436 research outputs found

    Interannual prediction of the ParanĂĄ River

    Get PDF
    Interannual‐to‐decadal predictability of the Paraná river in South America is investigated by extracting near‐cyclic components in summer‐season streamflows at Corrientes over the period 1904–1997. It is found that oscillatory components with periods of about 2–5, 8 and 17 years are accompanied by statistically significant changes in monthly streamflow. Autoregressive predictive models are constructed for each component. Cross‐validated categorical hindcasts based on the 8‐yr predicted component are found to yield some skill up to four years in advance for below‐average flows. A prediction based upon the 8‐ and 17‐yr components including data up to 1999 suggests increased probability of below‐average flows until 2006

    Diagnostic Accuracy of Adenosine Deaminase and Lymphocyte Proportion in Pleural Fluid for Tuberculous Pleurisy in Different Prevalence Scenarios

    Get PDF
    BACKGROUND: Tuberculous pleural effusion (TPE) is a paucibacillary manifestation of tuberculosis, so isolation of Mycobacterium tuberculosis is difficult, biomarkers being an alternative for diagnosis. Adenosine deaminase (ADA) is the most cost-effective pleural fluid marker and is routinely used in high prevalence settings, whereas its value is questioned in areas with low prevalence. The lymphocyte proportion (LP) is known to increase the specificity of ADA for this diagnosis. We analyse the diagnostic usefulness of ADA alone and the combination of ADA ≄ 40 U/l (ADA(40)) and LP ≄ 50% (LP(50)) in three different prevalence scenarios over 11 years in our area. MATERIALS AND METHODS: Biochemistry, cytology and microbiology studies from 472 consecutive pleural fluid samples were retrospectively analyzed. ADA and differential cell count were determined in all samples. We established three different prevalence periods, based on percentage of pleural effusion cases diagnosed as tuberculosis: 1998-2000 (31.3%), 2001-2004 (11.8%), and 2005-2008 (7.4%). ROC curves, dispersion diagrams and pre/post-test probability graphs were produced. TPE accounted for 73 episodes (mean prevalence: 15.5%). The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for ADA(40) were 89%, 92.7%, 69.2% and 97.9%, respectively. For ADA(40)+LP(50) the specificity and PPV increased (98.3% and 90%) with hardly any decrease in the sensitivity or NPV (86.3% and 97.5%). No relevant differences were observed between the three study periods. CONCLUSIONS/SIGNIFICANCE: ADA remains useful for the diagnosis of TPE even in low-to-intermediate prevalence scenarios when combined with the lymphocyte proportion

