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Universidad de Oriente, Santiago de Cuba, Cuba
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In the province of Santiago de Cuba, Cuba, the COVID-19 epidemic has a limited progression that shows an early small-number peak of
infections. Most published mathematical models fit data with high numbers of confirmed cases. In contrast, small numbers of cases make
it difficult to predict the course of the epidemic. We present two known models adapted to capture the noisy dynamics of COVID-19 in
the Santiago de Cuba province. Parameters of both models were estimated using the approximate-Bayesian-computation framework with
dedicated error laws. One parameter of each model was updated on key dates of travel restrictions. Both models approximately predicted the
infection peak and the end of the COVID-19 epidemic in Santiago de Cuba. The first model predicted57 reported cases and16 unreported
cases. Additionally, it estimated six initially exposed persons. The second model forecasted51 confirmed cases at the end of the epidemic.
In conclusion, an opportune epidemiological investigation, along with the low number of initially exposed individuals, might partly explain
the favorable evolution of the COVID-19 epidemic in Santiago de Cuba. With the available data, the simplest model predicted the epidemic
evolution with greater precision, and the more complex model helped to explain the epidemic phenomenology.
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1. Introduction

The ongoing COVID-19 epidemic represents a global chal-
lenge for health-care systems. The SARS-COV-2 coron-
avirus causing the COVID-19 is highly transmissible [1, 2].
Nevertheless, the epidemic propagation in a region/country is
influenced by several factors, including governmental mea-
sures [3]. The Cuban government has implemented several
strategies of social isolation to control this epidemic. As a
result, a small number of cases is reported in the province
of Santiago de Cuba. Mathematical models are useful for
understanding the COVID-19 transmission and the influence
of government interventions [4–7]. Currieet al. [4] suggest
that system dynamics (differential-equation-based modeling)
is suitable to model government decisions that cause social
distancing and isolation.

The most common system dynamics in epidemic mod-
eling are SIR (susceptible - infectious - removed) and SEIR
(susceptible-exposed-infectious-removed) type. The classic
SIR and SEIR models assume that individuals change classes
(e.g., from susceptible to infected) at constant rates. This as-
sumption is not realistic in most situations [8]. Additionally,
it does not explain why the effective reproduction number of
COVID-19 changes over time [9]. Some authors introduce
time-dependent parameters to formulate realistic models of
the current pandemic [5,10–12].

A challenge for COVID-19 modelers is to describe the
difference between total cases and diagnosed cases. One ap-
proach is to exclude this difference and fit the model to re-
ported data [16–18]. Another option is to consider unde-
tected cases as a compartment of the differential equations
system [6,7,12,19,20]. Finally, some authors avoid the com-
plication of adding a new compartment, and they model the
error with differentad hocmethods [5,10,21,22].

Mathematical models have been used to forecast the dy-
namics of COVID-19 in delimited geographical areas. These
models usually fit big-number data after several days of epi-
demic evolution [7, 10, 23–26]. The official data reported
from Santiago de Cuba show a maximum value of 36 ac-
tive cases reached 31 days after the first confirmed case.

This peak is followed by a decreasing trend. These small
and noisy data make difficult the model fitting. A common
strategy to describe COVID-19 dynamics is to update one or
more model parameters based on key days of government ac-
tions [7,10,12].

Ordinary differential equation (ODE) based models are
widely used to capture the kinetic of biological systems and
to predict the behaviour of time-dependent variables. The
minimization of a cost function (as a strategy for fitting a
given dynamic model) does not take into account the uncer-
tainty of parameters. Additionally, this approach can lead to
unrealistic fittings [27].

Bayesian inference offers a platform that deals naturally
with both problems, but it requires the calculation of like-
lihood functions [13–15, 28]. In many practical problems,
likelihood functions become analytically intractable; never-
theless, data can be simulated from a parameter vector by
applying some algorithm that depends on the model. Thus,
several techniques have been developed to infer parameters
without using likelihood functions. These techniques are usu-
ally called approximate Bayesian computation (ABC) or free
likelihood inference [28,29].

