299 research outputs found

    Bringing Video Communication to the Community: Opportunities and Challenges

    Get PDF
    The rise of online social networks, the wide availability of video communication technology and the deployment of high-speed broadband networks together provide the opportunity for video to become a medium for mass social communication among communities. However, current solutions provide poor support for ad hoc social interactions among multiple groups of participants. This position paper summarises the results of more than 5 years’ research to make communication and engagement easier between groups of people separated in space. It shows how communication can be effectively combined with different shared activities, and how the technical capabilities of Communication Orchestration and Dynamic Composition work together to improve the quality of human interactions. The paper also describes ongoing work to develop the Service-Aware Network as a means of optimising the quality of a user’s communication experience while making most efficient use of network resources. We believe these developments could enable video-mediated communication to become an effective and accepted enabler for social communication within community groups globall

    Characterisation of the fiber gene and partial sequence of the early region 4 of bovine adenovirus 2: Short communication

    Get PDF
    The full sequence of the fiber gene and partial sequence of the putative 17 kD protein gene of bovine adenovirus-2 (BAdV-2) were determined. The size of the fiber gene of BAdV-2 proved to be 561 amino acids, of which the amino acids 37 to 385 form a typical shaft domain of 22 repetitive motifs. On the complementary strand, a gene homologous to the 17 kD protein coded in the E4 region of several human adenoviruses was found. The sequence analysis seems to confirm the presence of an intron in the sequenced part of the E4 region

    Regenerative peripheral nerve interfaces for real-time, proportional control of a Neuroprosthetic hand

    Full text link
    Abstract Introduction Regenerative peripheral nerve interfaces (RPNIs) are biological constructs which amplify neural signals and have shown long-term stability in rat models. Real-time control of a neuroprosthesis in rat models has not yet been demonstrated. The purpose of this study was to: a) design and validate a system for translating electromyography (EMG) signals from an RPNI in a rat model into real-time control of a neuroprosthetic hand, and; b) use the system to demonstrate RPNI proportional neuroprosthesis control. Methods Animals were randomly assigned to three experimental groups: (1) Control; (2) Denervated, and; (3) RPNI. In the RPNI group, the extensor digitorum longus (EDL) muscle was dissected free, denervated, transferred to the lateral thigh and neurotized with the residual end of the transected common peroneal nerve. Rats received tactile stimuli to the hind-limb via monofilaments, and electrodes were used to record EMG. Signals were filtered, rectified and integrated using a moving sample window. Processed EMG signals (iEMG) from RPNIs were validated against Control and Denervated group outputs. Results Voluntary reflexive rat movements produced signaling that activated the prosthesis in both the Control and RPNI groups, but produced no activation in the Denervated group. Signal-to-Noise ratio between hind-limb movement and resting iEMG was 3.55 for Controls and 3.81 for RPNIs. Both Control and RPNI groups exhibited a logarithmic iEMG increase with increased monofilament pressure, allowing graded prosthetic hand speed control (R2 = 0.758 and R2 = 0.802, respectively). Conclusion EMG signals were successfully acquired from RPNIs and translated into real-time neuroprosthetic control. Signal contamination from muscles adjacent to the RPNI was minimal. RPNI constructs provided reliable proportional prosthetic hand control.https://deepblue.lib.umich.edu/bitstream/2027.42/146521/1/12984_2018_Article_452.pd

    Identification of a small molecule yeast TORC1 inhibitor with a flow cytometry-based multiplex screen

    Get PDF
    TOR (target of rapamycin) is a serine/threonine kinase, evolutionarily conserved from yeast to human, which functions as a fundamental controller of cell growth. The moderate clinical benefit of rapamycin in mTOR-based therapy of many cancers favors the development of new TOR inhibitors. Here we report a high throughput flow cytometry multiplexed screen using five GFPtagged yeast clones that represent the readouts of four branches of the TORC1 signaling pathway in budding yeast. Each GFP-tagged clone was differentially color-coded and the GFP signal of each clone was measured simultaneously by flow cytometry, which allows rapid prioritization of compounds that likely act through direct modulation of TORC1 or proximal signaling components. A total of 255 compounds were confirmed in dose-response analysis to alter GFP expression in one or more clones. To validate the concept of the high throughput screen, we have characterized CID 3528206, a small molecule most likely to act on TORC1 as it alters GFP expression in all five GFP clones in an analogous manner to rapamycin. We have shown that CID 3528206 inhibited yeast cell growth, and that CID 3528206 inhibited TORC1 activity both in vitro and in vivo with EC50s of 150 nM and 3.9 μM, respectively. The results of microarray analysis and yeast GFP collection screen further support the notion that CID 3528206 and rapamycin modulate similar cellular pathways. Together, these results indicate that the HTS has identified a potentially useful small molecule for further development of TOR inhibitors

