92 research outputs found

    TMS-Induced Cortical Potentiation during Wakefulness Locally Increases Slow Wave Activity during Sleep

    Get PDF
    BACKGROUND: Sleep slow wave activity (SWA) is thought to reflect sleep need, increasing in proportion to the length of prior wakefulness and decreasing during sleep. However, the process responsible for SWA regulation is not known. We showed recently that SWA increases locally after a learning task involving a circumscribed brain region, suggesting that SWA may reflect plastic changes triggered by learning. METHODOLOGY/PRINCIPAL FINDINGS: To test this hypothesis directly, we used transcranial magnetic stimulation (TMS) in conjunction with high-density EEG in humans. We show that 5-Hz TMS applied to motor cortex induces a localized potentiation of TMS-evoked cortical EEG responses. We then show that, in the sleep episode following 5-Hz TMS, SWA increases markedly (+39.1±17.4%, p<0.01, n = 10). Electrode coregistration with magnetic resonance images localized the increase in SWA to the same premotor site as the maximum TMS-induced potentiation during wakefulness. Moreover, the magnitude of potentiation during wakefulness predicts the local increase in SWA during sleep. CONCLUSIONS/SIGNIFICANCE: These results provide direct evidence for a link between plastic changes and the local regulation of sleep need

    The Human Parahippocampal Region: I. Temporal Pole Cytoarchitectonic and MRI Correlation

    Get PDF
    The temporal pole (TP) is the rostralmost portion of the human temporal lobe. Characteristically, it is only present in human and nonhuman primates. TP has been implicated in different cognitive functions such as emotion, attention, behavior, and memory, based on functional studies performed in healthy controls and patients with neurodegenerative diseases through its anatomical connections (amygdala, pulvinar, orbitofrontal cortex). TP was originally described as a single uniform area by Brodmann area 38, and von Economo (area TG of von Economo and Koskinas), and little information on its cytoarchitectonics is known in humans. We hypothesize that 1) TP is not a homogenous area and we aim first at fixating the precise extent and limits of temporopolar cortex (TPC) with adjacent fields and 2) its structure can be correlated with structural magnetic resonance images. We describe here the macroscopic characteristics and cytoarchitecture as two subfields, a medial and a lateral area, that constitute TPC also noticeable in 2D and 3D reconstructions. Our findings suggest that the human TP is a heterogeneous region formed exclusively by TPC for about 7 mm of the temporal tip, and that becomes progressively restricted to the medial and ventral sides of the TP. This cortical area presents topographical and structural features in common with nonhuman primates, which suggests an evolutionary development in human species

    An Additional Motor-Related Field in the Lateral Frontal Cortex of Squirrel Monkeys

    Get PDF
    Our earlier efforts to document the cortical connections of the ventral premotor cortex (PMv) revealed dense connections with a field rostral and lateral to PMv, an area we called the frontal rostral field (FR). Here, we present data collected in FR using electrophysiological and anatomical methods. Results show that FR contains an isolated motor representation of the forelimb that can be differentiated from PMv based on current thresholds and latencies to evoke electromyographic activity using intracortical microstimulation techniques. In addition, FR has a different pattern of cortical connections compared with PMv. Together, these data support that FR is an additional, previously undescribed motor-related area in squirrel monkeys

    Chimpanzee (Pan troglodytes) Precentral Corticospinal System Asymmetry and Handedness: A Diffusion Magnetic Resonance Imaging Study

    Get PDF
    Most humans are right handed, and most humans exhibit left-right asymmetries of the precentral corticospinal system. Recent studies indicate that chimpanzees also show a population-level right-handed bias, although it is less strong than in humans.We used in vivo diffusion-weighted and T1-weighted magnetic resonance imaging (MRI) to study the relationship between the corticospinal tract (CST) and handedness in 36 adult female chimpanzees. Chimpanzees exhibited a hemispheric bias in fractional anisotropy (FA, left>right) and mean diffusivity (MD, right>left) of the CST, and the left CST was centered more posteriorly than the right. Handedness correlated with central sulcus depth, but not with FA or MD.These anatomical results are qualitatively similar to those reported in humans, despite the differences in handedness. The existence of a left>right FA, right>left MD bias in the corticospinal tract that does not correlate with handedness, a result also reported in some human studies, suggests that at least some of the structural asymmetries of the corticospinal system are not exclusively related to laterality of hand preference

    Consensus Paper: Cerebellum and Social Cognition.

    Get PDF
    The traditional view on the cerebellum is that it controls motor behavior. Although recent work has revealed that the cerebellum supports also nonmotor functions such as cognition and affect, only during the last 5 years it has become evident that the cerebellum also plays an important social role. This role is evident in social cognition based on interpreting goal-directed actions through the movements of individuals (social "mirroring") which is very close to its original role in motor learning, as well as in social understanding of other individuals' mental state, such as their intentions, beliefs, past behaviors, future aspirations, and personality traits (social "mentalizing"). Most of this mentalizing role is supported by the posterior cerebellum (e.g., Crus I and II). The most dominant hypothesis is that the cerebellum assists in learning and understanding social action sequences, and so facilitates social cognition by supporting optimal predictions about imminent or future social interaction and cooperation. This consensus paper brings together experts from different fields to discuss recent efforts in understanding the role of the cerebellum in social cognition, and the understanding of social behaviors and mental states by others, its effect on clinical impairments such as cerebellar ataxia and autism spectrum disorder, and how the cerebellum can become a potential target for noninvasive brain stimulation as a therapeutic intervention. We report on the most recent empirical findings and techniques for understanding and manipulating cerebellar circuits in humans. Cerebellar circuitry appears now as a key structure to elucidate social interactions

    Human and machine validation of 14 databases of dynamic facial expressions

    Get PDF
    With a shift in interest toward dynamic expressions, numerous corpora of dynamic facial stimuli have been developed over the past two decades. The present research aimed to test existing sets of dynamic facial expressions (published between 2000 and 2015) in a cross-corpus validation effort. For this, 14 dynamic databases were selected that featured facial expressions of the basic six emotions (anger, disgust, fear, happiness, sadness, surprise) in posed or spontaneous form. In Study 1, a subset of stimuli from each database (N = 162) were presented to human observers and machine analysis, yielding considerable variance in emotion recognition performance across the databases. Classification accuracy further varied with perceived intensity and naturalness of the displays, with posed expressions being judged more accurately and as intense, but less natural compared to spontaneous ones. Study 2 aimed for a full validation of the 14 databases by subjecting the entire stimulus set (N = 3812) to machine analysis. A FACS-based Action Unit (AU) analysis revealed that facial AU configurations were more prototypical in posed than spontaneous expressions. The prototypicality of an expression in turn predicted emotion classification accuracy, with higher performance observed for more prototypical facial behavior. Furthermore, technical features of each database (i.e., duration, face box size, head rotation, and motion) had a significant impact on recognition accuracy. Together, the findings suggest that existing databases vary in their ability to signal specific emotions, thereby facing a trade-off between realism and ecological validity on the one end, and expression uniformity and comparability on the other
    corecore