    Legislative framework for sediment management in the United States

    Full text link
    [EN] Sediment erosion is a serious issue, with approximately 75 billion tons of soil is eroded annually around the world (Pimentel and Kounang, 1998). Although erosion is a natural process, it can accelerate due to human activity and land use changes. Increasing soil erosion beyond its natural threshold can result in significant environmental degradation and decreased economic productivity. Implementing sediment management laws and practices is critical to significantly decrease soil erosion and preserve environmental resources. In the United States, there is a comprehensive system of laws and regulations at national, state, county, and city level that govern erosion and sediment control. The laws and voluntary incentives outlined in our paper have significantly reduced the negative impacts of sediment carried in urban and storm-generated runoff, have reduced chemical and biological pollutants in sediment transported in aquatic ecosystems, and have improved the air quality in several cities with air pollution problems. Having a multi-faceted approach to monitoring erosion and improving soil management is important for a healthy, productive environment and economy.[ES] La erosión de sedimentos es un problema serio, con aproximadamente 75.000 millones de toneladas de suelo erosionadas anualmente en todo el mundo (Pimentel y Kounang, 1998). Aunque la erosión es un proceso natural, ésta puede acelerarse debido a la actividad humana y a los cambios en el uso de la tierra. El incremento de la erosión del suelo mås allå de su umbral natural puede resultar en una degradación ambiental significativa y una disminución de la productividad económica. La implementación de leyes y pråcticas de gestión de sedimentos es fundamental para disminuir significativamente la erosión del suelo y preservar los recursos ambientales. En los Estados Unidos, existe un sistema integral de leyes y regulaciones a nivel nacional, estatal, del condado y de ciudad que gobiernan la erosión y el control de sedimentos. Las leyes y los incentivos voluntarios descritos en nuestro trabajo han reducido significativamente los impactos negativos de los sedimentos transportados en las escorrentías urbanas y rurales, han reducido los contaminantes químicos y biológicos en los sedimentos transportados hacia los ecosistemas acuåticos y han mejorado la calidad del aire en varias ciudades con problemas de contaminación atmosférica. Tener un enfoque multifacético para monitorizar la erosión y mejorar la gestión del suelo es importante para un ambiente y una economía sanos y productivos.Los autores agradecen la colaboración de las agencias federales y estatales norteamericanas que colaboraron en la elaboración de este artículo.Garcia-Chevesich, PA.; Jones, SL.; Daniels, JM.; Valdés-Pineda, R.; Venegas-Quiñones, H.; Pizarro, R. (2018). Marco legislativo para la gestión de sedimentos en los Estados Unidos. Ingeniería del Agua. 22(2):53-67. doi:10.4995/ia.2018.7916SWORD5367222Arizona Department of Environmental Quality. 2017. Air Quality Forecast. Recuperado de http://www.azdeq.gov/programs/airquality-programs/air-forecasting. Fecha de acceso 8 Mayo, 2017.California Environmental Protection Agency. 2017. Air Quality Resources Board. Recuperado de https://www.arb.ca.gov/. Fecha de acceso 8 Mayo, 2017.City of Lone Tree. 2015. Grading, erosion and control fact sheet. Public Works Department.Elliot, W.J., Miller, M.E., Enstice, N. 2016. Targeting forest management through fire and erosion modelling. International Journal of Wildland Fire, 25, 876-887. https://doi.org/10.1071/WF15007Farm Policy Facts. 2017. A Short History and Summary of the Farm Bill. Recuperado de https://www.farmpolicyfacts.org/farmpolicy-history/. Fecha de acceso 23 Marzo, 2017.Fryirs, K. 2013. (Dis)connectivity in catchment sediment cascades: a fresh look at the sediment delivery problem. Earth Surface Processes and Landforms, 38, 30-46. https://doi.org/10.1002/esp.3242Garcia-Chevesich, P. 2015. Control de la erosión y recuperación de suelos degradados. Outskirts Press. Denver, CO. 486 p.Garcia-Chevesich, P., Alvarado, S., Neary, D., Valdes, R., Valdes, J., Aguirre, J., Mena, M., Pizarro, R., Jofré, P., Vera, M., Olivares, C. 2014. Respiratory disease and particulate air pollution in Santiago Chile: Contribution of erosion particles from fine sediments. Journal of Environmental Pollution, 187(April), 202-205. https://doi.org/10.1016/j.envpol.2013.12.028Garcia-Chevesich, P., Etra, J. 2012. Using vegetation to stabilize slopes. Environmental Connection, 6(1), 28-29.García-Ruiz, J.M., Beguería, S., Nadal-Romero, E., Gonzåles-Hidalgo, J.C., Lana-Renault, N., Sanjuån, Y. 2015. A meta-analysis of soil erosion rates across the world. Geomorphology, 239, 160-173. https://doi.org/10.1016/j.geomorph.2015.03.008Illinois Natural Resource Conservation Service. Electronic Field Office Technical Guide. (eFOTG). USDA-NRCS. Recuperado de http://www.nrcs.usda.gov/technical/efotg/.Minnesota Pollution Control Agency. 2013. Spicer State Highway 23 - stormwater management for linear projects. Recuperado de https://stormwater.pca.state.mn.us/index.php?title=Spicer_State_Highway_23_-_stormwater_management_for_linear_projects. Fecha de acceso 30 Abril, 2017.Mitas, L., Mitasova, H. 1998. Distributed soil erosion simulation for effective erosion prevention. Water Resource Research, 34(3), 505-516. https://doi.org/10.1029/97WR03347New York State Department of Environmental Conservation. 2017. Air. Recuperado de http://www.dec.ny.gov/chemical/281.html. Fecha de acceso 8 Mayo, 2017.Renwick, W.H., Smith, S.V., Bartley, J.D., Buddemeier, R.W. 2005. The role of impoundments in the sediment budget of the conterminous United States. Geomorphology, 71, 99-111. https://doi.org/10.1016/j.geomorph.2004.01.010U.S. Army Corps of Engineers. 