh

; φ = 0 on ∂φB0

}
;

Vϕh

0 =
{
∀ϕ ∈ Vϕh

; ϕ = 0 on ∂ϕB0

}
.

(68)

Even though the relation between the time derivative of φ and the velocity field v is considered
in a weak manner (refer to the weak form Wv in (47)a), the consideration of equal functional
spaces for both fields, namely φ ∈ Vφ and v ∈ Vφ enables to conclude that equation (47)a holds
strongly, namely

∆φ

∆t
= vn+1/2. (69)

Consideration of the functional spaces for {v,φ, ϕ,D0} and {δv, δφ, δϕ, δD0} in (67) and
(68) enables the last three weak forms Wφ, Wϕ and WD0

in (47) to be written in terms of their
associated elemental residual contributions, namely

Wφ =

N∑

e=1

δφa ·Rφ
a,e; Wϕ =

N∑

e=1

δϕaR
ϕ
a,e; WD0 =

N∑

e=1

δD0a ·RD0
a,e , (70)

where N denotes the number of elements for the underlying discretisation. Each of the residual
contributions Rφ

a,e, R
ϕ
a,e and RD0

a,e can be expressed as6

Rφ
a,e =

∫

Be
0

ρ0N
a
φ

(
2
∆φ

∆t2
− 2

vn

∆t

)
dV +

∫

Be
0

(
F n+1/2Salgo

)∇0N
φ
a dV +

∫

Be
0

Nφ
a f 0n+1/2

dV ;

Rϕ
a,e =

∫

Be
0

D0n+1/2
·∇0N

ϕ
a dV +

∫

Be
0

Nϕ
a ρ

e
0n+1/2

dV ;

RD0
a,e =

∫

Be
0

ND0
a

(
DD0W̃ +∇0ϕn+1/2

)
dV.

(71)

where use of equation (69) has been made of in the inertial term of the residual Rφ
a,e in (71)a. A

consistent linearisation of the nonlinear residual contributions (71) has been used in this work.
Finally, in order to reduce the computational cost of the proposed formulation, a piecewise dis-
continuous interpolation of the field D0 is followed. A standard static condensation procedure
[37, 9] is used to condense out the degrees of freedom of the field D0, yielding a formulation with
a cost comparable to that of a two-field {φ, ϕ} formulation.

7. Numerical examples

The objective of this section is to study the performance of the newly proposed (internal
energy-based) EM time integration scheme presented in equation (47) in a variety of examples.

6For simplicity, the external contributions on the boundary of the continuum and associated with t0 and ωe
0

have not been included in (71).
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7.1. Numerical example 1

The objective of this example is:

O1.I Study of the accuracy of the proposed EM time integration scheme given in equation (47).
Specifically, the objective is to verify the mathematical conclusion obtained in Appendix A,
according to which the proposed EM time integration scheme must converge at the same
(second order) rate as the midpoint-rule integrator.

The geometry and the boundary conditions for the actuator considered in this example are
depicted in Figure 2 and Table 1. The actuator is free in space. An initial velocity v0 is given by

v0 = ω ×X; ω = [0, 0, 10]T s−1; X = [X1, X2, X3]
T , (72)

with {X1, X2, X3} aligned with the orthonormal basis {e1, e2, e3}, respectively (see Figure 2).
Electrical Dirichlet boundary conditions are applied on top and bottom of the plate. Specifically,
a value of the potential ϕ = 0 V is applied on the top (blue) electrode and of ϕ = 100KV on the
bottom (blue) electrode (refer to Figure 2).

(a) (b)

e3e3
e2e2

e1e1

ω

ϕb

ϕt

Figure 2: Numerical example 1. (a) Configuration and boundary conditions; (b) discretisation considered: hexahe-
dral mesh with 8 elements and {243, 81, 192} degrees of freedom for {φ, ϕ,D0}. Interpolation spaces for {φ, ϕ,D0}
are Q2C-Q2C-Q1D, where C and D denote continuous or discontinuous interpolation across elements.

The purely mechanical contribution of the constitutive model considered corresponds to that of
a Mooney-Rivlin model (refer to equation (19)). The electromechanical component corresponds
to that of an ideal dielectric elastomer (see equation (18)). The material parameters of the
constitutive model can be found in Table 1.

The discretisation shown in Figure 2b has been used in this example, comprised of 8 hexahedral
elements. A continuous serenpedity-type Q2 interpolation has been used for the fields {φ, ϕ} and
a discontinuous trilinear Q1 interpolation has been used for D0.

In relation to objective O1.I, a study of the accuracy of the proposed EM time integrator in
(47) has been carried out. This is shown in Figure 3, which depicts the convergence with respect
to time of the solution when using the hexahedral finite element described above. Specifically,
for the mesh depicted in Figure 2, the L2 norm of the error between the solution obtained with
five different time steps {∆t1, ...,∆t5} such that ∆t1 = 2.5e-2, ∆t2 = 1e-2, ∆t3 = 5e-3, ∆t4 =
2.5e-3, ∆t5 = 1e-3 and that obtained with a reference time step ∆tref such that ∆tref << ∆t5 has
been computed. To be specific, the L2 of the error for the field φ, denoted as eL2

φ is computed as

eL2
φ =

||φ− φref||L2

||φref||L2

; ||φ||L2 =

[∫

B0

(φ · φ) dV
] 1

2

, (73)

where (•)ref denotes the solution for the field • obtained by means of the reference time step
size ∆tref. A time-interval of 0.1 seconds has been considered in order to carry out the described
convergence study. Crucially, Figure 3 proves that the proposed EM time integrator is second
order accurate in time (slope of 1.914).
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Table 1: Numerical example 1. Material parameters, simulation parameters and geometry.

