387 research outputs found

    Origin of the solid-state luminescence of MIL-53(Al) and its connection to the local crystalline structure

    Get PDF
    Metal-organic frameworks (MOFs) are extensively studied due to their unique surface properties, enabling many intriguing applications. Breathing MOFs, a subclass of MOFs, have gained recent interest for their ability to undergo structural changes based on factors like temperature, pressure, adsorbed molecules. Certain MOFs also exhibit remarkable optical properties useful for applications such as sensors, light-emitting diodes, and scintillators. The most promising MOFs possess high porosity, breathing properties, and photoluminescence activities, allowing for improved device responsiveness and selectivity. Understanding the relationship between crystal structures and photoluminescence properties is crucial in these cases. As studies on this topic are still very limited, we report for the first time an exhaustive study on the solid-state luminescence of the breathing MOF MIL-53(Al), that can stabilize in three different crystalline structures: open-pore, hydrated narrow-pore and closed-pore. We unveil a fascinating solid-state luminescence spectrum, comprising three partially overlapping bands, and elucidate the intricate electronic transitions within each band as well as their intimate correlation with the local crystalline structures. Our characterizations of spectroscopic properties and decay times provide a deeper understanding of the luminescent behaviour of MIL-53(Al) and demonstrate that is possible to identify present crystalline structures by optical measurements or to modify the optical properties inducing structural transitions for this type of materials. These insights could help to design next-generation, selective sensors or smart light emitting devices

    Generation of intense quasi-electrostatic fields due to deposition of particles accelerated by petawatt-range laser-matter interactions

    Get PDF
    We demonstrate here for the first time that charge emitted by laser-target interactions at petawatt peak-powers can be efficiently deposited on a capacitor-collector structure far away from the target and lead to the rapid (tens of nanoseconds) generation of large quasi-static electric fields over wide (tens-of-centimeters scale-length) regions, with intensities much higher than common ElectroMagnetic Pulses (EMPs) generated by the same experiment in the same position. A good agreement was obtained between measurements from a classical field-probe and calculations based on particle-flux measurements from a Thomson spectrometer. Proof-of-principle particle-in-cell simulations reproduced the measurements of field evolution in time, giving a useful insight into the charging process, generation and distribution of fields. The understanding of this charging phenomenon and of the related intense fields, which can reach the MV/m order and in specific configurations might also exceed it, is very important for present and future facilities studying laser-plasma-acceleration and inertial-confinement-fusion, but also for application to the conditioning of accelerated charged-particles, the generation of intense electric and magnetic fields and many other multidisciplinary high-power laser-driven processes

    Angularly resolved characterization of ion beams from laser-ultrathin foil interactions

    Get PDF
    Methods and techniques used to capture and analyze beam profiles produced from the interaction of intense, ultrashort laser pulses and ultrathin foil targets using stacks of Radiochromic Film (RCF) and Columbia Resin #39 (CR-39) are presented. The identification of structure in the beam is particularly important in this regime, as it may be indicative of the dominance of specific acceleration mechanisms. Additionally, RCF can be used to deconvolve proton spectra with coarse energy resolution while mantaining angular information across the whole beam

    The laser-hybrid accelerator for radiobiological applications

    Get PDF
    The `Laser-hybrid Accelerator for Radiobiological Applications', LhARA, is conceived as a novel, uniquely-flexible facility dedicated to the study of radiobiology. The technologies demonstrated in LhARA, which have wide application, will be developed to allow particle-beam therapy to be delivered in a completely new regime, combining a variety of ion species in a single treatment fraction and exploiting ultra-high dose rates. LhARA will be a hybrid accelerator system in which laser interactions drive the creation of a large flux of protons or light ions that are captured using a plasma (Gabor) lens and formed into a beam. The laser-driven source allows protons and ions to be captured at energies significantly above those that pertain in conventional facilities, thus evading the current space-charge limit on the instantaneous dose rate that can be delivered. The laser-hybrid approach, therefore, will allow the vast ``terra incognita'' of the radiobiology that determines the response of tissue to ionising radiation to be studied with protons and light ions using a wide variety of time structures, spectral distributions, and spatial configurations at instantaneous dose rates up to and significantly beyond the ultra-high dose-rate `FLASH' regime. It is proposed that LhARA be developed in two stages. In the first stage, a programme of in vitro radiobiology will be served with proton beams with energies between 10MeV and 15MeV. In stage two, the beam will be accelerated using a fixed-field accelerator (FFA). This will allow experiments to be carried out in vitro and in vivo with proton beam energies of up to 127MeV. In addition, ion beams with energies up to 33.4MeV per nucleon will be available for in vitro and in vivo experiments. This paper presents the conceptual design for LhARA and the R&D programme by which the LhARA consortium seeks to establish the facility

    Feminist geographies of digital work

    Get PDF
    Feminist thought challenges essentialist and normative categorizations of ‘work’. Therefore, feminism provides a critical lens on ‘working space’ as a theoretical and empirical focus for digital geographies. Digital technologies extend and intensify working activity, rendering the boundaries of the workplace emergent. Such emergence heightens the ambivalence of working experience: the possibilities for affirmation and/or negation through work. A digital geography is put forward through feminist theorizations of the ambivalence of intimacy. The emergent properties of working with digital technologies create space through the intimacies of postwork places where bodies and machines feel the possibilities of being ‘at’ work