ABC can be used to estimate parameters when the avail-
able data of an infectious disease is coarse [30]. Besides,
ABC accomplishes parameters estimation for models that in-
clude dedicated laws to describe the error between total cases
and reported cases.

The aim of this paper is to adapt two models reported in
the literature to capture the dynamics of the noisy and small-
number data of COVID-19 in Santiago de Cuba. For this,
we modify an extended SEIR model [10] by introducing a
dynamic-mode gamma distribution to describe the error be-
tween total and reported cases. Additionally, we adapt the
classic SIR model reported in [31] by introducing Poisson
noise in the observation of removed cases. For both mod-
els, we update a parameter on critical days of government
actions and estimate the parameter values with ABC. We are
not aware that these modifications have been reported in the
literature.
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2. Methods

2.1. Data

Because no personal data of patients were used, the ethical
approval and individual consent were not applicable.

We used official data of cumulative, infected, and re-
moved cases of COVID-19 in Santiago de Cuba province.
These data were reported from March 20th to May 4th,
2020. Daily data was provided by the Provincial Di-
rection of Public Health of Santiago de Cuba and vi-
sualized in an information board from a web platform
(http://www.covid19scu.uo.edu.cu). Forty-nine patients with
SARS-COV-2 were confirmed using real-time polymerase
chain reaction (PCR) tests. PCR tests were made in the Lab-
oratory of Molecular Biology, Provincial Center of Hygiene,
Epidemiology and Microbiology of Santiago de Cuba.

2.2. Epidemiological evidence

The first day of the COVID-19 in Santiago de Cuba province
counted when the first case was diagnosed (March 17th,
2020). The first case (day one), the second case (day four),
and the third case (day seven) were contacts of different
travelers from various countries with COVID-19 transmis-
sion reported. The number of diagnosed cases increased
from day seven and they were contacts of three first con-
firmed cases. The epidemiological investigation revealed that
the primary infectious focus was small in Santiago de Cuba
province due to the small number of travelers that arrived in
this province. All confirmed cases with COVID-19 were at-
tended and treated in the Dr. José Joaqúın Castillo Duany
hospital of Santiago de Cuba. The confirmed patients re-
mained at least 14 days admitted to the hospital. When two
PCR tests were negative, patients were sent home under med-
ical supervision. Additionally, all contacts of these confirmed
patients were quickly isolated during 14 days to detect symp-
tomatic and non-symptomatic cases. After 14 days of isola-
tion, unconfirmed cases of COVID-19 were sent home and
daily evaluated by physicians.

The government of Santiago de Cuba took different ac-
tions that restrained COVID-19 transmission, such as the ur-
ban and interprovincial travel restrictions; workers were en-
couraged to work from their homes; safe transportation was
provided for essential people in the different prioritized activ-
ities; school activity was temporarily suspended at all educa-
tional levels; social movement was restrained; and the modi-
fied quarantine was established on the case clusters of impor-
tance for disease transmission.

2.3. Methodology

In order to understand and predict COVID-19 in Santiago
de Cuba, we have chosen two deterministic models: one
more explanatory and the other more parsimonious. The first
model allowed to elaborate hypotheses about some possible
causes of the few reported cases. The second model was used

to make faster and accurate predictions of the epidemic evo-
lution. For both models, we updated a parameter on key days
of government action. Also, we included error models to ex-
plain the variability of the observed data. Details of the cho-
sen models are shown in the following section.

2.4. Models

Lin et al. [10] reported an SEIR model with three additional
classes: the total population size (N), the public perception
of risk (D), and the cumulative cases number (C). Also, they
modeled the zoonotic transmission during the first month and
then only person-to-person transmission, taking into account
the emigration rate inside the country.