Mechanical parameters µ1 5× 104 Pa Geometry of the actuator
µ2 1× 105 Pa
λ 4× 104 Pa 2

2

t = 0.1

[m]

Electrical parameters ǫ0 8.854× 10−12 A2 s4 kg−1m−3

ǫr 5 −
Ref. potential ϕ0 0 V
El. potential at X3 = 0.1 ϕt 105 V
El. potential at X3 = 0 ϕb 0 V
Density ρ0 900 kgm−3

Simulation time T 0.1 s
Reference time-step size ∆tref 10−4 s
Newton tolerance ǫ 10−6 J

10−3 10−2 10−1
10−5

10−4

10−3

10−2

1.914

∆t

e
L
2

φ

Figure 3: Numerical example 1. Second order (1.914) accuracy of the proposed EM time integration scheme in
(47) with respect to time for the field φ. Results obtained for hexahedral Q2C-Q2C-Q1D element.
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7.2. Numerical example 2

The objective of this example is two-fold:

O2.I Comparison of the performance of two families of finite elements. Specifically, a tetrahedral-
based and an hexahedral-based finite elements will be considered. The interpolation spaces
for the fields {φ, ϕ,D0} will be carried out in accordance to Table 2.

O2.II Assessment of the thermodynamical consistency of the time integration scheme presented
in (47) for both families of finite elements. In particular, the conservation properties of the
proposed time EM time integration scheme will be analysed.

Discretisation in space

Fields Tet-based Hex-based
φ P2C Q2C

ϕ P2C Q2C

D0 P1D Q1D

Table 2: Numerical example 2. Discretisation spaces for tetrahedral-based and hexahedral-based finite elements
considered. The superscripts C and D stand for continuous and discontinuous interpolations of fields {φ, ϕ,D0}.

The geometry and boundary conditions for the actuator considered in this example are de-
scribed in Figure 4 and Table 3. The actuator is clamped on one side (zero Dirichlet displacement
boundary conditions). A surface electrical charge ωe

0 is applied on the top (purple) electrode (re-
fer to Figure 4) whereas a prescribed value of the electric potential of ϕ = 0 V is applied on the
bottom (blue) electrode. The time dependent function ωe

0 is given by

ωe
0 = 10−3 ×





sin(0.5π
0.4 s

t) for t ≤ 0.4 s

1 for 0.4 s < t ≤ 1.0 s

cos( 0.5π
1.4 s−1.0 s

(t− 1 s)) for 1.0 s < t ≤ 1.4 s

0 for t > 1.4 s

[Q/m2]. (74)

(a) (b) (c)

e1 e1e1

e2 e2e2
e3 e3e3

ωe
0

φ = 0

Figure 4: Numerical example 2. (a) Configuration and boundary conditions. Discretisations considered:
(b) hexahedral mesh with {40203, 13401, 61440} degrees of freedom for {φ, ϕ,D0}; (c) tetrahedral mesh with
{55899, 18633, 130584} degrees of freedom for {φ, ϕ,D0}. Interpolation spaces for {φ, ϕ,D0} are provided by
Table 2.

The purely mechanical contribution of the constitutive model considered corresponds to that of
a Mooney-Rivlin model (refer to equation (19)). The electromechanical component corresponds
to that of an ideal dielectric elastomer (see equation (18)). The material parameters of the
constitutive model can be found in Table 3.

With regards to O2.I, two discretisations are considered, one for each of the two families of
finite elements described in Table 2. Both hexahedral-based and tetrahedral-based meshes are
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Table 3: Numerical example 2. Material parameters, simulation parameters and geometry.

Mechanical parameters µ1 5× 104 Pa Geometry of the actuator
µ2 1× 105 Pa

1

0.1

t = 0.01

[m]

λ 1× 105 Pa
Electrical parameters ǫ0 8.854× 10−12 A2 s4 kg−1m−3

ǫr 3 −
Ref. potential φ0 0 V
Max. surface charge ω0 1× 10−3 Q/m2

Density ρ0 1000 kgm−3

Timestep size ∆t 0.02 s
Simulation time T 4 s
Newton tolerance ǫ 10−5 J

represented in Figure 4b and 4c, respectively. The mesh associated with the hexahedral-based
discretisation has 2,560 elements, 13,401 nodes for both fields {φ, ϕ} ({40203, 13401} degrees
of freedom associated to each field) and 20,480 nodes for D0 (61,440 degrees of freedom). The
mesh associated with the tetrahedral-based discretisation has 10,882 elements, 18633 nodes for
both fields {φ, ϕ} ({55899, 18633} degrees of freedom associated to each field) and 43,528 nodes
for D0 (130,584 degrees of freedom). In both cases, D0 is interpolated using a discontinuous
interpolation across elements, which allows to condense out this field.

Figure 5 shows the contour plot distribution of the von Mises stress for the hexahedral-based
discretisation for different time steps. Figure 6 shows the contour plot distribution of the von
Mises stress for the tetrahedral-based discretisation for different time steps. A good agreement is
observed between both discretisations in terms of the final configuration (displacements) as well
as the stress distribution.

Regarding objective O2.II, Figure 7 shows the evolution of the Hamiltonian HW̃ (44) using
both hexahedral and tetrahedral discretisations for a given time step size of ∆t = 0.02 s. The
evolution of HW̃ is exactly identical for both discretisations. Crucially, HW̃ remains constant for
the time interval [0.4, 1]

⋃
[1.4, 4], namely, when the surface charge ωe

0 in equation (74) remains
constant, proving that the Hamiltonian is conserved in that range. This can be more clearly
appreciated in Figure 8, where the variation ∆HW̃ = HW̃n+1

− HW̃n
is depicted for the afore-

mentioned time interval. Crucially, the maximum value of |∆HW̃ | is always bounded below the
user-defined Newton tolerance ǫ, which for this case was selected as ǫ = 10−5 (refer to Table 3).