    Anti-nociceptive and desensitizing effects of olvanil on capsaicin-induced thermal hyperalgesia in the rat

    Get PDF
    Background: Olvanil (NE 19550) is a non-pungent synthetic analogue of capsaicin, the natural pungent ingredient of capsicum which activates the transient receptor potential vanilloid type-1 (TRPV1) channel and was developed as a potential analgesic compound. Olvanil has potent anti-hyperalgesic effects in several experimental models of chronic pain. Here we report the inhibitory effects of olvanil on nociceptive processing using cultured dorsal root ganglion (DRG) neurons and compare the effects of capsaicin and olvanil on thermal nociceptive processing in vivo; potential contributions of the cannabinoid CB1 receptor to olvanil’s anti-hyperalgesic effects were also investigated. Methods: A hot plate analgesia meter was used to evaluate the anti-nociceptive effects of olvanil on capsaicin-induced thermal hyperalgesia and the role played by CB1 receptors in mediating these effects. Single cell calcium imaging studies of DRG neurons were employed to determine the desensitizing effects of olvanil on capsaicin-evoked calcium responses. Statistical analysis used Student’s t test or one way ANOVA followed by Dunnett’s post-hoctest as appropriate. Results: Both olvanil (100 nM) and capsaicin (100 nM) produced significant increases in intracellular calcium concentrations [Ca2+]I in cultured DRG neurons. Olvanil was able to des ensitise TRPV1 responses to further capsaicin exposure more effectively than capsaicin. Intra plantar injection of capsaicin (0.1, 0.3 and 1μg) produced a robust TRPV1-dependant thermal hyperalgesia in rats, whilst olvanil (0.1, 0.3 and 1μg) produced no hyperalgesia, emphasizing its lack of pungency. The highest dose of olvanil significantly reduced the hyperalgesic effects of capsaicin in vivo. Intraplantar injection of the selective cannabinoid CB1 receptor antagonist rimonabant (1μg) altered neither capsaicin-induced thermal hyperalgesia nor the desensitizing properties of olvanil, indicating a lack of involvement of CB1receptors. Conclusions: Olvanil is effective in reducing capsaicin-induced thermal hyperalgesia, probably via directly desensitizingTRPV1 channels in a CB 1 receptor-independent fashion. The results presented clearly support the potential for olvanil in the development of new topical analgesic preparations for treating chronic pain conditions while avoiding the unwanted side effects of capsaicin treatments

    The impact of perfectionism and anxiety traits on action monitoring in major depressive disorder

    Get PDF
    Perfectionism and anxiety features are involved in the clinical presentation and neurobiology of major depressive disorder (MDD). In MDD, cognitive control mechanisms such as action monitoring can adequately be investigated applying electrophysiological registrations of the error-related negativity (ERN) and error positivity (Pe). It is also known that traits of perfectionism and anxiety influence ERN amplitudes in healthy subjects. The current study explores the impact of perfectionism and anxiety traits on action monitoring in MDD. A total of 39 MDD patients performed a flankers task during an event-related potential (ERP) session and completed the multidimensional perfectionism scale (MPS) with its concern over mistakes (CM) and doubt about actions (DA) subscales and the trait form of the State Trait Anxiety Inventory. Multiple regression analyses with stepwise backward elimination revealed MPS-DA to be a significant predictor (R2:0.22) for the ERN outcomes, and overall MPS (R2:0.13) and MPS-CM scores (R2:0.18) to have significant predictive value for the Pe amplitudes. Anxiety traits did not have a predictive capacity for the ERPs. MPS-DA clearly affected the ERN, and overall MPS and MPS-CM influenced the Pe, whereas no predictive capacity was found for anxiety traits. The manifest impact of perfectionism on patients’ error-related ERPs may contribute to our understanding of the action-monitoring process and the functional significance of the Pe in MDD. The divergent findings for perfectionism and anxiety features also indicate that the wide range of various affective personality styles might exert a different effect on action monitoring in MDD, awaiting further investigation