Unlike [10], we did not consider the zoonotic transmis-
sion because infection in Cuba was not originated by animals.
Also, we neglected the emigration rate for two reasons: first,
the few days elapsed before the transport restriction by air,
land, and sea; second, the social isolation actions taken, such
as remote work, stopping school activities, among others. As
a result of these two assumptions, we obtained the following
model, named model-I:
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whereσ−1, γ−1, d, λ−1, β(t), β0, α andk arethe mean la-
tent period, the mean infectious period, the proportion of se-
vere cases, the mean duration of public reaction, the dynamic
transmission rate, the initial transmission rate, the govern-
mental measure strength and the intensity of individual re-
sponse, respectively. The last expression of Eq. (1) follows
from C = I + R. As α was considered a stepwise function
in [10], we used two milestone dates: the days when inter-
provincial transport (April 10th, 2020) and urban transport
(April 25th, 2020) were restricted.

To describe the error in reported data, we assumed that
the differenceCT − CR between total cases (CT ) and re-
ported cases (CR) is a gamma probability distribution. The
assumption of a discrete random variable as a continuous one
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provided some advantages in the assessment of parameter es-
timation. For instance, it was possible to perform a nonpara-
metric continuous hypothesis test over residues. The shape
parameter of the gamma distribution was estimated, and the
scale parameter was changed dynamically. This approach al-
lowed us to place the mode closer to zero in the most op-
timistic scenarios. We used an incremental error in the re-
ported rate during the early days of the epidemic. A dedi-
cated law was formulated for the number of unreported cases
per each reported one (U(t)), given by

U(t) =

{
pt + δ, if t < dT

pdT + δ, if t ≥ dT ,
(3)

wherep andδ are tuning parameters anddT is the time from
which COVID-19 transmission showed higher regularity in
the case count. We empirically set the values inp = 0.01
day-1, δ = 0.04 anddT = 8 days. We assumed thatU(t)
increased during the days when almost no new cases arose,
and after that, it remained roughly constant. This assumption
is consistent with a previous study [32] that reported growth
in undocumented cases during the early days of the epidemic.
The expression for the dynamic mode of error (M(t)) is

M(t) =
CT

U(t) + 1
. (4)

The difference betweenCT andM(t) was considered a time-
dependent approximation of undetected cases.
Model-II consisted of a standard SIR model [31], adapted
with the introduction of Poisson noise in the removed cases.
For the parameter calibration of model-II, reported cumula-
tive and removed cases were considered. We describedβ(t)
in the model-II as a stepwise function that included changes
in key dates. The error was assumed as a standard normal
distribution for model-II.

2.5. Parameter estimation

Parameter estimation was performed with the ABC approach
[28, 33, 34]. We preferred the sequential Monte Carlo (ABC
SMC) method described in the Algorithm 4.8 of [34] because
of its well-documented results. Nevertheless, the ABC SMC
method can perform slowly computing adaptive tolerances.

This sampler (Algorithm 1 in Appendix A) outsmarts its
predecessors in automatic computing of tolerances based on
the effective sample size of the previous population. We used
N = 104, h0 = 108, T = 5 and a Gaussian acceptance
kernel functionKh. We refer readers to [34] for a deeper
understanding of ABC samplers and their adjustable param-
eters.

The reweight step of the chosen ABC SMC sampler led
to an optimization problem in the calculation ofhm. Thus,
it may introduce delays in the computation process, espe-
cially if the posterior distribution is distant from the prior
distribution. Therefore, we introduced the hybrid version
of ABC techniques, named ABC H algorithm (Algorithm 2

in Appendix B) as a hybrid of rejection sampler (ABC RS)
and Markov chain Monte Carlo (ABC MCMC) approaches.
Although we have not demonstrated the ergodicity of the
ABC H algorithm, we empirically ascertained that it found
a maximum-a-posteriori (MAP) located within the parame-
ter region determined by the ABC SMC algorithm, consum-
ing less computational time. Hence, we preferred to use the
MAPs obtained by the ABC H sampler for quick predic-
tion and the ABC SMC process for more in-depth posterior
Bayesian analysis. Specifically, we used the ABC SMC re-
sults to compute the credible intervals of posterior distribu-
tions. Details of the algorithms ABC SMC and ABC H are
shown in A and B, respectively.

