413 research outputs found

    EB1 directly regulates APC-mediated actin nucleation

    Get PDF
    EB1 was discovered 25 years ago as a binding partner of the tumor suppressor Adenomatous Polyposis Coli (APC) [1]; however, the significance of EB1-APC interactions has remained poorly understood. EB1 functions at the center of a network of microtubule end-tracking proteins (+TIPs) [2–5], and APC binding to EB1 promotes EB1 association with microtubule ends and microtubule stabilization [6, 7]. Whether or not EB1 interactions govern functions of APC beyond microtubule regulation has not been explored. The C-terminal Basic domain of APC (APC-B) directly nucleates actin assembly, and this activity is required in vivo for directed cell migration and for maintaining normal levels of F-actin [8–10]. Here, we show that EB1 binds APC-B and inhibits its actin nucleation function by blocking actin monomer recruitment. Consistent with these biochemical observations, knocking down EB1 increases F-actin levels in cells, and this can be rescued by disrupting APC-mediated actin nucleation. Conversely, overexpressing EB1 decreases F-actin levels and impairs directed cell migration, without altering microtubule organization and independent of its direct binding interactions with microtubules. Overall, our results define a new function for EB1 in negatively regulating APC-mediated actin assembly. Combining these findings with other recent studies showing that APC interactions regulate EB1-dependent effects on microtubule dynamics [7], we propose that EB1-APC interactions govern bidirectional cytoskeletal crosstalk by coordinating microtubule and actin dynamics

    Técnicas de creación y manipulación de imágenes de estructuras orgánicas tridimensionales. Nuevos entornos de aplicación didáctica

    Get PDF
    The development of computer-generated images opens new perspectives in the field of teaching. These techniques permit geometric modelling of three-dimensional structures, allowing the production and manipulation of real images and the numerical and graphic characterization of two-three-dimensional contours. The procedure proposed is based on the manipulation, by geometric (turns, traslations) and algebraic (addition, intersection) operations, of an initially finite set of surfaces (elipsoids, paraboloids, cylinders and planes), defined by their parameters, for teaching purposes

    Hydrogen Bonding in the Dimer and Monohydrate of 2-Adamantanol: A Test Case for Dispersion-Corrected Density Functional Methods

    Get PDF
    Weakly-bound intermolecular clusters constitute reductionist physical models for non-covalent interactions. Here we report the observation of the monomer, the dimer and the monohydrate of 2-adamantanol, a secondary alcohol with a bulky ten-carbon aliphatic skeleton. The molecular species were generated in a supersonic jet expansion and characterized using broadband chirped-pulse microwave spectroscopy in the 2–8 GHz frequency region. Two different gauche-gauche O-H···O hydrogen-bonded isomers were observed for the dimer of 2-adamantanol, while a single isomer was observed for the monomer and the monohydrate. The experimental rotational parameters were compared with molecular orbital calculations using density functional theory (B3LYP-D3(BJ), B2PLYP-D3(BJ), CAM-B3LYP-D3(BJ), ωB97XD), additionally providing energetic and electron density characterization. The shallow potential energy surface makes the dimer an interesting case study to benchmark dispersion-corrected computational methods and conformational search procedures

    Functionalised Poly(Vinyl Alcohol)/Graphene Oxide as Polymer Composite Electrolyte Membranes

