7,390 research outputs found
Spatially Resolved Spectroscopy of Sub-AU-Sized Regions of T Tauri and Herbig Ae/Be Disks
We present spatially resolved near-IR spectroscopic observations of 15 young
stars. Using a grism spectrometer behind the Keck Interferometer, we obtained
an angular resolution of a few milli-arcseconds and a spectral resolution of
230, enabling probes of both gas and dust in the inner disks surrounding the
target stars. We find that the angular size of the near-IR emission typically
increases with wavelength, indicating hot, presumably gaseous material within
the dust sublimation radius. Our data also clearly indicate Brackett-gamma
emission arising from hot hydrogen gas, and suggest the presence of water vapor
and carbon monoxide gas in the inner disks of several objects. This gaseous
emission is more compact than the dust continuum emission in all cases. We
construct simple physical models of the inner disk and fit them to our data to
constrain the spatial distribution and temperature of dust and gas emission
components.Comment: 40 pages, 8 figures. Accepted for publication in Ap
Spatially and Spectrally Resolved Hydrogen Gas within 0.1 AU of T Tauri and Herbig Ae/Be Stars
We present near-infrared observations of T Tauri and Herbig Ae/Be stars with
a spatial resolution of a few milli-arcseconds and a spectral resolution of
~2000. Our observations spatially resolve gas and dust in the inner regions of
protoplanetary disks, and spectrally resolve broad-linewidth emission from the
Brackett gamma transition of hydrogen gas. We use the technique of
spectro-astrometry to determine centroids of different velocity components of
this gaseous emission at a precision orders of magnitude better than the
angular resolution. In all sources, we find the gaseous emission to be more
compact than or distributed on similar spatial scales to the dust emission. We
attempt to fit the data with models including both dust and Brackett
gamma-emitting gas, and we consider both disk and infall/outflow morphologies
for the gaseous matter. In most cases where we can distinguish between these
two models, the data show a preference for infall/outflow models. In all cases,
our data appear consistent with the presence of some gas at stellocentric radii
of ~0.01 AU. Our findings support the hypothesis that Brackett gamma emission
generally traces magnetospherically driven accretion and/or outflows in young
star/disk systems.Comment: 48 pages, including 17 figures. Accepted for publication by Ap
Stellar and Molecular Radii of a Mira Star: First Observations with the Keck Interferometer Grism
Using a new grism at the Keck Interferometer, we obtained spectrally
dispersed (R ~ 230) interferometric measurements of the Mira star R Vir. These
data show that the measured radius of the emission varies substantially from
2.0-2.4 microns. Simple models can reproduce these wavelength-dependent
variations using extended molecular layers, which absorb stellar radiation and
re-emit it at longer wavelengths. Because we observe spectral regions with and
without substantial molecular opacity, we determine the stellar photospheric
radius, uncontaminated by molecular emission. We infer that most of the
molecular opacity arises at approximately twice the radius of the stellar
photosphere.Comment: 12 pages, including 3 figures. Accepted by ApJ
High Resolution K-band Spectroscopy of MWC 480 and V1331 Cyg
We present high resolution (R=25,000-35,000) K-band spectroscopy of two young
stars, MWC 480 and V1331 Cyg. Earlier spectrally dispersed (R=230)
interferometric observations of MWC 480 indicated the presence of an excess
continuum emission interior to the dust sublimation radius, with a spectral
shape that was interpreted as evidence for hot water emission from the inner
disk of MWC 480. Our spectrum of V1331 Cyg reveals strong emission from CO and
hot water vapor, likely arising in a circumstellar disk. In comparison, our
spectrum of MWC 480 appears mostly featureless. We discuss possible ways in
which strong water emission from MWC 480 might go undetected in our data. If
strong water emission is in fact absent from the inner disk, as our data
suggest, the continuum excess interior to the dust sublimation radius that is
detected in the interferometric data must have another origin. We discuss
possible physical origins for the continuum excess.Comment: 29 pages, 5 figures, to appear in Ap
On Phase Transition of -Type Crystals by Cluster Variation Method
The Cluster Variation Method (CVM) is applied to the Ishibashi model for
ammonium dihydrogen phosphate () of a typical hydrogen
bonded anti-ferroelectric crystal. The staggered and the uniform susceptibility
without hysteresis are calculated at equilibrium. On the other hand, by making
use of the natural iteration method (NIM) for the CVM, hysteresis phenomena of
uniform susceptibility versus temperature observed in experiments is well
explained on the basis of local minimum in Landau type variational free energy.
