148 research outputs found

    How to write an ICS/IUGA conference abstract

    Get PDF
    Contains fulltext : 88292.pdf (publisher's version ) (Closed access)INTRODUCTION: This article aims to condense the lectures and discussions from workshops on good reporting at IUGA Como 2009 and ICS San Francisco 2009, providing practical advice for the novice researcher summarising their data for the first time. CONCLUSIONS: Drafting an abstract can be a time consuming process. Formal guidance, such as CONSORT and STROBE, exists for the kinds of information that should be included regarding almost all designs of clinical trials. Follow the abstract submission rules closely to avoid outright rejection. Plan to highlight the novelty, scientific merit and clinical impact of the work. Try not to overstate the importance of the findings. Do not forget to publish the work in a peer reviewed journal.1 mei 201

    New measurement of neutron capture resonances of 209Bi

    Get PDF
    The neutron capture cross section of Bi209 has been measured at the CERN n TOF facility by employing the pulse-height-weighting technique. Improvements over previous measurements are mainly because of an optimized detection system, which led to a practically negligible neutron sensitivity. Additional experimental sources of systematic error, such as the electronic threshold in the detectors, summing of gamma-rays, internal electron conversion, and the isomeric state in bismuth, have been taken into account. Gamma-ray absorption effects inside the sample have been corrected by employing a nonpolynomial weighting function. Because Bi209 is the last stable isotope in the reaction path of the stellar s-process, the Maxwellian averaged capture cross section is important for the recycling of the reaction flow by alpha-decays. In the relevant stellar range of thermal energies between kT=5 and 8 keV our new capture rate is about 16% higher than the presently accepted value used for nucleosynthesis calculations. At this low temperature an important part of the heavy Pb-Bi isotopes are supposed to be synthesized by the s-process in the He shells of low mass, thermally pulsing asymptotic giant branch stars. With the improved set of cross sections we obtain an s-process fraction of 19(3)% of the solar bismuth abundance, resulting in an r-process residual of 81(3)%. The present (n,gamma) cross-section measurement is also of relevance for the design of accelerator driven systems based on a liquid metal Pb/Bi spallation target.Comment: 10 pages, 5figures, recently published in Phys. Rev.

    Measurement of the neutron capture cross section of the s-only isotope 204Pb from 1 eV to 440 keV

    Get PDF
    The neutron capture cross section of 204Pb has been measured at the CERN n_TOF installation with high resolution in the energy range from 1 eV to 440 keV. An R-matrix analysis of the resolved resonance region, between 1 eV and 100 keV, was carried out using the SAMMY code. In the interval between 100 keV and 440 keV we report the average capture cross section. The background in the entire neutron energy range could be reliably determined from the measurement of a 208Pb sample. Other systematic effects in this measurement could be investigated and precisely corrected by means of detailed Monte Carlo simulations. We obtain a Maxwellian average capture cross section for 204Pb at kT=30 keV of 79(3) mb, in agreement with previous experiments. However our cross section at kT=5 keV is about 35% larger than the values reported so far. The implications of the new cross section for the s-process abundance contributions in the Pb/Bi region are discussed.Comment: 8 pages, 3 figures, article submitted to Phys. Rev.

    Measurement of the radiative neutron capture cross section of 206Pb and its astrophysical implications

    Get PDF
    The (n, gamma) cross section of 206Pb has been measured at the CERN n_TOF facility with high resolution in the energy range from 1 eV to 600 keV by using two optimized C6D6 detectors. In the investigated energy interval about 130 resonances could be observed, from which 61 had enough statistics to be reliably analyzed via the R-matrix analysis code SAMMY. Experimental uncertainties were minimized, in particular with respect to (i) angular distribution effects of the prompt capture gamma-rays, and to (ii) the TOF-dependent background due to sample-scattered neutrons. Other background components were addressed by background measurements with an enriched 208Pb sample. The effect of the lower energy cutoff in the pulse height spectra of the C6D6 detectors was carefully corrected via Monte Carlo simulations. Compared to previous 206Pb values, the Maxwellian averaged capture cross sections derived from these data are about 20% and 9% lower at thermal energies of 5 keV and 30 keV, respectively. These new results have a direct impact on the s-process abundance of 206Pb, which represents an important test for the interpretation of the cosmic clock based on the decay of 238U.Comment: 11 pages, 8 figures, paper to be submitted to Phys. Rev.