As far as we know, the ABC H sampler is a new idea, and
its main disadvantage may be the inaccuracy of the sampling
from the posterior distribution. This issue was not critical be-
cause we aimed to give a quick prediction based on the MAP.
Nevertheless, we hypothesize that for a reasonably high value
assigned to the fourth sampling choice (w3, corresponding to
a conventional ABC MCMC), it is possible to obtain poste-
rior distributions similar to ABC SMC results. Further re-
search is required to verify this hypothesis. We used the
schemew = {0.2, 0.2, 0.3, 0.3} for sampling choice. Other
values used in ABC H sampler wereN = 103, h = 800, and
a Gaussian acceptance kernel functionKh.

Because actual data can be directly compared to simu-
lated data for ODE models, it was not necessary to use sum-
mary statistics as criteria of divergence. We used the sum of
squared errors as the distance criterion, which is closely re-
lated to the likelihood [33,35,36], and suitable for infectious-
disease modeling [30]. We used a methodology for the prior-
distribution choice that consisted of several trials mimicking
different favorable and unfavorable scenarios, followed by
feedback from epidemiologists.

Values ofd = 0.2 andσ = 1/3 day-1 in model-I were re-
ported in [10]. The remaining parameter values and the initial
conditionsE(0) andD(0) were estimated with ABC starting
from locally uniform prior distributions.

In our approach, two key dates of travel restrictions di-
vided the evolution of the epidemic into three periods. Three
governmental action strengths were estimated for these pe-
riods: before travel restrictions (α1), after interprovincial
travel restriction (α2), and after the urban public transport
restriction in Santiago de Cuba (α3). The three valuesβ1, β2,
andβ3 were considered in model-II taking into account the
same criteria for key dates mentioned above.

We calculated the coefficient of determinationR2 for
the regression analysis of MAP fit to assess the quality of
parameter-estimation results for models I and II. We per-
formed the frequentist and nonparametric Mann-Whitney U
test [37,38], taking as null hypothesis that the actual residues
obtained arose from the assumed gamma distribution. Fur-
thermore, an approximation of maximum likelihood (ML) ra-
tio between models (ML of model-I to ML of model-II) was
computed with ABC output.
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TABLE I. Summary table of model-I parameters and results.

Parameter Notation Prior or MAP MAP

fixed value (ABC SMC) (ABC H)

Transmission rate β0 U(0.1, 1.5) 0.4811 days-1 0.4340 days-1

CI(0.3680, 0.5468)

α1 0.5245 0.6179

CI(0.3717, 0.7534)

Fitting parameter α2 U(0.1, 1) 0.2855 0.1801

CI(0.1775, 0.3692)

α3 0.9665 0.9417

CI(0.8527, 1.0000)

Intensity of responds k U(600, 4000) 3430 3405

CI(3335, 3598)

Mean latent period σ-1 3 days - -

Mean infectious period γ-1 U(1, 40) 21 days 25 days

CI(1, 33)

Proportion of d 0.2 - -

severe cases

Mean duration of λ-1 U(10, 30) 20 days 50 days

public reaction CI(1, 39)

Initial susceptible S(0) 9.41 · 105 - -

population

Initial exposed E(0) U(1, 10) 6 6

population CI(4, 7)

Initial infectious I(0) 1 - -

population

Initial removed R(0) 0 - -

population

Initial risk perception D(0) U(1, 103) 163 148

CI(142, 188)

Initial cumulative cases C(0) 1 - -

All simulations were made in a 256-core high-
performance-computing (HPC) processor with 256 GB RAM
using Python 3.6 [39]. The HPC machine was acquired by
the Flemish Development Cooperation through VLIR-UOS
(Flemish Interuniversity Council-University Cooperation for
Development of Belgium) in the context of the Institutional
University Cooperation program with Universidad de Ori-
ente, Santiago de Cuba.

3. Results

Model-I simulation (Fig. 1) was performed with MAPs calcu-
lated with ABC SMC. All parameters and results of model-I
fitting are summarized in Table I. The Mann-Whitney U test
performed on the residues of model-I fit did not reject the null
hypothesis based on a 5% significance level.

