25 research outputs found

    Opportunities and hurdles of edible insects for food and feed

    Get PDF
    Entomophagy, the consumption of insects, is promoted as an alternative sustainable source of protein for humans and animals. Seminal literature highlights predominantly the benefits, but with limited empirical support and evaluation. We highlight the historical significance of entomophagy by humans and key opportunities and hurdles identified by research to date, paying particular attention to research gaps. It is known that insects present a nutritional opportunity, being generally high in protein and key micronutrients, but it is unclear how their nutritional quality is influenced by what they are fed. Research indicates that, in ideal conditions, insects have a smaller environmental impact than more traditional Western forms of animal protein; less known is how to scale up insect production while maintaining these environmental benefits. Studies overall show that insects could make valuable economic and nutritional contributions to the food or feed systems, but there are no clear regulations in place to bring insects into such supply systems. Future research needs to examine how the nutritional value of insects can be managed systematically, establish clear processing and storage methodology, define rearing practices and implement regulations with regard to food and feed safety. Each of these aspects should be considered within the specifics of concrete supply and value chains, depending on whether insects are intended for food or for feed, to ensure insects are a sound economic, nutritional and sustainable protein alternative – not just a more expensive version of poultry for food, or soya for feed

    Haem iron intake and risk of lung cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort

    Get PDF
    Background Epidemiological studies suggest that haem iron, which is found predominantly in red meat and increases endogenous formation of carcinogenic N-nitroso compounds, may be positively associated with lung cancer. The objective was to examine the relationship between haem iron intake and lung cancer risk using detailed smoking history data and serum cotinine to control for potential confounding. Methods In the European Prospective Investigation into Cancer and Nutrition (EPIC), 416,746 individuals from 10 countries completed demographic and dietary questionnaires at recruitment. Cox proportional hazards models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for incident lung cancer (n = 3731) risk relative to haem iron, non-haem iron, and total dietary iron intake. A corresponding analysis was conducted among a nested subset of 800 lung cancer cases and 1489 matched controls for whom serum cotinine was available. Results Haem iron was associated with lung cancer risk, including after adjustment for details of smoking history (time since quitting, number of cigarettes per day): as a continuous variable (HR per 0.3 mg/1000 kcal 1.03, 95% CI 1.00-1.07), and in the highest versus lowest quintile (HR 1.16, 95% CI 1.02-1.32; trend across quintiles: P = 0.035). In contrast, non-haem iron intake was related inversely with lung cancer risk; however, this association attenuated after adjustment for smoking history. Additional adjustment for serum cotinine did not considerably alter the associations detected in the nested case-control subset. Conclusions Greater haem iron intake may be modestly associated with lung cancer risk.Peer reviewe

    Overweight children have higher circulating hepcidin concentrations and lower iron status but have dietary iron intakes and bioavailability comparable with normal weight children

    Full text link
    BACKGROUND: Obesity increases the risk for iron deficiency, but the underlying mechanism is unclear. It is possible that overweight individuals may have lower dietary iron intake and/or bioavailability. Alternatively, obesity-related inflammation may increase hepcidin concentrations and reduce iron availability. Circulating hepcidin levels have not been compared in normal weight vs overweight individuals. OBJECTIVE: The objective of this study was to compare iron status, dietary iron intake and bioavailability, as well as circulating levels of hepcidin, leptin and interleukin-6 (IL-6), in overweight vs normal weight children. DESIGN: In 6-14-year-old normal and overweight children (n=121), we measured dietary iron intake, estimated iron bioavailability and determined body mass index s.d. scores (BMI-SDS). In all children (n=121), we measured fasting serum ferritin, soluble transferrin receptor (sTfR), C-reactive protein (CRP) and leptin; in a subsample, we measured IL-6 (n=68) and serum hepcidin (n=30). RESULTS: There were no significant differences in dietary iron intake or bioavailability comparing normal and overweight children. The prevalence of iron-deficient erythropoiesis (an increased sTfR concentration) was significantly higher in the overweight than in the normal weight children (20 vs 6%, P=0.022, with sTfR concentrations of 4.40+/-0.77 and 3.94+/-0.88 mg l(-1), respectively, P=0.010). Serum hepcidin levels were significantly higher in the overweight children (P=0.001). BMI-SDS significantly correlated with sTfR (P=0.009), serum hepcidin (P=0.005) and the three measures of subclinical inflammation, namely CRP (P<0.001), IL-6 (P<0.001) and leptin (P<0.001). In a multiple regression model, serum hepcidin was correlated with BMI-SDS (P=0.020) and body iron (P=0.029), but not with the inflammatory markers. CONCLUSION: Our findings indicate that there is reduced iron availability for erythropoiesis in overweight children and that this is unlikely due to low dietary iron supply but rather due to hepcidin-mediated reduced iron absorption and/or increased iron sequestration
    corecore