The polarization curves against the uniform field is also calculated.Comment: 14 pages, 10 figure
First L-band Interferometric Observations of a Young Stellar Object: Probing the Circumstellar Environment of MWC 419
We present spatially-resolved K- and L-band spectra (at spectral resolution R
= 230 and R = 60, respectively) of MWC 419, a Herbig Ae/Be star. The data were
obtained simultaneously with a new configuration of the 85-m baseline Keck
Interferometer. Our observations are sensitive to the radial distribution of
temperature in the inner region of the disk of MWC 419. We fit the visibility
data with both simple geometric and more physical disk models. The geometric
models (uniform disk and Gaussian) show that the apparent size increases
linearly with wavelength in the 2-4 microns wavelength region, suggesting that
the disk is extended with a temperature gradient. A model having a power-law
temperature gradient with radius simultaneously fits our interferometric
measurements and the spectral energy distribution data from the literature. The
slope of the power-law is close to that expected from an optically thick disk.
Our spectrally dispersed interferometric measurements include the Br gamma
emission line. The measured disk size at and around Br gamma suggests that
emitting hydrogen gas is located inside (or within the inner regions) of the
dust disk.Comment: Accepted for publication in Ap
Interferometric Observations of V838 Monocerotis
We have used long-baseline near-IR interferometry to resolve the peculiar
eruptive variable V838 Mon and to provide the first direct measurement of its
angular size. Assuming a uniform disk model for the emission we derive an
apparent angular diameter at the time of observations (November-December 2004)
of milli-arcseconds. For a nominal distance of kpc,
this implies a linear radius of . However, the data are
somewhat better fit by elliptical disk or binary component models, and we
suggest that the emission may be strongly affected by ejecta from the outburst.Comment: 12 pages, 1 two-part encapsulated postscript figure. Accepted by
ApJL. Added a table of observation
Science with the Keck Interferometer ASTRA Program
The ASTrometric and phase-Referenced Astronomy (ASTRA) project will provide
phase referencing and astrometric observations at the Keck Interferometer,
leading to enhanced sensitivity and the ability to monitor orbits at an
accuracy level of 30-100 microarcseconds. Here we discuss recent scientific
results from ASTRA, and describe new scientific programs that will begin in
2010-2011. We begin with results from the "self phase referencing" (SPR) mode
of ASTRA, which uses continuum light to correct atmospheric phase variations
and produce a phase-stabilized channel for spectroscopy. We have observed a
number of protoplanetary disks using SPR and a grism providing a spectral
dispersion of ~2000. In our data we spatially resolve emission from dust as
well as gas. Hydrogen line emission is spectrally resolved, allowing
differential phase measurements across the emission line that constrain the
relative centroids of different velocity components at the 10 microarcsecond
level. In the upcoming year, we will begin dual-field phase referencing (DFPR)
measurements of the Galactic Center and a number of exoplanet systems. These
observations will, in part, serve as precursors to astrometric monitoring of
stellar orbits in the Galactic Center and stellar wobbles of exoplanet host
stars. We describe the design of several scientific investigations capitalizing
on the upcoming phase-referencing and astrometric capabilities of ASTRA.Comment: Published in the proceedings of the SPIE 2010 conference on "Optical
and Infrared Interferometry II
New insights on the AU-scale circumstellar structure of FU Orionis
We report new near-infrared, long-baseline interferometric observations at
the AU scale of the pre-main-sequence star FU Orionis with the PTI, IOTA and
VLTI interferometers. This young stellar object has been observed on 42 nights
over a period of 6 years from 1998 to 2003. We have obtained 287 independent
measurements of the fringe visibility with 6 different baselines ranging from
20 to 110 meters in length, in the H and K bands. Our extensive (u,v)-plane
coverage, coupled with the published spectral energy distribution data, allows
us to test the accretion disk scenario. We find that the most probable
explanation for these observations is that FU Ori hosts an active accretion
disk whose temperature law is consistent with standard models. We are able to
constrain the geometry of the disk, including an inclination of 55 deg and a
position angle of 47 deg. In addition, a 10 percent peak-to-peak oscillation is
detected in the data (at the two-sigma level) from the longest baselines, which
we interpret as a possible disk hot-spot or companion. However, the oscillation
in our best data set is best explained with an unresolved spot located at a
projected distance of 10 AU at the 130 deg position angle and with a magnitude
difference of DeltaK = 3.9 and DeltaH = 3.6 mag moving away from the center at
a rate of 1.2 AU/yr. we propose to interpret this spot as the signature of a
companion of the central FU Ori system on an extremely eccentric orbit. We
speculate that the close encounter of this putative companion and the central
star could be the explanation of the initial photometric rise of the luminosity
of this object
- …