2013. Grass GIS turns 30 - ERDC's CERL was there at the start. Recuperado de http://www.erdc.usace.army.mil/Media/News-Stories/Article/476565/grass-gis-turns-30-erdcs-cerl-was-there-at-the-start/. Fecha de acceso 30 Abril, 2017.U.S. Army Corps of Engineers. 2017. "Introduction." A brief history. Recuperado de http://www.usace.army.mil/About/History/Brief-History-of-the-Corps/Introduction/. Fecha de acceso 30 Abril, 2017.U.S. Department of Agriculture. 2007. Construction site soil erosion and sediment control fact sheet. Natural Resource Conservation Service. October, Illinois.U.S. Department of Agriculture. 2007. Soil Quality. Forest Service. Recuperado de https://www.nrs.fs.fed.us/fia/topics/soils//. Fecha de acceso 23 Abril, 2017.U.S. Department of Agriculture. 2008. Urban Soil Erosion and Sediment Control. Conservation practices for protecting and enhancing soil water resources in growing and changing communities. Association of Illinois Soil and Water Conservation Districts. Natural Resource Conservation Service. p1-16.U.S. Department of Agriculture. 2010. 2007 National Resource Inventory: Soil Erosion on Cropland. Natural Resource Conservation Service. Inventory and Assessment Division, Washington DC. 1-27.U.S. Department of Agriculture. 2017a. Research. Natural Resource Conservation Service. October, Illinois. Recuperado de https://www.ars.usda.gov/midwest-area/west-lafayette-in/national-soil-erosion-research/docs/wepp/research/. Fecha de acceso 21 Abril, 2017.U.S. Department of Agriculture. 2017b. Natural Resource Conservation Service. Recuperado de https://www.nrcs.usda.gov/wps/portal/nrcs/site/national/home/. Fecha de acceso 21 Marzo, 2017.U.S. Department of Agriculture. 2017c. Incentive Programs and Assistance for Producers. Natural Resource Conservation Service. Recuperado de https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/climatechange/resources/?cid=stelprdb1043608. Fecha de acceso 23 Marzo, 2017.U.S. Department of Agriculture. 2017d. National Water Quality Initiative. Natural Resource Conservation Service. Recuperado de https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/water/?cid=stelprdb1047761. Fecha de acceso 30 Abril, 2017.U.S. Department of Agriculture. 2017e. eDirective. Electronic Directives. Natural Resource Conservation Service. Recuperado de https://directives.sc.egov.usda.gov/Default.aspx. Fecha de acceso 23 Abril, 2017.U.S. Department of the Interior. 2004. Soil Resources Management. National Park Service. Recuperado de https://www.nature.nps.gov/rm77/soils/programguide.cfm. Fecha de acceso 23 Marzo, 2017.U.S. Environmental Protection Agency. 1998. The quality of our nation's waters, a summary of the National Water Quality Inventory: 1998 Report to Congress. EPA841-F-96-004G.U.S. Environmental Protection Agency. 2009. Developing your stormwater pollution prevention plan. A guide for industrial operators. EPA 833-B-09-002. 1-42.U.S. Environmental Protection Agency. 2014. Water quality standards handbook. Office of Water. 820-B-14-008.U.S. Environmental Protection Agency. 2017a. History of the Clean Water Act. Recuperado de https://www.epa.gov/laws-regulations/history-clean-water-act. Fecha de acceso 21 Marzo, 2017.U.S. Environmental Protection Agency. 2017b. National Pollutant Discharge Elimination System. Recuperado de https://www.epa.gov/npdes. Fecha de acceso 21 Marzo, 2017.U.S. Environmental Protection Agency. 2017c. PM-10 (1987) Nonattainment Area State/Area/County Report. Recuperado dehttps://www3.epa.gov/airquality/greenbook/pncs.html#AZ. Fecha de acceso 30 Abril, 2017.U.S. Environmental Protection Agency. 2018. Watershed Assessment, Tracking & Environmental Results System. Recuperado de https://www.epa.gov/waterdata/waters-watershed-assessment-tracking-environmental-results-system.U.S. Fish and Wildlife Service. 2015. Section 404 Permits. Charleston Ecological Services. Recuperado de https://www.fws.gov/charleston/404Permits.html. Fecha de acceso 23 Abril, 2017.U.S. Geological Survey. 2017a. Sediment Data Portal Guide. Recuperado de https://cida.usgs.gov/sediment/helpGuide.jsp. Fecha de acceso 23 Marzo, 2017.U.S. Geological Survey. 2017b. Sediment and Suspended Sediment. The effects of urbanization on water quality: Erosion and sedimentation. The USGS Water Science School. Recuperado de https://water.usgs.gov/edu/sediment.html. Fecha de acceso 23 Marzo, 2017.U.S. Geological Survey. 2017c. USGS Sediment Data Portal. Recuperado de https://cida.usgs.gov/sediment/. Fecha de acceso 7 Mayo 2017.U.S. Green Building Council. 2017. Erosion and sediment control. LEED O+M: Existing Buildings. LEED 2.0. Recuperado de http://www.usgbc.org/credits/existing-buildings/v20/ssp1. Fecha de acceso 30 Abril, 2017.Utah Department of Environmental Quality. 2017. Utah Division of Air Quality. Recuperado de https://deq.utah.gov/Divisions/daq/index.htm?id=l4. Fecha de acceso 8 May 2017.Voigt, C., Bozorth, T., Carey, B., Janes, E., Leonard, S. 1997. Sediment related issues and the public lands - Expanding sediment research capabilities in today's USGS - A bureau of land management overview. Proceedings of the U.S. Geological Survey (USGS) Sediment Workshop, February 4-7, 1997.Wolman, M.G. 1967. A cycle of sedimentation and erosion in urban river channels. Geografiska Annaler, 49A, 385-395. https://doi.org/10.1080/04353676.1967.11879766Wood, M.S., Teasdale, G.N. 2013, Use of surrogate technologies to estimate suspended sediment in the Clearwater River, Idaho, and Snake River, Washington, 2008-10: U.S. Geological Survey Scientific Investigations Report 2013-5052, 30 p

    Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour

    Full text link
    [EN] Green composites made of polylactide (PLA) filled with almond shell flour (ASF) at a constant weight content of 25Âżwt.-% were manufactured by injection molding. In order to increase the interfacial adhesion between the biopolymer and the lignocellulosic fillers, three different compatibilizers were tested, namely multi-functional epoxy-based styrene-acrylic oligomer (ESAO), aromatic carbodiimide (AC), and maleinized linseed oil (MLO). The effect of each compatibilizer on the thermal, mechanical, and thermomechanical properties and water uptake of the injection-molded PLA/ASF pieces was analyzed. The obtained results indicated that all the here-studied compatibilizers had a positive influence on both the thermal stability and the mechanical and thermomechanical performance of the green composite pieces but low impact on their water uptake profile. In addition, the morphological analysis performed at the fracture surfaces of the green composite pieces revealed that the fillerÂżmatrix gap was substantially reduced. Among the tested compatibilizers, ESAO and MLO yielded the highest performance in terms of mechanical strength and ductility, respectively. In the case of MLO, it also offers the advantage of being a plant-derived additive so that its application in green composites positively contributes to the development of sustainable polymer technologies.This research was supported by the Spanish Ministry of Economy and Competitiveness (MINECO) program number MAT2014-59242-C2-1-R and AGL2015-63855-C2-1-R and Generalitat Valenciana (GV) program number GV/2014/008. A. Carbonell-Verdu wants to thank Universitat Politecnica de Valencia (UPV) for his FPI grant. D. Garcia-Garcia wants to thank the Spanish Ministry of Education, Culture and Sports (MECD) for his FPU grant (FPU13/06011). L. Quiles-Carrillo also wants to thank GV for his FPI grant (ACT/2016/182) and the MECD for his FPU grant (FPU15/03812).Quiles-Carrillo, L.; Montanes, N.; Garcia-Garcia, D.; Carbonell-Verdu, A.; Balart, R.; Torres-Giner, S. (2018). Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B Engineering. 147:76-85. https://doi.org/10.1016/j.compositesb.2018.04.017S768514

    Mathematical modeling and forecasting of COVID-19: experience in Santiago de Cuba province

    Get PDF
    In the province of Santiago de Cuba, Cuba, the COVID-19 epidemic has a limited progression that shows an early small-number peak of infections. Most published mathematical models fit data with high numbers of confirmed cases. In contrast, small numbers of cases make it difficult to predict the course of the epidemic. We present two known models adapted to capture the noisy dynamics of COVID-19 in the Santiago de Cuba province. Parameters of both models were estimated using the approximate-Bayesian-computation framework with dedicated error laws. One parameter of each model was updated on key dates of travel restrictions. Both models approximately predicted the infection peak and the end of the COVID-19 epidemic in Santiago de Cuba. The first model predicted 57 reported cases and 16 unreported cases. Additionally, it estimated six initially exposed persons. The second model forecasted 51 confirmed cases at the end of the epidemic. In conclusion, an opportune epidemiological investigation, along with the low number of initially exposed individuals, might partly explain the favorable evolution of the COVID-19 epidemic in Santiago de Cuba. With the available data, the simplest model predicted the epidemic evolution with greater precision, and the more complex model helped to explain the epidemic phenomenology

    VAMOS: a Pathfinder for the HAWC Gamma-Ray Observatory

    Full text link
    VAMOS was a prototype detector built in 2011 at an altitude of 4100m a.s.l. in the state of Puebla, Mexico. The aim of VAMOS was to finalize the design, construction techniques and data acquisition system of the HAWC observatory. HAWC is an air-shower array currently under construction at the same site of VAMOS with the purpose to study the TeV sky. The VAMOS setup included six water Cherenkov detectors and two different data acquisition systems. It was in operation between October 2011 and May 2012 with an average live time of 30%. Besides the scientific verification purposes, the eight months of data were used to obtain the results presented in this paper: the detector response to the Forbush decrease of March 2012, and the analysis of possible emission, at energies above 30 GeV, for long gamma-ray bursts GRB111016B and GRB120328B.Comment: Accepted for pubblication in Astroparticle Physics Journal (20 pages, 10 figures). Corresponding authors: A.Marinelli and D.Zaboro