7.3. Numerical example 3

The objective of this example is two-fold:

O3.I Comparison of the stability and robustness of the proposed EM time integration scheme
against the midpoint-rule integrator.

O3.II Comparison of the thermodynamical consistency of the proposed time integrator to that of
the midpoint-rule time integrator.

O3.III Verification of consistent angular momentum approximation.

The geometry and boundary conditions for the actuator considered in this example are de-
scribed in Figure 9 and Table 4. The actuator is completely free (no Dirichlet boundary conditions
are considered for the field φ). An initial velocity v0 is prescribed and given by

v0 = ω ×X; ω = [0, 0, 4]T s−1; X = [X1, X2, X3]
T , (75)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5: Numerical example 2. Contour plot of Von Mises stress for the hexahedral-based discretisation for
different configurations corresponding to (left to right-top to bottom): (a) t = 0 s; (b) t = 0.5 s; (c) t = 1 s; (d)
t = 1.5 s; (e) t = 2 s; (f) t = 2.5 s; (g) t = 3 s; (h) t = 3.5 s; (i) t = 4 s. Hexahedral mesh with {40203, 13401, 61440}
degrees of freedom for {φ, ϕ,D0}. Interpolation spaces for {φ, ϕ,D0} are provided in Table 2.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6: Numerical example 2. Contour plot of Von Mises stress for the tetrahedral-based discretisation for
different configurations corresponding to (left to right-top to bottom): (a) t = 0 s; (b) t = 0.5 s; (c) t = 1 s;
(d) t = 1.5 s; (e) t = 2 s; (f) t = 2.5 s; (g) t = 3 s; (h) t = 3.5 s; (i) t = 4 s. (c) Tetrahedral mesh with
{55899, 18633, 130584} degrees of freedom for {φ, ϕ,D0}. Interpolation spaces for {φ, ϕ,D0} in Table 2.
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0 1 2 3 4

0

2

4
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Figure 7: Numerical example 2. Time evolution ofH
W̃

for both hexahedral and tetrahedral discretisations us-
ing the proposed EM time integration scheme.
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Figure 8: Numerical example 2. Time evolution of
∆H

W̃
for time interval (0.4, 1)

⋃
[1.4, 4] for hexahedral

and tetrahedral elements with proposed EM scheme.

with {X1, X2, X3} aligned with the orthonormal basis {e1, e2, e3}, respectively (see Figure 9). A
constant value for the electric potential of ϕ = 0 V is applied on the blue electrode. A surface
electric charge ωe

0 is applied on the purple electrode (see detailed view in Figure 9). The time
dependent function ωe

0 is given by

ωe
0 =

(
5× 10−3

)
×





sin(0.5π
0.4 s

t) for t ≤ 0.4 s

1 for 0.4 s < t ≤ 3.0 s

cos( 0.5π
3.4 s−3.0 s

(t− 3 s)) for 3.0 s < t ≤ 3.4 s

0 for t > 3.4 s

[Q/m2]. (76)

(a) (b)

e1e1

e2e2

e3e3

ωe
0

−ωe
0

φ = 0

ω

Figure 9: Numerical example 3. (a) Configuration and boundary conditions; (b) discretisation considered: hexa-
hedral mesh with {13215, 4405, 16128} degrees of freedom for {φ, ϕ,D0}. Interpolation spaces Q2C-Q2C-Q1D.

The constitutive model is the same as that used in the two preceding examples with the
material parameters defined in Table 4. The discretisation shown in Figure 9b has been used
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in this example. Specifically, a total of 672 hexahedral Q2C-Q2C-Q1D finite elements have been
considered, yielding a total number of degrees of freedom of {13215, 4405, 16128} for the fields
{φ, ϕ,D0}.

Table 4: Numerical example 3. Material parameters, simulation parameters and geometry.

Mechanical parameters µ1 5× 104 Pa Geometry of the cross
µ2 1× 105 Pa
λ 5× 105 Pa

Electrical parameters ǫ0 8.854× 10−12 A2 s4 kg−1m−3

0.08
0.36

[m]

t = 0.04

ǫr 4 N/V2

Ref. potential φ0 0 V
Max. surface charge ω0 5× 10−3 Q/m2

Density ρ0 1000 kgm−3

Timestep size ∆t 0.01 s
Simulation time T 10 s
Newton tolerance ǫ 10−5 J

Regarding objective O3.I, Figure 10 shows that the midpoint-rule time integrator exhibits
an energy blow-up and becomes unstable approximately in the interval 1 < t < 2. However, the
newly proposed EM time integrator remains stable for the whole simulation for the same fixed
time step size of ∆t = 0.01 s. This proves that the proposed scheme is more robust and stable
than the classical midpoint-rule.

In relation to objective O3.II, Figure 10 shows the evolution of HW̃ for both the proposed EM
time integrator and the midpoint-rule. Crucially, HW̃ remains constant when using the proposed
EM scheme for the time interval [0.4, 3]

⋃
[3.4, 10], namely, when the surface charge ωe

0 in equation
(76) remains constant, proving that the Hamiltonian is conserved in that range. This can be more
clearly appreciated in Figure 11, where the variation ∆HW̃ = HW̃n+1

− HW̃n
is depicted for the

aforementioned time interval. Crucially, the maximum value of |∆HW̃ | is always bounded below
the user-defined Newton tolerance ǫ, which for this case was selected as ǫ = 10−5 (refer to Table
4).

A clearer evolution of the energy blow-up for the midpoint-rule can be appreciated in Figure
12. For the interval 1 < t < 2, a diverging pattern is observed in the evolution of the Hamiltonian
for the midpoint-rule integrator which ends in an energy blow-up.

