232 research outputs found

    The effect of manganese on olivine-quartz-orthopyroxene stability

    Full text link
    The effect of manganese on the stability of ferrosilite relative to fayalite + quartz has been experimentally determined to assess its importance to orthopyroxene barometry. Reaction reversals in a piston-cylinder apparatus were obtained to within 0.1-kbar intervals indicating instability of Fs95Rh5 below 10.3, 10.9, 11.4, 12.2, 12.9, 13.7 kbar and Fs90Rh10 below 9.8, 10.4, 10.9, 11.6, 12.4 and 13.2 kbar at 750, 800, 850, 900, 950 and 1000[deg]C, respectively. Each mole % MnSiO3 extends the pyroxene stability by approximately 0.12 kbar relative to FeSiO3. Electron microprobe analyses of run products indicate a small preference of Mn for pyroxene over olivine with KD Mn-Feopx-oliv = 1.2-1.5, similar to values observed for natural pairs. Mossbauer spectra are consistent with a random distribution of Mn between the M1 and M2 sites in the orthopyroxene. These experimental data allow downward revision of pressure estimates based on the orthopyroxene barometer in areas where Mn is a significant component in orthopyroxene.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/23296/1/0000233.pd

    The suppression of fluorescence peaks in energy-dispersive X-ray diffraction

    Get PDF
    A novel method to separate diffraction and fluorescence peaks in energy- dispersive X-ray diffraction (EDXRD) is described. By tuning the excitation energy of an X-ray tube source to just below an elemental absorption edge, the corresponding fluorescence peaks of that element are completely suppressed in the resulting spectrum. Since Bremsstrahlung photons are present in the source spectrum up to the excitation energy, any diffraction peaks that lie at similar energies to the suppressed fluorescence peaks are uncovered. This technique is an alternative to the more usual method in EDXRD of altering the scattering angle in order to shift the energies of the diffraction peaks. However, in the back-reflection EDXRD technique [Hansford (2011). J. Appl. Cryst. 44, 514–525] changing the scattering angle would lose the unique property of insensitivity to sample morphology and is therefore an unattractive option. The use of fluorescence suppression to reveal diffraction peaks is demonstrated experimentally by suppressing the Ca K fluorescence peaks in the back-reflection EDXRD spectra of several limestones and dolomites. Three substantial benefits are derived: uncovering of diffraction peak(s) that are otherwise obscured by fluorescence; suppression of the Ca K escape peaks; and an increase in the signal-to-background ratio. The improvement in the quality of the EDXRD spectrum allows the identification of a secondary mineral in the samples, where present. The results for a pressed-powder pellet of the geological standard JDo-1 (dolomite) show the presence of crystallite preferred orientation in this prepared sample. Preferred orientation is absent in several unprepared limestone and dolomite rock specimens, illustrating an advantage of the observation of rocks in their natural state enabled by back-reflection EDXRD

    Influence of fly ash blending on hydration and physical behavior of Belite-Alite-Ye'elimite cements

    Get PDF
    A cement powder, composed of belite, alite and ye’elimite, was blended with 0, 15 and 30 wt% of fly ash and the resulting lended cements were further characterized. During hydration, the presence of fly ash caused the partial inhibition of both AFt degradation and belite reactivity, even after 180 days. The compressive strength of the corresponding mortars increased by increasing the fly ash content (68, 73 and 82 MPa for mortars with 0, 15 and 30 wt% of fly ash, respectively, at 180 curing days), mainly due to the diminishing porosity and pore size values. Although pozzolanic reaction has not been directly proved there are indirect evidences.This work is part of the Ph.D. of D. Londono-Zuluaga funded by Beca Colciencias 646—Doctorado en el exterior and Enlaza Mundos 2013 program grant. Cement and Building materials group (CEMATCO) from National University of Colombia is acknowledged for providing the calorimetric measurements. Funding from Spanish MINECO BIA2017-82391-R and I3 (IEDI-2016-0079) grants, co-funded by FEDER, are acknowledged

    An integrated view of theiInfluence of temperature, pressure, and humidity on the stability of trimorphic cysteamine hydrochloride

    Get PDF
    Understanding the phase behavior of pharmaceuticals is important for dosage form development and regulatory requirements, in particular after the incident with ritonavir. In the present paper, a comprehensive study of the solid-state phase behavior of cysteamine hydrochloride used in the treatment of nephropathic cystinosis and recently granted orphan designation by the European Commission is presented employing (high-pressure) calorimetry, water vapor sorption, and X-ray diffraction as a function of temperature. A new crystal form (I2/a, form III) has been discovered, and its structure has been solved by X-ray powder diffraction, while two other crystalline forms are already known. The relative thermodynamic stabilities of the commercial form I and of the newly discovered form III have been established; they possess an overall enantiotropic phase relationship, with form I stable at room temperature and form III stable above 37 degrees C. Its melting temperature was found at 67.3 +/- 0.5 degrees C. Cysteamine hydrochloride is hygroscopic and immediately forms a concentrated saturated solution in water with a surprisingly high concentration of 47.5 mol % above a relative humidity of 35%. No hydrate has been observed. A temperature composition phase diagram is presented that has been obtained with the unary pressure temperature phase diagram, measurements, and calculations. For development, form I would be the best form to use in any solid dosage form, which should be thoroughly protected against humidity.Postprint (author's final draft
    corecore