    Resonance capture cross section of 207Pb

    Get PDF
    The radiative neutron capture cross section of 207Pb has been measured at the CERN neutron time of flight installation n_TOF using the pulse height weighting technique in the resolved energy region. The measurement has been performed with an optimized setup of two C6D6 scintillation detectors, which allowed us to reduce scattered neutron backgrounds down to a negligible level. Resonance parameters and radiative kernels have been determined for 16 resonances by means of an R-matrix analysis in the neutron energy range from 3 keV to 320 keV. Good agreement with previous measurements was found at low neutron energies, whereas substantial discrepancies appear beyond 45 keV. With the present results, we obtain an s-process contribution of 77(8)% to the solar abundance of 207Pb. This corresponds to an r-process component of 23(8)%, which is important for deriving the U/Th ages of metal poor halo stars.Comment: 7 pages, 3 figures, to be published in Phys. Rev.

    Split Course Hyperfractionated Accelerated Radio-Chemotherapy (SCHARC) for patients with advanced head and neck cancer: Influence of protocol deviations and hemoglobin on overall survival, a retrospective analysis

    Get PDF
    BACKGROUND: The advantage of hyperfractionated accelerated radiation therapy for advanced head and neck cancer has been reported. Furthermore, randomized trials and meta-analyses have confirmed the survival benefit of additional chemotherapy to radiotherapy. We retrospectively analyzed the efficiency and toxicity of the Regensburg standard therapy protocol "SCHARC" and the overall survival of our patients. METHODS: From 1997 to 2004, 64 patients suffering from advanced head and neck cancer (88 % stage IV, 12 % stage III) were assigned to receive the SCHARC protocol. Around half of the patients were diagnosed with oro-hypopharynx carcinoma (52 %), one third with tongue and floor of mouth tumors (29 %) and one fifth (19 %) suffered from H & N cancer at other sites. The schedule consisted of one therapy block with 30 Gy in 20 fractions over a two week period with concomitant chemotherapy (d 1–5: 20 mg/m(2)/d DDP + 750–1000 mg/m(2)/d 5FU (cont. infusion). This therapy block was repeated after a fortnight break up to a cumulative dose of 60 Gy and followed by a boost up to 70 Gy (69–70.5 Gy). All patients assigned to this scheme were included in the survival evaluation. RESULTS: Forty patients (63 %) received both radiation and chemotherapy according to the protocol. The mean follow up was 2.3 years (829 d) and the median follow up was 1.9 years (678 d), respectively. The analysis of survival revealed an estimated 3 year overall survival rate of 57 %. No patient died of complications, 52 patients (80 %) had acute grade 2–3 mucositis, and 33 patients (58 %) suffered from acute grade 3 skin toxicity. Leucopenia was no major problem (mean nadir 3.4 g/nl, no patient < 1.0 g/nl) and the mean hemoglobin value decreased from 13.2 to 10.5 g/dl. Univariate analysis of survival showed a better outcome for patients with a hemoglobin nadir >10.5 g/dl and for patients who completed the protocol. CONCLUSION: The SCHARC protocol was effective in patients diagnosed with advanced head and neck cancer. It led to long-term disease control and survival in about 50 % of the patients with significant but acceptable toxicity. Most patients were not anemic at beginning of therapy. Therefore, we could assess the influence of pre-treatment hemoglobin on survival. However, a low hemoglobin nadir was associated with poor outcome. This result suggests an influence of anemia during therapy on prognosis

    Optimization of extracranial stereotactic radiation therapy of small lung lesions using accurate dose calculation algorithms