Additionally, in relation to objective O3.III Figure 13 shows the evolution of the norm of
the total angular momentum J of the system for both the proposed EM time integrator and the
midpoint-rule (before the latter becomes unstable). Crucially, ||J || remains constant when using
the proposed EM scheme for the whole simulation, proving that the J is conserved. This can be
more clearly appreciated in Figure 14, where the variation ∆||J || = ||Jn+1|| − ||Jn|| is depicted
for the whole simulation. Crucially, the maximum value of ∆||J || is also always bounded below
the user-defined Newton tolerance ǫ (here ǫ = 10−5, refer to Table 4).

Finally, the contour plot distribution for the electric potential ϕ and the evolution of the
combined rotation and electrically induced deformation in the actuator is depicted in Figure 15
for difference instances of time.

7.4. Numerical example 4

The objective of this example is:
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Figure 10: Numerical example 3. Time evolution of
H

W̃
with the proposed EM scheme and the midpoint-

rule. Energy blow-up for midpoint-rule within time
interval 4 < t < 6.
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Figure 11: Numerical example 3. Time evolution of
∆H

W̃
in the time interval [0.4, 3]

⋃
[3.4, 10] for hexa-

hedral element with the proposed scheme.
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Figure 12: Numerical example 3. Time evolution of ∆H
W̃

in the time interval 1 < t < 2 for hexahedral element.
Energy blow-up of the midpoint-rule time integrator. Conservation of the Hamiltonian for proposed scheme.
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Figure 13: Numerical example 3. Time evolution of
||J || with proposed EM scheme and midpoint-rule.
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Figure 14: Numerical example 3. Time evolution of
∆||J || for hexahedral element with proposed scheme.

O4.I The consideration of more sophisticated constitutive models allowing for the consideration
of anisotropic effects. A comparison of the stability and robustness between the proposed
EM time integrator and the midpoint-rule integrator will also be carried out in this example.

The geometry and boundary conditions for the actuator considered in this example are de-
scribed in Figure 16 and Table 5. The actuator is clamped on one side (zero Dirichlet displacement
boundary conditions). A surface electrical charge ωe

0 is applied on the purple electrode (refer to
detailed view in Figure 16) whereas a prescribed value of the electric potential of ϕ = 0 V is
applied on the blue electrode (see detailed view in Figure 16). The time dependent function ωe

0

is given by

ωe
0 =

(
2× 10−3

)
×





sin(0.5π
0.5 s

t) for t ≤ 0.5 s

1 for 0.5 s < t ≤ 1 s

cos( 0.5π
1.5 s−1 s

(t− 1 s)) for 1 s < t ≤ 1.5 s

0 for t > 1.5 s

[Q/m2]. (77)

Regarding the constitutive model, its electromechanical component corresponds to that of
an ideal dielectric elastomer (see equation (18)). The purely mechanical contribution is more
complex than that considered in the preceding examples. This can be additively decomposed into
purely isotropic and transversely anisotropic parts, namely

W̃m (C,G, C) = W̃ iso
m (C,G, C) + W̃ aniso

m (C,G, C) . (78)

In this example, the isotropic contribution W̃ iso
m (C,G, C) will be taken exactly as that a

Mooney-Rivlin model (refer to equation (19)). The anisotropic contribution is defined based on
Reference [45] as

W̃ aniso
m (C,G, C) =

µ3

gC + 1
(tr(CM))gC+1+

µ3

gG + 1
(tr(GM))gG+1+

µ3

gC
C−gC ; M = N 0⊗N 0,

(79)
where the material parameters µ3 > 0, gC > 0, gG > 0 and gC ≥ 1 for this model can be found in
Table 5. In addition, in above equation (79) N 0 represents the preferred direction of anisotropy
in the material configuration. In this example, N 0 is defined as N 0 = [0.320 − 0.9712 0.320]T .
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 15: Numerical example 3. Contour plot of electric potential ϕ for hexahedral element for different config-
urations corresponding to (left to right-top to bottom): (a) t = 0 s; (b) t = 0.4 s; (c) t = 0.8 s; (d) t = 1.2 s; (e)
t = 1.6 s; (f) t = 2 s; (g) t = 2.4 s; (h) t = 2.8 s; (i) t = 3.2 s; (j) t = 3.6 s; (k) t = 4 s; (l) t = 4.4 s.

(a) (b)

e1e1

e2e2
e3e3

ωe
0

φ = 0

u = 0

N0

Figure 16: Numerical example 4. (a) Configuration and boundary conditions; (b) discretisation considered: hex-
ahedral mesh with {10995, 3665, 15360} degrees of freedom for {φ, ϕ,D0}. Interpolation spaces Q2C-Q2C-Q1D.
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The discretisation shown in Figure 16b has been used in this example. Specifically, a total of
640 hexahedral Q2C-Q2C-Q1D finite elements have been considered, yielding a total number of
degrees of freedom of {10995, 3665, 15360} for the fields {φ, ϕ,D0}.

Table 5: Numerical example 4. Material parameters, simulation parameters and geometry.

Mechanical parameters µ1 5× 104 Pa Geometry of the actuator
µ2 1× 105 Pa
λ 1× 106 Pa
µ3 3× 105 Pa

1

0.1

t = 0.02

[m]

gC 4 -
gG 8 -
gC 1 -

Electrical parameters ǫ0 8.854× 10−12 A2 s4 kg−1m−3

ǫr 4 −
Ref. potential φ0 0 V
Max. surface charge ω0 2× 10−3 Q/m2

Density ρ0 1000 kgm−3

Timestep size ∆t 0.0025 s
Simulation time T 7.5 s
Newton tolerance ǫ 10−5 J

Regarding objective O4.I, Figure 17 shows that the midpoint-rule time integrator exhibits
an energy blow-up and becomes unstable approximately in the interval 4 < t < 5. However, the
proposed time integrator remains stable for the whole simulation for the same fixed time step
size of ∆t = 0.0025 s. Like in the preceding example, where a simpler constitutive law was used,
this proves that the proposed scheme is more robust and stable than the classical midpoint-rule.
In addition, 17 shows the evolution of HW̃ for both the proposed EM time integrator and the
midpoint-rule (before the latter becomes unstable). Crucially, HW̃ remains constant when using
the proposed EM scheme for the time interval [0.5, 1]

⋃
[1.5, 7.5], namely, when the surface charge

ωe
0 in equation (77) remains constant, proving that the Hamiltonian is conserved in that range.