    A search for point sources of EeV photons

    Full text link
    Measurements of air showers made using the hybrid technique developed with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for point sources of EeV photons anywhere in the exposed sky. A multivariate analysis reduces the background of hadronic cosmic rays. The search is sensitive to a declination band from -85{\deg} to +20{\deg}, in an energy range from 10^17.3 eV to 10^18.5 eV. No photon point source has been detected. An upper limit on the photon flux has been derived for every direction. The mean value of the energy flux limit that results from this, assuming a photon spectral index of -2, is 0.06 eV cm^-2 s^-1, and no celestial direction exceeds 0.25 eV cm^-2 s^-1. These upper limits constrain scenarios in which EeV cosmic ray protons are emitted by non-transient sources in the Galaxy.Comment: 28 pages, 10 figures, accepted for publication in The Astrophysical Journa

    Reconstruction of inclined air showers detected with the Pierre Auger Observatory

    Full text link
    We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than 60∘60^\circ detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade models to obtain the relative shower size as an overall normalization parameter. The method is evaluated using simulated showers to test its performance. The energy of the cosmic rays is calibrated using a sub-sample of events reconstructed with both the fluorescence and surface array techniques. The reconstruction method described here provides the basis of complementary analyses including an independent measurement of the energy spectrum of ultra-high energy cosmic rays using very inclined events collected by the Pierre Auger Observatory.Comment: 27 pages, 19 figures, accepted for publication in Journal of Cosmology and Astroparticle Physics (JCAP

    Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory

    Get PDF
    We report a multi-resolution search for anisotropies in the arrival directions of cosmic rays detected at the Pierre Auger Observatory with local zenith angles up to 80∘80^\circ and energies in excess of 4 EeV (4×10184 \times 10^{18} eV). This search is conducted by measuring the angular power spectrum and performing a needlet wavelet analysis in two independent energy ranges. Both analyses are complementary since the angular power spectrum achieves a better performance in identifying large-scale patterns while the needlet wavelet analysis, considering the parameters used in this work, presents a higher efficiency in detecting smaller-scale anisotropies, potentially providing directional information on any observed anisotropies. No deviation from isotropy is observed on any angular scale in the energy range between 4 and 8 EeV. Above 8 EeV, an indication for a dipole moment is captured; while no other deviation from isotropy is observed for moments beyond the dipole one. The corresponding pp-values obtained after accounting for searches blindly performed at several angular scales, are 1.3×10−51.3 \times 10^{-5} in the case of the angular power spectrum, and 2.5×10−32.5 \times 10^{-3} in the case of the needlet analysis. While these results are consistent with previous reports making use of the same data set, they provide extensions of the previous works through the thorough scans of the angular scales.Comment: Published version. Added journal reference and DOI. Added Report Numbe

    Ultrahigh-energy neutrino follow-up of Gravitational Wave events GW150914 and GW151226 with the Pierre Auger Observatory

    Get PDF
    On September 14, 2015 the Advanced LIGO detectors observed their first gravitational-wave (GW) transient GW150914. This was followed by a second GW event observed on December 26, 2015. Both events were inferred to have arisen from the merger of black holes in binary systems. Such a system may emit neutrinos if there are magnetic fields and disk debris remaining from the formation of the two black holes. With the surface detector array of the Pierre Auger Observatory we can search for neutrinos with energy above 100 PeV from point-like sources across the sky with equatorial declination from about -65 deg. to +60 deg., and in particular from a fraction of the 90% confidence-level (CL) inferred positions in the sky of GW150914 and GW151226. A targeted search for highly-inclined extensive air showers, produced either by interactions of downward-going neutrinos of all flavors in the atmosphere or by the decays of tau leptons originating from tau-neutrino interactions in the Earth's crust (Earth-skimming neutrinos), yielded no candidates in the Auger data collected within ±500\pm 500 s around or 1 day after the coordinated universal time (UTC) of GW150914 and GW151226, as well as in the same search periods relative to the UTC time of the GW candidate event LVT151012. From the non-observation we constrain the amount of energy radiated in ultrahigh-energy neutrinos from such remarkable events.Comment: Published version. Added journal reference and DOI. Added Report Numbe
    • 

    corecore