    Get PDF
    BACKGROUND: The aim of this study was to compare and to validate different dose calculation algorithms for the use in radiation therapy of small lung lesions and to optimize the treatment planning using accurate dose calculation algorithms. METHODS: A 9-field conformal treatment plan was generated on an inhomogeneous phantom with lung mimics and a soft tissue equivalent insert, mimicking a lung tumor. The dose distribution was calculated with the Pencil Beam and Collapsed Cone algorithms implemented in Masterplan (Nucletron) and the Monte Carlo system XVMC and validated using Gafchromic EBT films. Differences in dose distribution were evaluated. The plans were then optimized by adding segments to the outer shell of the target in order to increase the dose near the interface to the lung. RESULTS: The Pencil Beam algorithm overestimated the dose by up to 15% compared to the measurements. Collapsed Cone and Monte Carlo predicted the dose more accurately with a maximum difference of -8% and -3% respectively compared to the film. Plan optimization by adding small segments to the peripheral parts of the target, creating a 2-step fluence modulation, allowed to increase target coverage and homogeneity as compared to the uncorrected 9 field plan. CONCLUSION: The use of forward 2-step fluence modulation in radiotherapy of small lung lesions allows the improvement of tumor coverage and dose homogeneity as compared to non-modulated treatment plans and may thus help to increase the local tumor control probability. While the Collapsed Cone algorithm is closer to measurements than the Pencil Beam algorithm, both algorithms are limited at tissue/lung interfaces, leaving Monte-Carlo the most accurate algorithm for dose prediction

    Application of Photon Strength Functions to (n,g ) Measurements with the n_TOF TAC

    Get PDF
    The neutron capture cross section measurements at the CERN n_TOF facility are performed using a new detection system, the segmented Total Absorption Calorimeter (TAC). All measurements are performed in reference to the well known 197Au s (n,g ). The accuracy of the measurements depends on the accuracy of the TAC detection efficiency, which is calculated by means of Monte Carlo simulations. In this MC simulation photon strength functions and level densities play a major role as ingredients used for the generation of primary events, that is the electromagnetic cascades following the (n,g ) process. We have calculated the TAC detection efficiency for the case of 197Au(n,g ) by adjusting the photon strength functions of 198Au so that the simulation reproduces the experimental data. Both the MC method and the uncertainty of the results are discussed.JRC.D.5-Neutron physic

    Role of the progesterone receptor for paclitaxel resistance in primary breast cancer

    Get PDF
    Paclitaxel plays an important role in the treatment of primary breast cancer. However, a substantial proportion of patients treated with paclitaxel does not appear to derive any benefit from this therapy. We performed a prospective study using tumour cells isolated from 50 primary breast carcinomas. Sensitivity of primary tumour cells to paclitaxel was determined in a clinically relevant range of concentrations (0.85–27.2 μg ml−1 paclitaxel) using an ATP assay. Chemosensitivity data were used to study a possible association with immunohistochemically determined oestrogen and progesterone receptor (ER and PR) status, as well as histopathological parameters. Progesterone receptor (PR) mRNA expression was also determined by quantitative RT–PCR. We observed a clear association of the PR status with chemosensitivity to paclitaxel. Higher levels of immunohistochemically detected PR expression correlated with decreased chemosensitivity (P=0.008). Similarly, high levels of PR mRNA expression were associated with decreased paclitaxel chemosensitivity (P=0.007). Cells from carcinomas with T-stages 3 and 4 were less sensitive compared to stages 1 and 2 (P=0.013). Multiple regression analysis identified PR receptor status and T-stage as independent predictors of paclitaxel chemosensitivity, whereas the ER, N-stage, grading and age were not influential. In conclusion, in vitro sensitivity to paclitaxel was higher for PR-negative compared with PR-positive breast carcinoma cells. Thus, PR status should be considered as a possible factor of influence when designing new trials and chemotherapy protocols
    corecore