    Full text link
    [EN] Crosslinked poly(vinyl alcohol) (PVA) based composite films were prepared as polyelectrolyte membranes for low temperature direct ethanol fuel cells (DEFC). The membranes were functionalised by means of the addition of graphene oxide (GO) and sulfonated graphene oxide (SGO) and crosslinked with sulfosuccinic acid (SSA). The chemical structure was corroborated and suitable thermal properties were found. Although the addition of GO and SGO slightly decreased the proton conductivity of the membranes, a significant reduction of the ethanol solution swelling and crossover was encountered, more relevant for those functionalised with SGO. In general, the composite membranes were stable under simulated service conditions. The addition of GO and SGO particles permitted to buffer the loss and almost retain similar proton conductivity than prior to immersion. These membranes are alternative polyelectrolytes, which overcome current concerns of actual commercial membranes such as the high cost or the crossover phenomenon.The authors would like to thank the support of the European Union through the European Regional Development Funds (ERDF). The Spanish Ministry of Economy, Industry and Competitiveness, is thanked for the research project POLYDECARBOCELL (ENE2017-86711-C3-1-R). The Spanish Ministry of Education, Culture and Sports is thanked for the FPU grant for O. Gil-Castell (FPU13/01916).Gil Castell, Ó.; Cerveró, R.; Teruel Juanes, R.; Badia, JD.; Ribes Greus, MD. (2019). Functionalised Poly(Vinyl Alcohol)/Graphene Oxide as Polymer Composite Electrolyte Membranes. Journal of Renewable Materials. 7(7):655-665. https://doi.org/10.32604/jrm.2019.04401S6556657

    Functionalised poly (vinyl alcohol)/graphene oxide as polymer composite electrolyte membranes

    Get PDF
    Crosslinked poly(vinyl alcohol) (PVA) based composite films were prepared as polyelectrolyte membranes for low temperature direct ethanol fuel cells (DEFC). The membranes were functionalised by means of the addition of graphene oxide (GO) and sulfonated graphene oxide (SGO) and crosslinked with sulfosuccinic acid (SSA). The chemical structure was corroborated and suitable thermal properties were found. Although the addition of GO and SGO slightly decreased the proton conductivity of the membranes, a significant reduction of the ethanol solution swelling and crossover was encountered, more relevant for those functionalised with SGO. In general, the composite membranes were stable under simulated service conditions. The addition of GO and SGO particles permitted to buffer the loss and almost retain similar proton conductivity than prior to immersion. These membranes are alternative polyelectrolytes, which overcome current concerns of actual commercial membranes such as the high cost or the crossover phenomenon

    Effect of Dendritic Side Groups on the Mobility of Modified Poly(epichlorohydrin) Copolymers

    Get PDF
    [EN] The macromolecular dynamics of dendronized copolymer membranes (PECHs), obtained by chemical modification of poly(epichlorohydrin) with the dendron 3,4,5-tris[4-(n-dodecan-1-yloxy)benzyloxy] benzoate, was investigated. In response to a thermal treatment during membrane preparation, these copolymers show an ability to change their shape, achieve orientation, and slightly crystallize, which was also observed by CP-MAS NMR, XRD, and DSC. The phenomenon was deeply analyzed by dielectric thermal analysis. The dielectric spectra show the influence of several factors such as the number of dendritic side groups, the orientation, their self-assembling dendrons, and the molecular mobility. The dielectric spectra present a sub-Tg dielectric relaxation, labelled as gamma, associated with the mobility of the benzyloxy substituent of the dendritic group. This mobility is not related to the percentage of these lateral chains but is somewhat hindered by the orientation of the dendritic groups. Unlike other less complex polymers, the crystallization was dismantled before the appearance of the glass transition (alpha(Tg)). Only after that, clearing transition (alpha(Clear)) can be observed. The PECHs were flexible and offered a high free volume, despite presenting a high degree of modifications. However, the molecular mobility is not independent in each phase and the self-assembling dendrons can be eventually fine-tuned according to the percentage of grafted groups.This research was funded by the Spanish Ministry of Science, Innovation and Universities, grant POLYDECARBOCELL (ENE2017-86711-C3-1-R, ENE2017-86711-C3-3-R).Teruel Juanes, R.; Pascual-Jose, B.; Graf, R.; Reina, JA.; Giamberini, M.; Ribes-Greus, A. (2021). Effect of Dendritic Side Groups on the Mobility of Modified Poly(epichlorohydrin) Copolymers. Polymers. 13(12):1-19. https://doi.org/10.3390/polym13121961119131