This can be more clearly appreciated in Figure 18, where the variation ∆HW̃ = HW̃n+1
−HW̃n

is

depicted for the aforementioned time interval. The maximum value of |∆HW̃ | is always bounded
below the user-defined Newton tolerance ǫ (refer to Table 5).

Finally, the contour plot distribution for the von Mises stress and the evolution of the electri-
cally induced deformation in the actuator is depicted in Figure 19 for different instances of time.

7.5. Numerical example 5

The objective of this example is:

O5.I Comparison of the robustness between the proposed EM time integrator and the midpoint-
rule time integrator in scenarios with more sophisticated electrically induced configurations
which can represent a real challenge from the robustness standpoint of the algorithm.

The geometry and boundary conditions for the actuator considered in this example are very
similar to those considered in Reference [43] and are described in Figure 20 and Table 6. The
actuator is fully clamped on the perimeter of the blue electrode (see detailed view in Figure 20).
A surface electrical charge ωe

0 is applied on the purple electrode (refer to detailed view in Figure

28
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Figure 17: Numerical example 4. Time evolution of
H

W̃
with the proposed EM scheme and the midpoint-

rule. Energy blow-up for midpoint-rule.
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Figure 18: Numerical example 4. Time evolution of
∆H

W̃
in the time interval [0.5, 1.5]

⋃
[1.5, 7.5] for hex-

ahedral element with the proposed scheme.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 19: Numerical example 4. Contour plot of the von Mises stress for hexahedral element for different
configurations corresponding to (left to right-top to bottom): (a) t = 0 s; (b) t = 0.2 s; (c) t = 0.4 s; (d) t = 0.6 s;
(e) t = 0.8 s; (f) t = 1 s; (g) t = 1.2 s; (h) t = 1.4 s; (i) t = 1.6 s; (j) t = 1.8 s; (k) t = 2 s; (l) t = 2.2 s.
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20) whereas a prescribed value of the electric potential of ϕ = 0 V is applied on the blue electrode.
The time dependent function ωe

0 is given by

ωe
0 =

(
2× 10−3

)
×

{
sin(0.5π

1 s
t) for t ≤ 1 s

1 for t > 1 s
[Q/m2]. (80)

(a) (b)

e1e1

e2e2
e3e3

ωe
0

φ = 0
u = 0

Figure 20: Numerical example 5. (a) Configuration and boundary conditions; (b) discretisation of one quarter
considered: hexahedral mesh with {420639, 140213, 604800} degrees of freedom for {φ, ϕ,D0}. Interpolation
spaces Q2C-Q2C-Q1D.

The purely mechanical contribution of the constitutive model considered corresponds to that of
a Mooney-Rivlin model (refer to equation (19)). The electromechanical component corresponds
to that of an ideal dielectric elastomer (see equation (18)). The material parameters of the
constitutive model can be found in Table 6.

Table 6: Numerical example 5. Material parameters, simulation parameters and geometry.

Mechanical parameters µ1 1× 105 Pa Geometry of the disc
µ2 2× 105 Pa
λ 1× 105 Pa

1

t = 0.01

[m]

Electrical parameters ǫ0 8.854× 10−12 A2 s4 kg−1m−3

ǫr 4 N/V2

Ref. potential φ0 0 V
Max. surface charge ω0 2× 10−3 Q/m2

Density ρ0 1000 kgm−3

Timestep size ∆t 0.01 s
Simulation time T 20 s
Newton tolerance ǫ 10−4 J

The discretisation shown in Figure 20b has been used in this example. Specifically, a total of
25200 hexahedral Q2C-Q2C-Q1D finite elements for one quarter of the disc have been considered,
yielding a total number of degrees of freedom (for one quarter) of {420639, 140213, 604800} for
the fields {φ, ϕ,D0}.

Regarding objective O5.I, Figure 21 shows that the midpoint-rule time integrator exhibits
an energy blow-up and becomes unstable approximately at the beginning of the time interval
for which ωe

0 becomes constant. However, the proposed time integrator remains stable for the
whole simulation for the same fixed time step size of ∆t = 0.01 s. This example is particularly
challenging, specially when using the midpoint-rule time integrator, as it can be observed from
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the early energy blow-up just described. In addition, Figure 21 shows the evolution of HW̃

for both the proposed EM time integrator and the midpoint-rule (before the latter becomes
unstable). Crucially, HW̃ remains constant when using the proposed EM scheme for the time
interval t > 1 s, namely, when the surface charge ωe

0 in equation (80) remains constant, proving
that the Hamiltonian is conserved in that range. This can be more clearly appreciated in Figure
22, where the variation ∆HW̃ = HW̃n+1

−HW̃n
is depicted for the aforementioned time interval.

The maximum value of |∆HW̃ | is always bounded below the user-defined Newton tolerance ǫ
(refer to Table 6).
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Figure 21: Numerical example 5. Time evolution of
H

W̃
with the proposed EM scheme and the midpoint-

rule. Energy blow-up for midpoint-rule.
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Figure 22: Numerical example 5. Time evolution of
∆H

W̃
in the time interval t > 1 s for hexahedral ele-

ment with the proposed scheme.