Figure 2 was obtained using the MAPs of posterior dis-
tributions of model-II parameters that were computed with
ABC SMC. These MAPs and other values from model-II are
summarized in Table II.

In all trials made, the ABC H sampler consumed less time
and reached similar parameter regions to the ones obtained by
ABC SMC (Figs. 3-6) for the same prior distributions.

Model-I predicted a total of73 infected at the end of the
COVID-19 epidemic in Santiago de Cuba, with21% of un-
documented cases. The final value ofM(t) was57, being the
model-I prediction of confirmed cases. Model-II forecasted
51 confirmed cases at the end of the epidemic. Addition-
ally, the ML ratio calculated was0.941; and the values of de-
termination coefficients wereR2 = 0.9450 for model-I and
R2 = 0.9781 for model-II.

Rev. Mex. F́ıs. 67 (1) 123–136
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FIGURE 1. Estimated evolution of COVID-19 epidemic in Santi-
ago de Cuba with model-I. The selected parameter values for sim-
ulation correspond to the MAP of the approximate posterior distri-
bution. The model-predicted and reported infected individuals a),
and the cumulative b), both predicted in simulation (CT andCR

predicted) and observed (CR) cases are plotted. The shaded area
is limited by the extremes of 95% credible intervals of posterior
distributions obtained with the ABC SMC sampler.

4. Discussion

COVID-19 dynamics in Santiago de Cuba is difficult to cap-
ture empirically without the introduction of stepwise func-
tions for parameterα in model-I and parameterβ in model-II.
Results show that model-I (Fig. 1) and model-II (Fig. 2), fit-
ted with ABC algorithms, can predict an early small-number
peak of infected cases and the approximate ending of the
COVID-19 in Santiago de Cuba. The non-rejection of the
null hypothesis on the residuals allows us to continue consid-
ering the validity of the error law for model-I.

All MAPs calculated with ABC H are within credible
intervals obtained with ABC SMC, except parameterλ of
model-I. Even for this parameter, the histogram generated by
ABC H partially overlapped the one generated by ABC SMC.
We deduce that both algorithms find the same parameter re-
gion for the chosen prior. A visual comparison of Fig. 3 with
Fig. 4, and Fig. 5 with Fig. 6, reveals that ABC H does not
sample from the same distribution as ABC SMC. Although
this does not affect the use of ABC H in this work, a modifi-
cation of the ABC H sampler is required to make it a fully

FIGURE 2. Estimated evolution of COVID-19 epidemic in Santi-
ago de Cuba with model-II. Predicted infected individuals follow
the dynamics of the reported ones a). A long-term scenario of both
reported and predicted cumulative cases, and the area limited by
the extremes of the 95% credible intervals of posterior distributions
obtained with the ABC SMC sampler b) are plotted.

functional ABC algorithm. The schemew = {1, 0, 0, 0} for
sampling choice corresponds to a ABC RS process [33, 40].
The schemew = {0, 0, 0, 1} resembles an ABC MCMC
method [41]. ABC RS and ABC MCMC are algorithms that
sample from adequate posterior distributions but in an ineffi-
cient time, so other intermediate schemes may be evaluated
in further works.

The computed percentage of undocumented cases is in
contrast with the 86% of unreported infected cases estimated
for China [43]. This result suggests that the limited progres-
sion of the COVID-19 epidemic in Santiago de Cuba may
be due to opportune epidemiological investigations, effective
control measures in each source of infection, and a low num-
ber of initially exposed individuals (E(0) = 6). Additionally,
case clusters prevail over transmission clusters for COVID-
19 in Santiago de Cuba province. The policymakers used
these estimates to complement an investigation into the ini-
tial infectious load of SARS-COV-2 in Santiago de Cuba.

The MAPs ofα posterior distributions were estimated at
α1 = 0.5245, α2 = 0.2855 andα3 = 0.9665 (Table I). Value
of α is expected to grow as government measures increase
but, surprisingly, the value after the closure of transportation
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TABLE II. Summary table of model-II parameters.