    Photo-fenton degradation of pentachlorophenol l: competition between additives and photolysis

    Get PDF
    [EN] In the present work, the photo-Fenton degradation of pentachlorophenol (PCP, 1 mg/L) has been studied under simulated and natural solar irradiation; moreover, the effect on the process efficiency of urban waste-derived soluble bio-based substances (SBO), structurally comparable to humic acids, has been investigated. Experiments showed a crucial role of PCP photolysis, present in the solar pilot plant and hindered by the Pyrex (R) filter present in the solar simulator. Indeed, the SBO screen negatively affects PCP degradation when working under natural solar light, where the photolysis of PCP is relevant. In contrast, in the absence of PCP photolysis, a significant improvement of the photo-Fenton process was observed when added to SBO. Furthermore, SBO were able to extend the application of the photo-Fenton process at circumneutral pH values, due to their ability to complex iron, avoiding its precipitation as oxides or hydroxides. This positive effect has been observed at higher concentration of Fe(II) (4 mg/L), whereas at 1 mg/L, the degradation rates of PCP were comparable in the presence and absence of SBO.This work was realized with the financial support of the academic interchange from the Marie Sklodowska-Curie Research and Innovation Staff Exchange project, funded by the European Commission H2020-MSCA-RISE-2014 within the framework of the research project Mat4treaT (Project number: 645551).Vergura, EP.; García-Ballesteros, S.; Vercher Pérez, RF.; Santos-Juanes Jordá, L.; Bianco Prevot, A.; Arqués Sanz, A. (2019). Photo-Fenton Degradation of Pentachlorophenol: Competition between Additives and Photolysis. Nanomaterials. 9(8):1-8. https://doi.org/10.3390/nano9081157S189

    Joint flow-seismic inversion for characterizing fractured reservoirs: theoretical approach and numerical modeling

    Get PDF
    Traditionally, seismic interpretation is performed without any account of the flow behavior. Here, we present a methodology to characterize fractured geologic media by integrating flow and seismic data. The key element of the proposed approach is the identification of the intimate relation between acoustic and flow responses of a fractured reservoir through the fracture compliance. By means of synthetic models, we show that: (1) owing to the strong (but highly uncertain) dependence of fracture permeability on fracture compliance, the modeled flow response in a fractured reservoir is highly sensitive to the geophysical interpretation; and (2) by incorporating flow data (well pressures and production curves) into the inversion workflow, we can simultaneously reduce the error in the seismic interpretation and improve predictions of the reservoir flow dynamics.Eni-MIT Energy Initiative Founding Member Progra

    The Mediterranean diet and micronutrient levels in depressive patients

    Get PDF
    Introduction: An inverse association between depression and some serum micronutrient levels (selenium, zinc, iron, magnesium, vitamin B and folic acid) has been reported. In addition, other studies reported that this micronutrient supplementation may improve depressed mood. The Mediterranean diet contains a sufficient amount of the micronutrients mentioned, although no study has reported an association between diet prescription and increased levels of them in depressive patients. Objective: To examine the impact of dietary patterns recommendations on micronutrient levels in depressive patients. Methods: 77 outpatients were randomly assigned either to the active (hygienic-dietary recommendations on diet, exercise, sleep, and sun exposure) or control group. Outcome measures were assessed before and after the six month intervention period. Results: Serum selenium and zinc levels were slightly low at basal point and serum selenium was inversely correlated with severity of depression (r=-0.233; p=0.041). A better outcome of depressive symptoms was found in the active group. Nevertheless, no significant differences in micronutrient levels were observed after the Mediterranean diet pattern prescription, probably due to an insufficient adherence. Conclusion: Selenium, zinc, iron, magnesium, vitamin B12 and folic acid serum levels didn`t increase in depressed patients after six months of the Mediterranean diet pattern prescription
    corecore