Finally, the contour plot distribution for the von Mises stress and the evolution of the elec-
trically induced deformation in the actuator is depicted in Figure 23 for difference instances of
time.

8. Conclusions

A new consistent energy-momentum one-step time integrator scheme is presented in the con-
text of nonlinear electro-elastodynamics. Both a two-field Helmholtz’s-based scheme and a three-
field internal energy-based scheme have been developed. Following the work of Gil and Ortigosa
[20, 37, 36], the internal energy functional is preferred in this paper over the Helmholtz energy
functional for the definition of electromechanical constitutive models, due to considerations of
material stability.

The new time integrator relies on the definition of four discrete derivative expressions of the
internal energy, where each one represents the algorithmic counterpart of the work conjugates
of the right Cauchy-Green deformation tensor, its co-factor, its determinant and the Lagrangian
electric displacement field. Proof of thermodynamical consistency and of second order accuracy
with respect to time of the resulting algorithm are presented. Finally, series of numerical examples
have been included in order to prove the superior robustness and conservation properties of the
(internal energy-based) EM time integration scheme proposed.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 23: Numerical example 5. Contour plot of the von Mises stress for hexahedral element for different
configurations corresponding to (left to right-top to bottom): (a) t = 0 s; (b) t = 0.05 s; (c) t = 0.3 s; (d)
t = 0.55 s; (e) t = 0.8 s; (f) t = 1.05 s; (g) t = 1.3 s; (h) t = 1.55 s; (i) t = 1.8 s; (j) t = 2.05 s; (k) t = 2.3 s; (l)
t = 2.55 s.
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Appendix A. Discrete derivatives of the internal energy

Appendix A.1. Definition of the discrete derivatives

Let us introduce the following notation, {V1,V2,V3,V4} = {C,G, C,D0}. This will facilitate
the definition of the discrete derivatives DṼ1

W̃ = DCW̃ , DṼ2
W̃ = DGW̃ and DṼ3

W̃ = DCW̃ in

(48) and DṼ4
W̃ = DD0

W̃ in (47)d.

DṼi
W̃ =

1

2

(
DṼin+1,n

W̃ +DṼin,n+1
W̃

)
; i ∈ Y = {1, 2, 3, 4} ;

DṼin+1,n
W̃ = DṼi

W̃
(
Ṽin+1 , Ṽin

)∣∣∣
Ṽjn+1

,Ṽkn

; ∀j ∈ Y : j < i; ∀k ∈ Y : k > i;

DṼin,n+1
W̃ = DṼi

W̃
(
Ṽin , Ṽin+1

)∣∣∣
Ṽjn ,Ṽkn+1

; ∀j ∈ Y : j < i; ∀k ∈ Y : k > i,

(A.1)

where the discrete operators DṼi
W̃

∣∣∣
Ṽjn+1

,Ṽkn

and DṼi
W̃

∣∣∣
Ṽjn ,Ṽkn+1

are defined as

DṼi
W̃

∣∣∣
Ṽjn+1

,Ṽkn

= ∂Ṽi
W̃

(
Ṽn+1/2

)∣∣∣
Ṽjn+1

,Ṽkn

+

W̃
(
Ṽn+1

)∣∣∣
Ṽjn+1

,Ṽkn

− W̃
(
Ṽn

)∣∣∣
Ṽjn+1

,Ṽkn

− ∂Ṽi
W̃

(
Ṽn+1/2

)∣∣∣
Ṽjn+1

,Ṽkn

: ∆Ṽi

||∆Ṽi||2
∆Ṽi;

DṼi
W̃

∣∣∣
Ṽjn ,Ṽkn+1

= ∂Ṽi
W̃

(
Ṽn+1/2

)∣∣∣
Ṽjn ,Ṽkn+1

+

W̃
(
Ṽn+1

)∣∣∣
Ṽjn ,Ṽkn+1

− W̃
(
Ṽn

)∣∣∣
Ṽjn ,Ṽkn+1

− ∂Ṽi
W̃

(
Ṽn+1/2

)∣∣∣
Ṽjn ,Ṽkn+1

: ∆Ṽi

||∆Ṽi||2
∆Ṽi.

(A.2)

From above equations (A.1) and (A.2) , the directional derivative DCW̃ can be computed as

DCW̃ =
1

2

(
∂CW̃

(
Cn+1/2,Gn+1, Cn+1,D0n+1

)
+ ∂CW̃

(
Cn+1/2,Gn, Cn,D0n

))

+
1

2

W̃
(
Cn+1,Gn+1, Cn+1,D0n+1

)
− W̃

(
Cn,Gn+1, Cn+1,D0n+1

)

||∆C||2 ∆C

+
1

2

W̃ (Cn+1,Gn, Cn,D0n)− W̃ (Cn,Gn, Cn,D0n)

||∆C||2 ∆C

− 1

2

∂CW̃
(
Cn+1/2,Gn+1, Cn+1,D0n+1

)
: ∆C

||∆C||2 ∆C

− 1

2

∂CW̃
(
Cn+1/2,Gn, Cn,D0n

)
: ∆C

||∆C||2 ∆C.

(A.3)
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Similarly, the directional derivative DGW̃ can be computed as

DGW̃ =
1

2

(
∂GW̃

(
Cn,Gn+1/2, Cn+1,D0n+1

)
+ ∂GW̃

(
Cn+1,Gn+1/2, Cn,D0n

))

+
1

2

W̃
(
Cn,Gn+1, Cn+1,D0n+1

)
− W̃

(
Cn,Gn, Cn+1,D0n+1

)

||∆G||2 ∆G

+
1

2

W̃ (Cn+1,Gn+1, Cn,D0n)− W̃ (Cn+1,Gn, Cn,D0n)

||∆G||2 ∆G

− 1

2

∂GW̃
(
Cn,Gn+1/2, Cn+1,D0n+1

)
: ∆G

||∆G||2 ∆G

− 1

2

∂GW̃
(
Cn+1,Gn+1/2, Cn,D0n

)
: ∆G

||∆G||2 ∆G.