Parameter Notation Prior or MAP MAP

fixed value (ABC SMC) (ABC H)

β1 0.5674 days-1 0.5149 days-1

CI(0.3067, 0.7534)

Transmission rate β2 U(0.1, 0.9) 0.5855 days-1 0.6056 days-1

CI(0.4794, 0.7088)

β3 0.3555 days-1 0.3548 days-1

CI(0.2443, 0.4525)

Mean infectious period γ-1 U(1, 10) 2 days 2 days

CI(1, 3)

Interval expectation λ U(1, 20) 18 days 18 days

of removed CI(12, 23)

Initial susceptible S(0) 9.41x105 - -

population

Initial infectious I(0) 1 - -

population

Initial removed R(0) 0 - -

population

betweenprovinces is lower than before (α2 < α1). We con-
sider two possible explanations for this result:

First, the interpretation ofα as government action is
somewhat forced. In a previous study [42],α was interpreted
as seasonality of transmission associated with the school cal-
endar for a similar formulation ofβ(t). Consequently, the
interpretation ofα remains open.

Second, the increase in PCR tests coincides with the pe-
riod corresponding toα2. Neither the deterministic model
nor the error law explicitly takes into account the variability
of PCR tests. This variability influences the number of de-
tected cases, and therefore the estimation of all transmission-
rate parameters.

Thus, in our results, we do not interpretα as govern-
ment action. We considerα as a multifactorial parameter
that works as a calibrator ofβ(t) dynamics. The only dy-
namic variable the explicitly influencesβ(t) in Eq. (2) is
D [10,42]. This influence is in agreement with the epidemio-
logical and sociological researches carried out in Santiago de
Cuba, which confirm the reduction of the transmission rate by
the high-risk perception of both decision-makers and popula-
tion. Nevertheless,D depends explicitly onI, which in turn
depends onE; so the variableD is affected by changes in
these state variables; and therefore, they indirectly influence
the dynamics ofβ(t).

The estimated valuek = 3430 (k = 1117 in [10]) may in-
dicate a good response from individuals in Santiago de Cuba
to COVID-19 epidemic.

The mean infection period for model-I may be explained
by the inclusion of unreported cases and the delay in the re-

ports of those recovered. The value of this parameter for
model-II is plausible because it is the number of days ex-
pected for a diagnosed patient to recover, and the diagnosis
is usually confirmed several days after the exposition. The
interval expectation of removed,λPoisson = 18 days with
CI [12, 23], seems consistent with the patient-discharge pol-
icy implemented by the Ministry of Public Health of the Re-
public of Cuba.

One possible explanation for the ML ratio is that the er-
ror law for model-I (Eq. (3)) can only partially describe the
complex variability of the reporting rate. As model-II is more
parsimonious than model-I, we did not perform some further
analysis like Akaike’s information criterion (AIC) or Bayes
factor, which should favour model-II over model-I. On the
other hand, the model-I allowed us to estimate the number
of individuals initially exposed, and to compute the percent-
age of unreported cases. We argue that simpler models like
model-II should be preferred for accurate prediction, whereas
more explanatory models like the model-I are to be used for
phenomenological analysis.

The chat on the left in Fig. 2 shows a remarkable tracking
of the data variation by the fitted curve. A conventional SIR
model cannot achieve this. Model-II accomplishes this track-
ing by dividing the adjustable parameters of the SIR model
into three time periods. Furthermore, the cases recovered on
the day estimated by the SIR model are not subtracted, but on
the day expected by the Poisson error. In other words, model-
II is advantageous over a conventional SIR as it is a piecewise
SIR with a Poisson noise in the number of removed cases.

Rev. Mex. F́ıs. 67 (1) 123–136
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FIGURE 3. Posterior density estimation of model-I parameters using ABC SMC sampler and COVID-19 data from Santiago de Cuba. The
estimated parameters areβ0, k, λ, α1, α2, α3, γ, E(0), and the scale parameter of the gamma distribution (αGAM ).

