21 research outputs found

    Inflammatory Airway Disease of Horses - Revised Consensus Statement

    Get PDF
    The purpose of this manuscript is to revise and update the previous consensus statement on inflammatory airway disease (IAD) in horses. Since 2007, a large number of scientific articles have been published on the topic and these new findings have led to a significant evolution of our understanding of IAD

    Equine asthma: current understanding and future directions

    Get PDF
    The 2019 Havemeyer Workshop brought together researchers and clinicians to discuss the latest information on Equine Asthma and provide future research directions. Current clinical and molecular asthma phenotypes and endotypes in humans were discussed and compared to asthma phenotypes in horses. The role of infectious and non-infectious causes of equine asthma, genetic factors and proposed disease pathophysiology were reviewed. Diagnostic limitations were evident by the limited number of tests and biomarkers available to field practitioners. The participants emphasized the need for more accessible, standardized diagnostics that would help identify specific phenotypes and endotypes in order to create more targeted treatments or management strategies. One important outcome of the workshop was the creation of the Equine Asthma Group that will facilitate communication between veterinary practice and research communities through published and easily accessible guidelines and foster research collaboration

    Shear Stress Modulation of Smooth Muscle Cell Marker Genes in 2-D and 3-D Depends on Mechanotransduction by Heparan Sulfate Proteoglycans and ERK1/2

    Get PDF
    During vascular injury, vascular smooth muscle cells (SMCs) and fibroblasts/myofibroblasts (FBs/MFBs) are exposed to altered luminal blood flow or transmural interstitial flow. We investigate the effects of these two types of fluid flows on the phenotypes of SMCs and MFBs and the underlying mechanotransduction mechanisms.Exposure to 8 dyn/cm(2) laminar flow shear stress (2-dimensional, 2-D) for 15 h significantly reduced expression of alpha-smooth muscle actin (alpha-SMA), smooth muscle protein 22 (SM22), SM myosin heavy chain (SM-MHC), smoothelin, and calponin. Cells suspended in collagen gels were exposed to interstitial flow (1 cmH(2)O, approximately 0.05 dyn/cm(2), 3-D), and after 6 h of exposure, expression of SM-MHC, smoothelin, and calponin were significantly reduced, while expression of alpha-SMA and SM22 were markedly enhanced. PD98059 (an ERK1/2 inhibitor) and heparinase III (an enzyme to cleave heparan sulfate) significantly blocked the effects of laminar flow on gene expression, and also reversed the effects of interstitial flow on SM-MHC, smoothelin, and calponin, but enhanced interstitial flow-induced expression of alpha-SMA and SM22. SMCs and MFBs have similar responses to fluid flow. Silencing ERK1/2 completely blocked the effects of both laminar flow and interstitial flow on SMC marker gene expression. Western blotting showed that both types of flows induced ERK1/2 activation that was inhibited by disruption of heparan sulfate proteoglycans (HSPGs).The results suggest that HSPG-mediated ERK1/2 activation is an important mechanotransduction pathway modulating SMC marker gene expression when SMCs and MFBs are exposed to flow. Fluid flow may be involved in vascular remodeling and lesion formation by affecting phenotypes of vascular wall cells. This study has implications in understanding the flow-related mechanobiology in vascular lesion formation, tumor cell invasion, and stem cell differentiation

    Profiling of Differentially Expressed Genes Using Suppression Subtractive Hybridization in an Equine Model of Chronic Asthma

    Get PDF
    Background :\ud Gene expression analyses are used to investigate signaling pathways involved in diseases. In asthma, they have been primarily derived from the analysis of bronchial biopsies harvested from mild to moderate asthmatic subjects and controls. Due to ethical considerations, there is currently limited information on the transcriptome profile of the peripheral lung tissues in asthma.\ud \ud Objective :\ud To identify genes contributing to chronic inflammation and remodeling in the peripheral lung tissue of horses with heaves, a naturally occurring asthma-like condition.\ud \ud Methods :\ud Eleven adult horses (6 heaves-affected and 5 controls) were studied while horses with heaves were in clinical remission (Pasture), and during disease exacerbation induced by a 30-day natural antigen challenge during stabling (Challenge). Large peripheral lung biopsies were obtained by thoracoscopy at both time points. Using suppression subtractive hybridization (SSH), lung cDNAs of controls (Pasture and Challenge) and asymptomatic heaves-affected horses (Pasture) were subtracted from cDNAs of horses with heaves in clinical exacerbation (Challenge). The differential expression of selected genes of interest was confirmed using quantitative PCR assay.\ud \ud Results :\ud Horses with heaves, but not controls, developed airway obstruction when challenged. Nine hundred and fifty cDNA clones isolated from the subtracted library were screened by dot blot array and 224 of those showing the most marked expression differences were sequenced. The gene expression pattern was confirmed by quantitative PCR in 15 of 22 selected genes. Novel genes and genes with an already defined function in asthma were identified in the subtracted cDNA library. Genes of particular interest associated with asthmatic airway inflammation and remodeling included those related to PPP3CB/NFAT, RhoA, and LTB4/GPR44 signaling pathways.\ud \ud Conclusions :\ud Pathways representing new possible targets for anti-inflammatory and anti-remodeling therapies for asthma were identified. The findings of genes previously associated with asthma validate this equine model for gene expression studies

    Effects of nebulized dexamethasone on the respiratory microbiota and mycobiota and relative equine herpesvirus-1, 2, 4, 5 in an equine model of asthma

    Get PDF
    BACKGROUND: Prolonged exposure to environmental antigens or allergens elicits an immune response in both healthy horses and those with mild asthma. Corticosteroids often are used to treat lower airway inflammation. OBJECTIVE: To investigate the changes in equine herpesvirus (EHV)-1,2,4,5 glycoprotein B gene expression and changes in respiratory bacterial and fungal communities after nebulized dexamethasone treatment of horses with asthma. ANIMALS: Horses with naturally occurring mild asthma (n = 16) and healthy control horses (n = 4). METHODS: Prospective, randomized, controlled, blinded clinical trial. Polymerase chain reaction amplification of EHV-1,2,4,5 in bronchoalveolar lavage fluid, and 16S (microbiome) and ITS2 (mycobiome) genes with subsequent sequencing was performed on DNA extracted from nasal swabs and transendoscopic tracheal aspirates before and after 13 days treatment with nebulized dexamethasone (15 mg q24h) and saline (control). RESULTS: Nebulized dexamethasone treatment decreased microbial diversity; relative abundance of 8 genera in the upper respiratory tract were altered. For both the microbiota and the mycobiota, environment had a dominant effect over treatment. Alternaria, an opportunistic pathogen and allergen in humans recognized as a risk factor for asthma, asthma severity, and exacerbations, was increased with treatment. Treatment affected relative quantification of the equine gamma herpesviruses (EHV-2 and -5); EHV-2 DNA levels increased and those of EHV-5 decreased. CONCLUSIONS: Nebulized dexamethasone treatment affected the upper respiratory tract microbiota, but not the mycobiota, which was overwhelmed by the effect of a sustained dusty environment
    corecore