(A.4)

Furthermore, the directional derivative DCW̃ can be computed as

DCW̃ =
1

2

W̃
(
Cn,Gn, Cn+1,D0n+1

)
− W̃

(
Cn,Gn, Cn,D0n+1

)

||∆C||

+
1

2

W̃ (Cn+1,Gn+1, Cn+1,D0n)− W̃ (Cn+1,Gn+1, Cn,D0n)

||∆C|| .

(A.5)

Finally, the directional derivative DD0W̃ can be computed as

DD0W̃ =
1

2

(
∂D0W̃

(
Cn,Gn, Cn,D0n+1/2

)
+ ∂D0W̃

(
Cn+1,Gn+1, Cn+1,D0n+1/2

))

1

2

W̃
(
Cn,Gn, Cn,D0n+1

)
− W̃ (Cn,Gn, Cn,D0n)

||∆D0||2
∆D0

+
1

2

W̃
(
Cn+1,Gn+1, Cn+1,D0n+1

)
− W̃ (Cn+1,Gn+1, Cn+1,D0n)

||∆D0||2
∆D0

− 1

2

∂D0W̃
(
Cn,Gn, Cn,D0n+1/2

)
·∆D0

||∆D0||2
∆D0

− 1

2

∂D0W̃
(
Cn+1,Gn+1, Cn+1,D0n+1/2

)
·∆D0

||∆D0||2
∆D0.

(A.6)

Appendix A.2. Proof of directionality property

The objective of this section is to prove that the definition of the discrete derivatives of the
internal energy W̃ (C,G, C,D0) in (A.1) and (A.2) satisfy the directionality property in equation
(49). For that, let us denote the expression on the left-hand side of the directionality property in
(49) as T , namely

T = DCW : ∆C +DGW : ∆G+DCW∆C +DD0W ·∆D0. (A.7)

Substitution of the expressions for DCW̃ (A.3), DGW̃ (A.4), DCW̃ (A.5) and DD0W̃ (A.6)
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into (A.7) leads to

T =
1

2
W̃

(
Cn+1,Gn+1, Cn+1,D0n+1

)
− 1

2
W̃

(
Cn,Gn+1, Cn+1,D0n+1

)

+
1

2
W̃ (Cn+1,Gn, Cn,D0n)−

1

2
W̃ (Cn,Gn, Cn,D0n)

+
1

2
W̃

(
Cn,Gn+1, Cn+1,D0n+1

)
− 1

2
W̃

(
Cn,Gn, Cn+1,D0n+1

)

+
1

2
W̃ (Cn+1,Gn+1, Cn,D0n)−

1

2
W̃ (Cn+1,Gn, Cn,D0n)

+
1

2
W̃

(
Cn,Gn, Cn+1,D0n+1

)
− 1

2
W̃

(
Cn,Gn, Cn,D0n+1

)

+
1

2
W̃ (Cn+1,Gn+1, Cn+1,D0n)−

1

2
W̃ (Cn+1,Gn+1, Cn,D0n)

+
1

2
W̃

(
Cn,Gn, Cn,D0n+1

)
− 1

2
W̃ (Cn,Gn, Cn,D0n)

+
1

2
W̃

(
Cn+1,Gn+1, Cn+1,D0n+1

)
− 1

2
W̃ (Cn+1,Gn+1, Cn+1,D0n)

= ∆W̃ ,

(A.8)

which proves that the definition of the discrete derivatives satisfy the directionality property.

Appendix A.3. Definition of the discrete derivatives in the limit

The objective of this section is to prove that the defition of the directional derivatives in
equations (A.1) and (A.2) satisfies the second condition stated in Section 5.1.1, namely that they
are well defined in the limit ||∆C|| → 0, ||∆G|| → 0, ||∆C|| → 0 and ||∆D0|| → 0. In particular,
it will be proved in this Section that based on the definition of the discrete derivatives, these can
be equivalently written as

DṼi
W̃ = ∂Ṽi

W̃
(
Ṽn+1/2

)
+

4∑

i=1

O
(
||∆Ṽi||2

)
+

4∑

j=1,j 6=i

4∑

k=j+1,k 6=1

O
(
||∆Ṽj ||||∆Ṽk||

)
, (A.9)

which would prove that they are well defined in the limit. For that, let us carry out a Taylor
series expansion of the four different evaluations of the internal energy W̃ in equation (A.3) around
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Cn+1/2. This enables to express them as

W̃
(
Cn+1,Gn+1, Cn+1,D0n+1

)
= W̃

(
Cn+1/2,Gn+1, Cn+1,D0n+1

)

+ ∂CW̃
(
Cn+1/2,Gn+1, Cn+1,D0n+1

)
:

(
1

2
∆C

)

+

(
1

2
∆C

)
: ∂2

CCW̃
(
Cn+1/2,Gn+1, Cn+1,D0n+1

)
:

(
1

2
∆C

)
+O

(
||∆C||3

)
;

W̃
(
Cn,Gn+1, Cn+1,D0n+1

)
= W̃

(
Cn+1/2,Gn+1, Cn+1,D0n+1

)

− ∂CW̃
(
Cn+1/2,Gn+1, Cn+1,D0n+1

)
:

(
1

2
∆C

)

+

(
1

2
∆C

)
: ∂2

CCW̃
(
Cn+1/2,Gn+1, Cn+1,D0n+1

)
:

(
1

2
∆C

)
+O

(
||∆C||3

)
;

W̃ (Cn+1,Gn, Cn,D0n) = W̃
(
Cn+1/2,Gn, Cn,D0n

)

+ ∂CW̃
(
Cn+1/2,Gn, Cn,D0n

)
:

(
1

2
∆C

)

+

(
1

2
∆C

)
: ∂2

CCW̃
(
Cn+1/2,Gn, Cn,D0n

)
:

(
1

2
∆C

)
+O

(
||∆C||3

)
;

W̃ (Cn,Gn, Cn,D0n) = W̃
(
Cn+1/2,Gn, Cn,D0n

)

− ∂CW̃
(
Cn+1/2,Gn, Cn,D0n

)
:

(
1

2
∆C

)

+

(
1

2
∆C

)
: ∂2

CCW̃
(
Cn+1/2,Gn, Cn,D0n

)
:

(
1

2
∆C

)
+O

(
||∆C||3

)
.