Rev. Mex. F́ıs. 67 (1) 123–136



MATHEMATICAL MODELING AND FORECASTING OF COVID-19: EXPERIENCE IN SANTIAGO DE CUBA PROVINCE 131

FIGURE 4. Posterior density estimation of model-I parameters using ABC H sampler and COVID-19 data from Santiago de Cuba. The
estimated parameters areβ0, k, λ, α1, α2, α3, γ, E(0), and the scale parameter of the gamma distributionαGAM .
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FIGURE 5. Posterior density estimation of model-II parameters
using ABC SMC sampler and COVID-19 data from Santiago de
Cuba. The estimated parameters areβ1, β2, β3, γ, and the interval
expectation of the Poisson distribution (λPoisson).

FIGURE 6. Posterior density estimation of model-II parameters us-
ing ABC H sampler and COVID-19 data from Santiago de Cuba.
The estimated parameters areβ1, β2, β3, γ, and the interval expec-
tation of the Poisson distribution (λPoisson).
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We hold that the difference between the predicted and
reported data in both models is acceptable because of re-
porting delays, which are in agreement with previous stud-
ies [10,32,44].

One advantage of using a Bayesian approach in parame-
ter estimation is to use different prior distributions in order to
set favourable and unfavourable scenarios for models. When
the data do not show a peak yet, most models become highly
unidentifiable, in such a way that one can find several param-
eter combinations leading to reasonable fits. Therefore, we
deem it essential to complement the mathematical analysis
with an evaluation of epidemiological investigation, looking
for the most plausible prediction.

The error law for the model-I (Eq. (3)) and the assumption
of the gamma distribution cannot fully capture the variability
of the reporting rate. This approach is a baseline for future
improvements.

The influences ofβ0, α, D andk in β(t) should not be
discussed separately. The variablesβ0, α, D, andk are dy-
namically interrelated, taking into account that the society
(complex system) is constituted by the interaction and cou-
pling of its elements as a global unit, in agreement with [45].

Further studies will evaluate the influence of other vari-
ables on the favourable evolution of COVID-19 in Santi-
ago de Cuba: government-induced social isolation, the so-
cial response of individuals, and the environmental factors
(e.g., temperature and relative humidity). Additionally, future
works should study the ABC H performance for intermediate
values ofw, looking for an acceptable compromise of effi-
ciency and accuracy. Another possibility is to study adaptive
schemes ofw, in order to accept a group of candidates in a
short time, and then ensure sampling of the posterior distri-
bution.

5. Conclusions

Our study indicates that modified SIR and SEIR models,
combined with ABC for parameter estimation, can follow the
small-number dynamics of the COVID-19 epidemic. More
precisely, models follow dynamics with no explosions of new
cases and with small-number peaks by including some pa-
rameters as stepwise functions of critical days. An oppor-
tune epidemiological investigation, along with a low num-
ber of initially exposed individuals, may partly explain the
favourable evolution of the COVID-19 epidemic in Santiago
de Cuba.
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Appendix

A. Algoritm ABC Sequential Monte Carlo Algo-
rithm

Algorithm 1 ABC Sequential Monte Carlo Algorithm

Require:

• A target posterior densityπ(θ|y) ∝ p(y|θ)π(θ) con-
sisting of a prior distributionπ(θ) and a procedure for
generating data under the modelp(y|θ).

• A kernel functionKh(u), and an integerN > 0.

• An initial sampling densityg(θ) and sequence of pro-
posal densities
gm(θ, θ′),m = 1, . . . ,M .

• A valueα ∈ [0, 1] to control the effective sample size.

• A low dimensional vector of summary statisticss =
S(y).

Ensure: A set of weighted parameter vectors
(θ(1)

M , w
(1)
M , . . . , θ

(N)
M , w

(N)
M ) drawn fromπABC(θ|sobs)

Initialise:

For i = 1, . . . , N Do

• Generateθ(i)
0 ∼ g(θ) from initial distributiong.