    Complete genome constellation of a caprine group A rotavirus strain reveals common evolution with ruminant and human rotavirus strains

    Get PDF
    This study reports the first complete genome sequence of a caprine group A rotavirus (GAR) strain, GO34. The VP7-VP4-VP6-VP1-VP2-VP3-NSP1-NSP2-NSP3-NSP4-NSP5 genes of strain GO34, detected in Bangladesh, were assigned to the G6-P[1]-I2-R2-C2-M2-A11-N2-T6-E2-H3 genotypes, respectively. Strain GO34 was closely related to the VP4, VP6–7 and NSP4–5 genes of bovine GARs and the NSP1 gene of GO34 to an ovine GAR. Strain GO34 shared low nucleotide sequence identities (<90 %) with VP2–3 genes of other GARs, and was equally related to NSP3 genes of human, ruminant and camelid strains. The VP1, VP6 and NSP2 genes of strain GO34 also exhibited a close genetic relatedness to human G2, G6, G8 and G12 DS-1-like GARs, whereas the NSP1 of GO34 was also closely related to human G6P[14] strains. All these findings point to a common evolutionary origin of GO34 and bovine, ovine, antelope, guanaco and human G6P[14] GARs, although phylogenetically GO34 is not particularly closely related to any other rotavirus strains known to date

    Resting-State Functional Connectivity between Fronto-Parietal and Default Mode Networks in Obsessive-Compulsive Disorder

    Get PDF
    Background: Obsessive-compulsive disorder (OCD) is characterized by an excessive focus on upsetting or disturbing thoughts, feelings, and images that are internally-generated. Internally-focused thought processes are subserved by the ‘‘default mode network’ ’ (DMN), which has been found to be hyperactive in OCD during cognitive tasks. In healthy individuals, disengagement from internally-focused thought processes may rely on interactions between DMN and a frontoparietal network (FPN) associated with external attention and task execution. Altered connectivity between FPN and DMN may contribute to the dysfunctional behavior and brain activity found in OCD. Methods: The current study examined interactions between FPN and DMN during rest in 30 patients with OCD (17 unmedicated) and 32 control subjects (17 unmedicated). Timecourses from seven fronto-parietal seeds were correlated across the whole brain and compared between groups. Results: OCD patients exhibited altered connectivity between FPN seeds (primarily anterior insula) and several regions of DMN including posterior cingulate cortex, medial frontal cortex, posterior inferior parietal lobule, and parahippocampus. These differences were driven largely by a reduction of negative correlations among patients compared to controls. Patients also showed greater positive connectivity between FPN and regions outside DMN, including thalamus, lateral frontal cortex, and somatosensory/motor regions

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2&nbsp;m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0\u20135 and 5\u201315&nbsp;cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10\ub0C (mean&nbsp;=&nbsp;3.0&nbsp;\ub1&nbsp;2.1\ub0C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6&nbsp;\ub1&nbsp;2.3\ub0C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler ( 120.7&nbsp;\ub1&nbsp;2.3\ub0C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    FRET Detection of Lymphocyte Function-Associated Antigen-1 Conformational Extension

    Get PDF
    Lymphocyte function-associated antigen 1 (LFA-1, CD11a/CD18, αLβ2-integrin) and its ligands are essential for adhesion between T-cells and antigen-presenting cells, formation of the immunological synapse, and other immune cell interactions. LFA-1 function is regulated through conformational changes that include the modulation of ligand binding affinity and molecular extension. However, the relationship between molecular conformation and function is unclear. Here fluorescence resonance energy transfer (FRET) with new LFA-1-specific fluorescent probes showed that triggering of the pathway used for T-cell activation induced rapid unquenching of the FRET signal consistent with extension of the molecule. Analysis of the FRET quenching at rest revealed an unexpected result that can be interpreted as a previously unknown LFA-1 conformation
    corecore