1,693 research outputs found

    Intonation in unaccompanied singing: Accuracy, drift, and a model of reference pitch memory

    Get PDF
    Copyright 2014 Acoustical Society of America. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the Acoustical Society of America. The following article appeared in J. Acoust. Soc. Am. 136, 401 (2014) and may be found at http://dx.doi.org/10.1121/1.4881915

    Estimating water flow through a hillslope using the massively parallel processor

    Get PDF
    A new two-dimensional model of water flow in a hillslope has been implemented on the Massively Parallel Processor at the Goddard Space Flight Center. Flow in the soil both in the saturated and unsaturated zones, evaporation and overland flow are all modelled, and the rainfall rates are allowed to vary spatially. Previous models of this type had always been very limited computationally. This model takes less than a minute to model all the components of the hillslope water flow for a day. The model can now be used in sensitivity studies to specify which measurements should be taken and how accurate they should be to describe such flows for environmental studies

    Time varying solar cycle protons program manual

    Get PDF
    Proton variations in earth radiation belt due to solar cycle - calculation program

    Dynamical Phase Transitions In Driven Integrate-And-Fire Neurons

    Full text link
    We explore the dynamics of an integrate-and-fire neuron with an oscillatory stimulus. The frustration due to the competition between the neuron's natural firing period and that of the oscillatory rhythm, leads to a rich structure of asymptotic phase locking patterns and ordering dynamics. The phase transitions between these states can be classified as either tangent or discontinuous bifurcations, each with its own characteristic scaling laws. The discontinuous bifurcations exhibit a new kind of phase transition that may be viewed as intermediate between continuous and first order, while tangent bifurcations behave like continuous transitions with a diverging coherence scale.Comment: 4 pages, 5 figure

    Programming a hillslope water movement model on the MPP

    Get PDF
    A physically based numerical model was developed of heat and moisture flow within a hillslope on a parallel architecture computer, as a precursor to a model of a complete catchment. Moisture flow within a catchment includes evaporation, overland flow, flow in unsaturated soil, and flow in saturated soil. Because of the empirical evidence that moisture flow in unsaturated soil is mainly in the vertical direction, flow in the unsaturated zone can be modeled as a series of one dimensional columns. This initial version of the hillslope model includes evaporation and a single column of one dimensional unsaturated zone flow. This case has already been solved on an IBM 3081 computer and is now being applied to the massively parallel processor architecture so as to make the extension to the one dimensional case easier and to check the problems and benefits of using a parallel architecture machine

    Reversible skew laurent polynomial rings and deformations of poisson automorphisms

    Get PDF
    A skew Laurent polynomial ring S = R[x(+/- 1); alpha] is reversible if it has a reversing automorphism, that is, an automorphism theta of period 2 that transposes x and x(-1) and restricts to an automorphism gamma of R with gamma = gamma(-1). We study invariants for reversing automorphisms and apply our methods to determine the rings of invariants of reversing automorphisms of the two most familiar examples of simple skew Laurent polynomial rings, namely a localization of the enveloping algebra of the two-dimensional non-abelian solvable Lie algebra and the coordinate ring of the quantum torus, both of which are deformations of Poisson algebras over the base field F. Their reversing automorphisms are deformations of Poisson automorphisms of those Poisson algebras. In each case, the ring of invariants of the Poisson automorphism is the coordinate ring B of a surface in F-3 and the ring of invariants S-theta of the reversing automorphism is a deformation of B and is a factor of a deformation of F[x(1), x(2), x(3)] for a Poisson bracket determined by the appropriate surface

    Stability of Intercelular Exchange of Biochemical Substances Affected by Variability of Environmental Parameters

    Full text link
    Communication between cells is realized by exchange of biochemical substances. Due to internal organization of living systems and variability of external parameters, the exchange is heavily influenced by perturbations of various parameters at almost all stages of the process. Since communication is one of essential processes for functioning of living systems it is of interest to investigate conditions for its stability. Using previously developed simplified model of bacterial communication in a form of coupled difference logistic equations we investigate stability of exchange of signaling molecules under variability of internal and external parameters.Comment: 11 pages, 3 figure

    Nambu-Hamiltonian flows associated with discrete maps

    Full text link
    For a differentiable map (x1,x2,...,xn)(X1,X2,...,Xn)(x_1,x_2,..., x_n)\to (X_1,X_2,..., X_n) that has an inverse, we show that there exists a Nambu-Hamiltonian flow in which one of the initial value, say xnx_n, of the map plays the role of time variable while the others remain fixed. We present various examples which exhibit the map-flow correspondence.Comment: 19 page

    Hash Functions Using Chaotic Iterations

    No full text
    International audienceIn this paper, a novel formulation of discrete chaotic iterations in the field of dynamical systems is given. Their topological properties are studied: it is mathematically proven that, under some conditions, these iterations have a chaotic behavior as defined by Devaney. This chaotic behavior allows us to propose a way to generate new hash functions. An illustrative example is detailed in order to show how to use our theoretical study in practice
    corecore