    Role of magnetic field evolution on filamentary structure formation in intense laser-foil interactions

    Get PDF
    Filamentary structures can form within the beam of protons accelerated during the interaction of an intense laser pulse with an ultrathin foil target. Such behaviour is shown to be dependent upon the formation time of quasi-static magnetic field structures throughout the target volume and the extent of the rear surface proton expansion over the same period. This is observed via both numerical and experimental investigations. By controlling the intensity profile of the laser drive, via the use of two temporally separated pulses, both the initial rear surface proton expansion and magnetic field formation time can be varied, resulting in modification to the degree of filamentary structure present within the laser-driven proton beam

    Simulation of a radiobiology facility for the Centre for the Clinical Application of Particles

    Get PDF
    The Centre for the Clinical Application of Particles’ Laser-hybrid Accelerator for Radiobiological Applications (LhARA) facility is being studied and requires simulation of novel accelerator components (such as the Gabor lens capture system), detector simulation and simulation of the ion beam interaction with cells. The first stage of LhARA will provide protons up to 15 MeV for in vitro studies. The second stage of LhARA will use a fixed-field accelerator to increase the energy of the particles to allow in vivo studies with protons and in vitro studies with heavier ions. BDSIM, a Geant4 based accelerator simulation tool, has been used to perform particle tracking simulations to verify the beam optics design done by BeamOptics and these show good agreement. Design parameters were defined based on an EPOCH simulation of the laser source and a series of mono-energetic input beams were generated from this by BDSIM. The tracking results show the large angular spread of the input beam (0.2 rad) can be transported with a transmission of almost 100% whilst keeping divergence at the end station very low (<0.1 mrad). The legacy of LhARA will be the demonstration of technologies that could drive a step-change in the provision of proton and light ion therapy (i.e. a laser source coupled to a Gabor lens capture and a fixed-field accelerator), and a system capable of delivering a comprehensive set of experimental data that can be used to enhance the clinical application of proton and light ion therapy

    Acquiring variation in an artificial language: children and adults are sensitive to socially conditioned linguistic variation

    Get PDF
    Languages exhibit sociolinguistic variation, such that adult native speakers condition the usage of linguistic variants on social context, gender, and ethnicity, among other cues. While the existence of this kind of socially conditioned variation is well-established, less is known about how it is acquired. Studies of naturalistic language use by children provide various examples where children's production of sociolinguistic variants appears to be conditioned on similar factors to adults’ production, but it is difficult to determine whether this reflects knowledge of sociolinguistic conditioning or systematic differences in the input to children from different social groups. Furthermore, artificial language learning experiments have shown that children have a tendency to eliminate variation, a process which could potentially work against their acquisition of sociolinguistic variation. The current study used a semi-artificial language learning paradigm to investigate learning of the sociolinguistic cue of speaker identity in 6-year-olds and adults. Participants were trained and tested on an artificial language where nouns were obligatorily followed by one of two meaningless particles and were produced by one of two speakers (one male, one female). Particle usage was conditioned deterministically on speaker identity (Experiment 1), probabilistically (Experiment 2), or not at all (Experiment 3). Participants were given tests of production and comprehension. In Experiments 1 and 2, both children and adults successfully acquired the speaker identity cue, although the effect was stronger for adults and in Experiment 1. In addition, in all three experiments, there was evidence of regularization in participants' productions, although the type of regularization differed with age: children showed regularization by boosting the frequency of one particle at the expense of the other, while adults regularized by conditioning particle usage on lexical items. Overall, results demonstrate that children and adults are sensitive to speaker identity cues, an ability which is fundamental to tracking sociolinguistic variation, and that children's well-established tendency to regularize does not prevent them from learning sociolinguistically conditioned variation

    The what and why of perceptual asymmetries in the visual domain

    Get PDF
    Perceptual asymmetry is one of the most important characteristics of our visual functioning. We carefully reviewed the scientific literature in order to examine such asymmetries, separating them into two major categories: within-visual field asymmetries and between-visual field asymmetries. We explain these asymmetries in terms of perceptual aspects or tasks, the what of the asymmetries; and in terms of underlying mechanisms, the why of the asymmetries. Tthe within-visual field asymmetries are fundamental to orientation, motion direction, and spatial frequency processing. between-visual field asymmetries have been reported for a wide range of perceptual phenomena. foveal dominance over the periphery, in particular, has been prominent for visual acuity, contrast sensitivity, and colour discrimination. Tthis also holds true for object or face recognition and reading performance. upper-lower visual field asymmetries in favour of the lower have been demonstrated for temporal and contrast sensitivities, visual acuity, spatial resolution, orientation, hue and motion processing. Iin contrast, the upper field advantages have been seen in visual search, apparent size, and object recognition tasks. left-right visual field asymmetries include the left field dominance in spatial (e.g., orientation) processing and the right field dominance in non-spatial (e.g., temporal) processing. left field is also better at low spatial frequency or global and coordinate spatial processing, whereas the right field is better at high spatial frequency or local and categorical spatial processing. All these asymmetries have inborn neural/physiological origins, the primary why, but can be also susceptible to visual experience, the critical why (promotes or blocks the asymmetries by altering neural functions)
    corecore