• Generatey(i)
0 (t) ∼ p(y|θ(i)

0 ) and compute summary
statistics
s
(i)
0 (t) = S(y(i)

0 ) for t = 1, . . . , T .

• Compute weightsw(i)
0 = π(θ(i)

0 )/g(θ(i)
0 ), and setm =

1.

End For

Sampling:

1. Reweight: Determinehm such that

ESS(w(1)
m , . . . , w

(N)
m ) = ESS(w(1)

m1 , . . . , w
(N)
m1 ) where

w
(i)
m = w

(i)
m1

T∑
t=1

Khm(||sm − sobs)||)p(s|θ)π(θm)

T∑
t=1

Khm−1(||sm−1 − sobs)||)p(s|θ)π(θm−1)
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2. Resample: ifESS(w(1)
m1 , ..., w

(N)
m1 ) < E then resam-

ple N particles from the empirical distribution function
{θ(i)

m , s
(i)
m (1), ..., s(i)

m (T ),W (i)
m } where

W
(i)
m = w

(i)
m /

∑N
j=1 w

(j)
m and setw(i)

m = 1/N .

3. Move:

For i = 1, . . . , N Do

if w
(i)
m > 0 then

• Generateθ′ ∝ gm(θ(i)
m , θ), y′(t) ∝ p(y|θ(i)

m ) and
s′(t) = S(y′(t))
for t = 1, . . . , T .

• Acceptθ′ with probability

min




1,

T∑
t=1

Khm(||s′(t)−sobs)||)π(θ′)g(θ′|θ(i)
m )

T∑
t=1

Khm(||s(i)
m (t)−sobs)||)π(θ(i)

m )g(θ(i)
m |θ′)




end if

end for

B. Algorithm ABC Hybrid Algorithm

Algorithm 2 ABC Hybrid Algorithm

Require:

• A target posterior densityπ(θ|y) ∝ p(y|θ)π(θ) con-
sisting of a prior distributionπ(θ) and a procedure for
generating data under the modelp(y|θ).

• A kernel functionKh(u), an integerN > 0 and a tol-
eranceh.

• Sampling densitiesgm(θ), gc(θ) andgMC(θ).

• A normalized vectorw = {w0, w1, w2, w3} to control
the sampling choice andi = 0 to count the accepted
candidates.

• A low dimensional vector of summary statisticss =
S(y).

Ensure A set of parameter vectors(θ(1), ..., θ(N)) drawn
from

πABC(θ|sobs) ∝
∫

KhM (||s− sobs)||)p(s|θ)π(θ)ds

Initialise:

• Sample three initial points{θm, θc, θMC}i=0 from
π(θ).

• Generatey{m,c,MC} ∼ p(y|θ{m,c,MC}) and compute
summary statisticss{m,c,MC} = S(y{m,c,MC}).

Sampling:

while i < N do

1. Choose sampling mode: samplew′ from w according to
weights.

2. Sample candidate:

if w′ = w0 then Drawθ′ from π(θ)

else ifw′ = w1 then Proposeθ′ according togm(θ|θm)

else ifw′ = w2 then Proposeθ′ according togc(θ|θc)

else if w′ = w3 then Propose θ′ according to
gMC(θ|θMC)

end if

3. Accept or not:

• Generatey′ ∝ p(y|θ′) ands′ = S(y′).

• Acceptθ′ with probabilityKh(||s′ − sobs)||)
• If θ′ is accepted, doθMC = θ′ with probability

min
(

1,
π(θ′)gMC(θMC |θ′)

π(θMC)gMC(θ′|θMC)

)
and incrementi.

4. Update:

• Do θm = θ′ if Kh(||s′ − sobs)||) is the highest com-
puted so far.

• Proposeθ′c according togc(θ|θ′, θc), generatey′c ∼
p(y|θ′c), compute summary statisticss′c = S(y′c) and
do θc = θ′c if Kh(||s′c − sobs)||) is the highest com-
puted so far.

end while
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