(A.10)
Introduction of above equation (A.10) into the last four terms on the right-hand side of

equation (A.3) yields

1

2

W̃
(
Cn+1,Gn+1, Cn+1,D0n+1

)
− W̃

(
Cn,Gn+1, Cn+1,D0n+1

)

||∆C||2 ∆C

+
1

2

W̃ (Cn+1,Gn, Cn,D0n)− W̃ (Cn,Gn, Cn,D0n)

||∆C||2 ∆C

− 1

2

∂CW̃
(
Cn+1/2,Gn+1, Cn+1,D0n+1

)
: ∆C

||∆C||2 ∆C

− 1

2

∂CW̃
(
Cn+1/2,Gn, Cn,D0n

)
: ∆C

||∆C||2 ∆C = O
(
||∆C||2

)
.

(A.11)

Introduction of the result in (A.11) into the expression for the directional derivative DCW̃ in
(13) leads to

DCW̃ =
1

2

(
∂CW̃

(
Cn+1/2,Gn+1, Cn+1,D0n+1

)
+ ∂CW̃

(
Cn+1/2,Gn, Cn,D0n

))
+O

(
||∆C||2

)
.

(A.12)
A Taylor series expansion on the two first terms on the right-hand side of above equation
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(A.12) enables these to be expressed as

∂CW̃
(
Cn+1/2,Gn+1, Cn+1,D0n+1

)
= ∂CW̃

(
Cn+1/2,Gn+1/2, Cn+1/2,D0n+1/2

)

+ ∂2
CGW̃

(
Cn+1/2,Gn+1/2, Cn+1/2,D0n+1/2

)
:

(
1

2
∆G

)

+ ∂2
CCW̃

(
Cn+1/2,Gn+1/2, Cn+1/2,D0n+1/2

)(
1

2
∆C

)

+ ∂2
CD0

W̃
(
Cn+1/2,Gn+1/2, Cn+1/2,D0n+1/2

)
:

(
1

2
∆D0

)

+O
(
||∆G||2

)
+O

(
∆C2

)
+O

(
||∆D0||2

)

+O (||∆G||∆C) +O (||∆G||||∆D0||) +O (∆C||∆D0||) ;
∂CW̃

(
Cn+1/2,Gn, Cn,D0n

)
= ∂CW̃

(
Cn+1/2,Gn+1/2, Cn+1/2,D0n+1/2

)

− ∂2
CGW̃

(
Cn+1/2,Gn+1/2, Cn+1/2,D0n+1/2

)
:

(
1

2
∆G

)

− ∂2
CCW̃

(
Cn+1/2,Gn+1/2, Cn+1/2,D0n+1/2

)(
1

2
∆C

)

− ∂2
CD0

W̃
(
Cn+1/2,Gn+1/2, Cn+1/2,D0n+1/2

)
:

(
1

2
∆D0

)

+O
(
||∆G||2

)
+O

(
∆C2

)
+O

(
||∆D0||2

)

+O (||∆G||∆C) +O (||∆G||||∆D0||) +O (∆C||∆D0||) .
(A.13)

Introduction of (A.13) into (A.12) leads to the final expression for the discrete derivative

DCW̃ (A.3) as

DCW̃ = ∂CW̃
(
Cn+1/2,Gn+1/2, Cn+1/2,D0n+1/2

)

+O
(
||∆C||2

)
+O

(
||∆G||2

)
+O

(
∆C2

)
+O

(
||∆D0||2

)

+O (||∆G||∆C) +O (||∆G||||∆D0||) +O (∆C||∆D0||) ,
(A.14)

which proves condition (A.9). Proceeding similarly, it would be possible to generalise above result

(A.14) to the discrete derivatives DGW̃ (A.4), DCW̃ (A.5) and DD0W̃ (A.6), namely

DGW̃ = ∂GW̃
(
Cn+1/2,Gn+1/2, Cn+1/2,D0n+1/2

)

+O
(
||∆C||2

)
+O

(
||∆G||2

)
+O

(
∆C2

)
+O

(
||∆D0||2

)

+O (||∆C||∆C) +O (||∆C||||∆D0||) +O (∆C||∆D0||) ;
DCW̃ = ∂CW̃

(
Cn+1/2,Gn+1/2, Cn+1/2,D0n+1/2

)

+O
(
||∆C||2

)
+O

(
||∆G||2

)
+O

(
∆C2

)
+O

(
||∆D0||2

)

+O (||∆C||||∆G||) +O (||∆C||||∆D0||) +O (||∆G||||∆D0||) ;
DD0W̃ = ∂D0W̃

(
Cn+1/2,Gn+1/2, Cn+1/2,D0n+1/2

)

+O
(
||∆C||2

)
+O

(
||∆G||2

)
+O

(
∆C2

)
+O

(
||∆D0||2

)

+O (||∆C||||∆G||) +O (||∆C||∆C) +O (||∆G||∆C) .

(A.15)
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